Um die anderen Arten von Veröffentlichungen zu diesem Thema anzuzeigen, folgen Sie diesem Link: Transport imaging.

Zeitschriftenartikel zum Thema „Transport imaging“

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit Top-50 Zeitschriftenartikel für die Forschung zum Thema "Transport imaging" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Sehen Sie die Zeitschriftenartikel für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.

1

Bron, W. E., A. Guerra und C. Suárez. „Imaging through quasi-particle transport“. Optics Letters 21, Nr. 13 (01.07.1996): 997. http://dx.doi.org/10.1364/ol.21.000997.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Engquist, Bjorn, und Yunan Yang. „Seismic imaging and optimal transport“. Communications in Information and Systems 19, Nr. 2 (2019): 95–145. http://dx.doi.org/10.4310/cis.2019.v19.n2.a1.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Engquist, Bjorn, und Yunan Yang. „Seismic Imaging and Optimal Transport“. Notices of the International Congress of Chinese Mathematicians 8, Nr. 1 (2020): 27–49. http://dx.doi.org/10.4310/iccm.2020.v8.n1.a3.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Osváth, Szabolcs, Levente Herényi, Gergely Agócs, Katalin Kis Petik und Miklós S. Z. Kellermayer. „Transport Imaging of Living Cells“. Biophysical Journal 110, Nr. 3 (Februar 2016): 597a. http://dx.doi.org/10.1016/j.bpj.2015.11.3190.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Komuro, Koshi, Yuya Yamazaki und Takanori Nomura. „Transport-of-intensity computational ghost imaging“. Applied Optics 57, Nr. 16 (23.05.2018): 4451. http://dx.doi.org/10.1364/ao.57.004451.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Bal, Guillaume, und Kui Ren. „Transport-Based Imaging in Random Media“. SIAM Journal on Applied Mathematics 68, Nr. 6 (Januar 2008): 1738–62. http://dx.doi.org/10.1137/070690122.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Chung, Francis J., und John C. Schotland. „Inverse Transport and Acousto-Optic Imaging“. SIAM Journal on Mathematical Analysis 49, Nr. 6 (Januar 2017): 4704–21. http://dx.doi.org/10.1137/16m1104767.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Haegel, N. M., J. D. Fabbri und M. P. Coleman. „Direct transport imaging in planar structures“. Applied Physics Letters 84, Nr. 8 (23.02.2004): 1329–31. http://dx.doi.org/10.1063/1.1650544.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Li, Su, Peichi C. Hu und Noah Malmstadt. „Imaging Molecular Transport across Lipid Bilayers“. Biophysical Journal 101, Nr. 3 (August 2011): 700–708. http://dx.doi.org/10.1016/j.bpj.2011.06.044.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Wolfe, J. P. „Imaging of excitonic transport in semiconductors“. Journal of Luminescence 53, Nr. 1-6 (Juli 1992): 327–34. http://dx.doi.org/10.1016/0022-2313(92)90166-7.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
11

MURALIDHAR, K. „Imaging unsteady three-dimensional transport phenomena“. Pramana 82, Nr. 1 (Januar 2014): 3–14. http://dx.doi.org/10.1007/s12043-013-0638-9.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
12

Li, Su, Peichi Hu und Noah Malmstadt. „Imaging Molecular Transport Across Lipid Bilayers“. Biophysical Journal 102, Nr. 3 (Januar 2012): 713a. http://dx.doi.org/10.1016/j.bpj.2011.11.3867.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
13

Sleigh, James N., Alessio Vagnoni, Alison E. Twelvetrees und Giampietro Schiavo. „Methodological advances in imaging intravital axonal transport“. F1000Research 6 (01.03.2017): 200. http://dx.doi.org/10.12688/f1000research.10433.1.

Der volle Inhalt der Quelle
Annotation:
Axonal transport is the active process whereby neurons transport cargoes such as organelles and proteins anterogradely from the cell body to the axon terminal and retrogradely in the opposite direction. Bi-directional transport in axons is absolutely essential for the functioning and survival of neurons and appears to be negatively impacted by both aging and diseases of the nervous system, such as Alzheimer’s disease and amyotrophic lateral sclerosis. The movement of individual cargoes along axons has been studied in vitro in live neurons and tissue explants for a number of years; however, it is currently unclear as to whether these systems faithfully and consistently replicate the in vivo situation. A number of intravital techniques originally developed for studying diverse biological events have recently been adapted to monitor axonal transport in real-time in a range of live organisms and are providing novel insight into this dynamic process. Here, we highlight these methodological advances in intravital imaging of axonal transport, outlining key strengths and limitations while discussing findings, possible improvements, and outstanding questions.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
14

Hu, F., Y. Luan, M. E. Scott, J. Yan, D. G. Mandrus, X. Xu und Z. Fei. „Imaging exciton–polariton transport in MoSe2 waveguides“. Nature Photonics 11, Nr. 6 (08.05.2017): 356–60. http://dx.doi.org/10.1038/nphoton.2017.65.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
15

Fricker, M. „Imaging techniques in plant transport: meeting review“. Journal of Experimental Botany 50, Nr. 90001 (01.06.1999): 1089–100. http://dx.doi.org/10.1093/jexbot/50.suppl_1.1089.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
16

West, L. J., D. I. Stewart, A. M. Binley und B. Shaw. „Resistivity imaging of soil during electrokinetic transport“. Engineering Geology 53, Nr. 2 (Juni 1999): 205–15. http://dx.doi.org/10.1016/s0013-7952(99)00034-4.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
17

Scott, Erik R., J. Bradley Phipps und Henry S. White. „Direct Imaging of Molecular Transport Through Skin“. Journal of Investigative Dermatology 104, Nr. 1 (Januar 1995): 142–45. http://dx.doi.org/10.1111/1523-1747.ep12613661.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
18

Petrasso, R. D., und K. W. Wenzel. „X‐ray imaging of impurity transport (abstract)“. Review of Scientific Instruments 61, Nr. 10 (Oktober 1990): 3144. http://dx.doi.org/10.1063/1.1141710.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
19

Shin, J., V. Meunier, A. P. Baddorf und S. V. Kalinin. „Nonlinear transport imaging by scanning impedance microscopy“. Applied Physics Letters 85, Nr. 18 (November 2004): 4240–42. http://dx.doi.org/10.1063/1.1812372.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
20

Misgeld, Thomas, Martin Kerschensteiner, Florence M. Bareyre, Robert W. Burgess und Jeff W. Lichtman. „Imaging axonal transport of mitochondria in vivo“. Nature Methods 4, Nr. 7 (10.06.2007): 559–61. http://dx.doi.org/10.1038/nmeth1055.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
21

Kim, Arnold D., und Miguel Moscoso. „Radiative transport theory for optical molecular imaging“. Inverse Problems 22, Nr. 1 (09.12.2005): 23–42. http://dx.doi.org/10.1088/0266-5611/22/1/002.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
22

Smallwood, R. H., Y. F. Mangnall und A. D. Leathard. „Transport of gastric contents (electric impedance imaging)“. Physiological Measurement 15, Nr. 2A (01.05.1994): A175—A188. http://dx.doi.org/10.1088/0967-3334/15/2a/023.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
23

Sölder, Elisabeth, Irena Rohr, Christian Kremser, Peter Hutzler und Paul L. Debbage. „Imaging of placental transport mechanisms: A review“. European Journal of Obstetrics & Gynecology and Reproductive Biology 144 (Mai 2009): S114—S120. http://dx.doi.org/10.1016/j.ejogrb.2009.02.035.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
24

Chhatriwalla, Adnan K., und Daniel J. Rader. „Intracoronary Imaging, Reverse Cholesterol Transport, and Transcriptomics“. Journal of the American College of Cardiology 69, Nr. 6 (Februar 2017): 641–43. http://dx.doi.org/10.1016/j.jacc.2016.12.003.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
25

Lee, John, Nicholas P. Bertrand und Christopher J. Rozell. „Unbalanced Optimal Transport Regularization for Imaging Problems“. IEEE Transactions on Computational Imaging 6 (2020): 1219–32. http://dx.doi.org/10.1109/tci.2020.3012954.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
26

White, Henry S. „Electrochemical Imaging of Molecular Transport in Skin“. Electrochemical Society Interface 12, Nr. 3 (01.09.2003): 30–34. http://dx.doi.org/10.1149/2.f07033if.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
27

Larsen, Jannik Bruun, Nayere Taebnia, Alireza Dolatshahi-Pirouz, Anne Zebitz Eriksen, Claudia Hjørringgaard, Kasper Kristensen, Nanna Wichmann Larsen et al. „Imaging therapeutic peptide transport across intestinal barriers“. RSC Chemical Biology 2, Nr. 4 (2021): 1115–43. http://dx.doi.org/10.1039/d1cb00024a.

Der volle Inhalt der Quelle
Annotation:
Understanding how pharmaceutical peptides transport across the intestinal barrier could increase their bio-availability. To this end, fluorescence imaging offers a unique combination of spatiotemporal resolution and compatibility with living systems.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
28

Schmölzer, Georg M., Megan O’Reilly und Po-Yin Cheung. „Noninvasive Monitoring during Interhospital Transport of Newborn Infants“. Critical Care Research and Practice 2013 (2013): 1–8. http://dx.doi.org/10.1155/2013/632474.

Der volle Inhalt der Quelle
Annotation:
The main indications for interhospital neonatal transports are radiographic studies (e.g., magnet resonance imaging) and surgical interventions. Specialized neonatal transport teams need to be skilled in patient care, communication, and equipment management and extensively trained in resuscitation, stabilization, and transport of critically ill infants. However, there is increasing evidence that clinical assessment of heart rate, color, or chest wall movements is imprecise and can be misleading even in experienced hands. The aim of the paper was to review the current evidence on clinical monitoring equipment during interhospital neonatal transport.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
29

Tokunaga, M., und N. Imamoto. „Single molecule imaging of nucleocytoplasmic transport of proteins“. Seibutsu Butsuri 41, supplement (2001): S95. http://dx.doi.org/10.2142/biophys.41.s95_1.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
30

Cody, George D., und Robert E. Botto. „Proton NMR imaging of pyridine transport in coal“. Energy & Fuels 7, Nr. 4 (Juli 1993): 561–62. http://dx.doi.org/10.1021/ef00040a018.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
31

Xiao, Chuanxiao, Chun-Sheng Jiang, John Moseley, John Simon, Kevin Schulte, Aaron J. Ptak, Steve Johnston et al. „Near-field transport imaging applied to photovoltaic materials“. Solar Energy 153 (September 2017): 134–41. http://dx.doi.org/10.1016/j.solener.2017.05.056.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
32

Kaech, S., C.-F. Huang, C. Fang, B. Jenkins und G. Banker. „Imaging Kinesin-mediated Transport in Cultured Hippocampal Neurons“. Microscopy and Microanalysis 16, S2 (Juli 2010): 1000–1001. http://dx.doi.org/10.1017/s1431927610062513.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
33

Crooker, S. A. „Imaging Spin Transport in Lateral Ferromagnet/Semiconductor Structures“. Science 309, Nr. 5744 (30.09.2005): 2191–95. http://dx.doi.org/10.1126/science.1116865.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
34

STOTLER, D., B. LABOMBARD, J. TERRY und S. ZWEBEN. „Neutral transport simulations of gas puff imaging experiments“. Journal of Nuclear Materials 313-316 (März 2003): 1066–70. http://dx.doi.org/10.1016/s0022-3115(02)01495-2.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
35

BAL, GUILLAUME, und OLIVIER PINAUD. „IMAGING USING TRANSPORT MODELS FOR WAVE–WAVE CORRELATIONS“. Mathematical Models and Methods in Applied Sciences 21, Nr. 05 (Mai 2011): 1071–93. http://dx.doi.org/10.1142/s0218202511005258.

Der volle Inhalt der Quelle
Annotation:
We consider the imaging of objects buried in unknown heterogeneous media. The medium is probed by using classical (e.g. acoustic or electromagnetic) waves. When heterogeneities in the medium become too strong, inversion methodologies based on a microscopic description of wave propagation (e.g. a wave equation or Maxwell's equations) become strongly dependent on the unknown details of the heterogeneous medium. In some situations, it is preferable to use a macroscopic model for a quantity that is quadratic in the wave fields. Here, such macroscopic models take the form of radiative transfer equations also referred to as transport equations. They can model either the energy density of the propagating wave fields or more generally the correlation of two wave fields propagating in possibly different media. In particular, we consider the correlation of the two fields propagating in the heterogeneous medium when the inclusion is absent and present, respectively. We present theoretical and numerical results showing that reconstructions based on this correlation are more accurate than reconstructions based on measurements of the energy density.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
36

Mamonov, Alexander V., und Kui Ren. „Quantitative photoacoustic imaging in the radiative transport regime“. Communications in Mathematical Sciences 12, Nr. 2 (2014): 201–34. http://dx.doi.org/10.4310/cms.2014.v12.n2.a1.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
37

Ward, Adam S., Michael N. Gooseff und Kamini Singha. „Imaging hyporheic zone solute transport using electrical resistivity“. Hydrological Processes 24, Nr. 7 (30.03.2010): 948–53. http://dx.doi.org/10.1002/hyp.7672.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
38

Tokunaga, M., und N. Imamoto. „Single molecule imaging of nucleocytoplasmic transport of proteins“. Seibutsu Butsuri 40, supplement (2000): S182. http://dx.doi.org/10.2142/biophys.40.s182_1.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
39

Balasubramanian, Kannan, Yuwei Fan, Marko Burghard, Klaus Kern, Marcel Friedrich, Uli Wannek und Alf Mews. „Photoelectronic transport imaging of individual semiconducting carbon nanotubes“. Applied Physics Letters 84, Nr. 13 (29.03.2004): 2400–2402. http://dx.doi.org/10.1063/1.1688451.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
40

Waller, Laura, Lei Tian und George Barbastathis. „Transport of Intensity imaging with higher order derivatives“. Optics Express 18, Nr. 12 (27.05.2010): 12552. http://dx.doi.org/10.1364/oe.18.012552.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
41

Shi, Wenqing, und Lane A. Baker. „Imaging heterogeneity and transport of degraded Nafion membranes“. RSC Advances 5, Nr. 120 (2015): 99284–90. http://dx.doi.org/10.1039/c5ra20291d.

Der volle Inhalt der Quelle
Annotation:
Accelerated aging experiments of Nafion® 212 (N212) membranes were carried out. Characterization of degraded N212 membrane samples was performed by microscopy, spectroscopy and electrochemical methods.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
42

Abbott, Carla J., Tiffany E. Choe, Theresa A. Lusardi, Claude F. Burgoyne, Lin Wang und Brad Fortune. „Imaging axonal transport in the rat visual pathway“. Biomedical Optics Express 4, Nr. 2 (30.01.2013): 364. http://dx.doi.org/10.1364/boe.4.000364.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
43

Chakraborty, Tonmoy, und Jonathan C. Petruccelli. „Source diversity for transport of intensity phase imaging“. Optics Express 25, Nr. 8 (11.04.2017): 9122. http://dx.doi.org/10.1364/oe.25.009122.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
44

Vinegar, Harold, und William Rothwell. „4719423 NMR imaging of materials for transport properties“. Magnetic Resonance Imaging 6, Nr. 5 (September 1988): X. http://dx.doi.org/10.1016/0730-725x(88)90174-9.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
45

Enochs, W. S., B. Schaffer, P. G. Bhide, N. Nossiff, M. Papisov, A. Bogdanov, T. J. Brady und R. Weissleder. „MR Imaging of Slow Axonal Transport in Vivo“. Experimental Neurology 123, Nr. 2 (Oktober 1993): 235–42. http://dx.doi.org/10.1006/exnr.1993.1156.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
46

Le Roux, Lucia G., Xudong Qiu, Megan C. Jacobsen, Mark D. Pagel, Seth T. Gammon, David Piwnica-Worms und Dawid Schellingerhout. „Axonal Transport as an In Vivo Biomarker for Retinal Neuropathy“. Cells 9, Nr. 5 (22.05.2020): 1298. http://dx.doi.org/10.3390/cells9051298.

Der volle Inhalt der Quelle
Annotation:
We illuminate a possible explanatory pathophysiologic mechanism for retinal cellular neuropathy by means of a novel diagnostic method using ophthalmoscopic imaging and a molecular imaging agent targeted to fast axonal transport. The retinal neuropathies are a group of diseases with damage to retinal neural elements. Retinopathies lead to blindness but are typically diagnosed late, when substantial neuronal loss and vision loss have already occurred. We devised a fluorescent imaging agent based on the non-toxic C fragment of tetanus toxin (TTc), which is taken up and transported in neurons using the highly conserved fast axonal transport mechanism. TTc serves as an imaging biomarker for normal axonal transport and demonstrates impairment of axonal transport early in the course of an N-methyl-D-aspartic acid (NMDA)-induced excitotoxic retinopathy model in rats. Transport-related imaging findings were dramatically different between normal and retinopathic eyes prior to presumed neuronal cell death. This proof-of-concept study provides justification for future clinical translation.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
47

Chandra, Subhash. „Imaging transported and endogenous calcium independently at a subcellular resolution: ion microscopy imaging of calcium stable isotopes“. Proceedings, annual meeting, Electron Microscopy Society of America 50, Nr. 2 (August 1992): 1604–5. http://dx.doi.org/10.1017/s0424820100132650.

Der volle Inhalt der Quelle
Annotation:
Ion microscopy, based on secondary ion mass spectrometry (SIMS), is a unique isotopic imaging technique. The use of stable isotopes as tracers and their SIMS localization at a subcellular resolution has introduced a significant new approach for molecular localization and ion transport studies. A molecule of interest may be tagged with stable 2H, 13C, 15N, etc. and imaged with SIMS for its intracellular location. Stable isotopes of physiologically important elements such as calcium and magnesium provide excellent tracers for ion transport imaging studies with SIMS. in a recent study with 44Ca, the brush border region in the small intestine was observed to be the main barrier for calcium transport from the intestinal lumen to the lamina propria region in chickens suffering from Rickets, a vitamin D-deficiency condition.An example of the use of 44Ca stable isotope for imaging calcium-calcium exchange between the intracellular and extracellular calcium with SIMS is shown in figure 1. 3T3 cells were grown on high purity germanium chips to about 80% confluency.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
48

Harris, J. Aaron, Yi Liu, Pinfen Yang, Peter Kner und Karl F. Lechtreck. „Single-particle imaging reveals intraflagellar transport–independent transport and accumulation of EB1 in Chlamydomonas flagella“. Molecular Biology of the Cell 27, Nr. 2 (15.01.2016): 295–307. http://dx.doi.org/10.1091/mbc.e15-08-0608.

Der volle Inhalt der Quelle
Annotation:
The microtubule (MT) plus-end tracking protein EB1 is present at the tips of cilia and flagella; end-binding protein 1 (EB1) remains at the tip during flagellar shortening and in the absence of intraflagellar transport (IFT), the predominant protein transport system in flagella. To investigate how EB1 accumulates at the flagellar tip, we used in vivo imaging of fluorescent protein–tagged EB1 (EB1-FP) in Chlamydomonas reinhardtii. After photobleaching, the EB1 signal at the flagellar tip recovered within minutes, indicating an exchange with unbleached EB1 entering the flagella from the cell body. EB1 moved independent of IFT trains, and EB1-FP recovery did not require the IFT pathway. Single-particle imaging showed that EB1-FP is highly mobile along the flagellar shaft and displays a markedly reduced mobility near the flagellar tip. Individual EB1-FP particles dwelled for several seconds near the flagellar tip, suggesting the presence of stable EB1 binding sites. In simulations, the two distinct phases of EB1 mobility are sufficient to explain its accumulation at the tip. We propose that proteins uniformly distributed throughout the cytoplasm like EB1 accumulate locally by diffusion and capture; IFT, in contrast, might be required to transport proteins against cellular concentration gradients into or out of cilia.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
49

Wüstner, Daniel, und Daniel Sage. „Multicolor bleach-rate imaging enlightens in vivo sterol transport“. Communicative & Integrative Biology 3, Nr. 4 (Juli 2010): 370–73. http://dx.doi.org/10.4161/cib.3.4.11972.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
50

Filler, A. G., und B. A. Bell. „Axonal transport, imaging, and the diagnosis of nerve compression“. British Journal of Neurosurgery 6, Nr. 4 (Januar 1992): 293–95. http://dx.doi.org/10.3109/02688699209023786.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Wir bieten Rabatte auf alle Premium-Pläne für Autoren, deren Werke in thematische Literatursammlungen aufgenommen wurden. Kontaktieren Sie uns, um einen einzigartigen Promo-Code zu erhalten!

Zur Bibliographie