Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Transport imaging“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Transport imaging" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Transport imaging"
Bron, W. E., A. Guerra und C. Suárez. „Imaging through quasi-particle transport“. Optics Letters 21, Nr. 13 (01.07.1996): 997. http://dx.doi.org/10.1364/ol.21.000997.
Der volle Inhalt der QuelleEngquist, Bjorn, und Yunan Yang. „Seismic imaging and optimal transport“. Communications in Information and Systems 19, Nr. 2 (2019): 95–145. http://dx.doi.org/10.4310/cis.2019.v19.n2.a1.
Der volle Inhalt der QuelleEngquist, Bjorn, und Yunan Yang. „Seismic Imaging and Optimal Transport“. Notices of the International Congress of Chinese Mathematicians 8, Nr. 1 (2020): 27–49. http://dx.doi.org/10.4310/iccm.2020.v8.n1.a3.
Der volle Inhalt der QuelleOsváth, Szabolcs, Levente Herényi, Gergely Agócs, Katalin Kis Petik und Miklós S. Z. Kellermayer. „Transport Imaging of Living Cells“. Biophysical Journal 110, Nr. 3 (Februar 2016): 597a. http://dx.doi.org/10.1016/j.bpj.2015.11.3190.
Der volle Inhalt der QuelleKomuro, Koshi, Yuya Yamazaki und Takanori Nomura. „Transport-of-intensity computational ghost imaging“. Applied Optics 57, Nr. 16 (23.05.2018): 4451. http://dx.doi.org/10.1364/ao.57.004451.
Der volle Inhalt der QuelleBal, Guillaume, und Kui Ren. „Transport-Based Imaging in Random Media“. SIAM Journal on Applied Mathematics 68, Nr. 6 (Januar 2008): 1738–62. http://dx.doi.org/10.1137/070690122.
Der volle Inhalt der QuelleChung, Francis J., und John C. Schotland. „Inverse Transport and Acousto-Optic Imaging“. SIAM Journal on Mathematical Analysis 49, Nr. 6 (Januar 2017): 4704–21. http://dx.doi.org/10.1137/16m1104767.
Der volle Inhalt der QuelleHaegel, N. M., J. D. Fabbri und M. P. Coleman. „Direct transport imaging in planar structures“. Applied Physics Letters 84, Nr. 8 (23.02.2004): 1329–31. http://dx.doi.org/10.1063/1.1650544.
Der volle Inhalt der QuelleLi, Su, Peichi C. Hu und Noah Malmstadt. „Imaging Molecular Transport across Lipid Bilayers“. Biophysical Journal 101, Nr. 3 (August 2011): 700–708. http://dx.doi.org/10.1016/j.bpj.2011.06.044.
Der volle Inhalt der QuelleWolfe, J. P. „Imaging of excitonic transport in semiconductors“. Journal of Luminescence 53, Nr. 1-6 (Juli 1992): 327–34. http://dx.doi.org/10.1016/0022-2313(92)90166-7.
Der volle Inhalt der QuelleDissertationen zum Thema "Transport imaging"
Norris, David G. „Diffusion imaging of the brain“. Universitätsbibliothek Leipzig, 2016. http://nbn-resolving.de/urn:nbn:de:bsz:15-qucosa-196833.
Der volle Inhalt der QuelleBöhm, Andreas. „Imaging of light induced carrier transport“. [S.l. : s.n.], 2002. http://www.bsz-bw.de/cgi-bin/xvms.cgi?SWB9820898.
Der volle Inhalt der QuelleWinchell, Stephen D. „Transport imaging in the one dimensional limit“. Thesis, Monterey, Calif. : Springfield, Va. : Naval Postgraduate School ; Available from National Technical Information Service, 2006. http://library.nps.navy.mil/uhtbin/hyperion/06Jun%5FWinchell.pdf.
Der volle Inhalt der QuelleLock, John George. „Dynamic imaging of post-Golgi protein transport /“. [St. Lucia, Qld.], 2005. http://www.library.uq.edu.au/pdfserve.php?image=thesisabs/absthe19397.pdf.
Der volle Inhalt der QuelleWaller, Laura A. (Laura Ann). „Computational phase imaging based on intensity transport“. Thesis, Massachusetts Institute of Technology, 2010. http://hdl.handle.net/1721.1/60821.
Der volle Inhalt der QuelleCataloged from PDF version of thesis.
Includes bibliographical references (p. 133-150).
Light is a wave, having both an amplitude and a phase. However, optical frequencies are too high to allow direct detection of phase; thus, our eyes and cameras see only real values - intensity. Phase carries important information about a wavefront and is often used for visualization of biological samples, density distributions and surface profiles. This thesis develops new methods for imaging phase and amplitude from multi-dimensional intensity measurements. Tomographic phase imaging of diffusion distributions is described for the application of water content measurement in an operating fuel cell. Only two projection angles are used to detect and localize large changes in membrane humidity. Next, several extensions of the Transport of Intensity technique are presented. Higher order axial derivatives are suggested as a method for correcting nonlinearity, thus improving range and accuracy. To deal with noisy images, complex Kalman filtering theory is proposed as a versatile tool for complex-field estimation. These two methods use many defocused images to recover phase and amplitude. The next technique presented is a single-shot quantitative phase imaging method which uses chromatic aberration as the contrast mechanism. Finally, a novel single-shot complex-field technique is presented in the context of a Volume Holographic Microscopy (VHM). All of these techniques are in the realm of computational imaging, whereby the imaging system and post-processing are designed in parallel.
by Laura A. Waller.
Ph.D.
Bos, Kevin J., K. Gordon Wilson und Benedict Newling. „Velocity-sensitised Magnetic Resonance Imaging of foams“. Universitätsbibliothek Leipzig, 2015. http://nbn-resolving.de/urn:nbn:de:bsz:15-qucosa-184242.
Der volle Inhalt der QuelleMaximov, Ivan I., Farida Grinberg und Nadim Jon Shah. „Robust estimator framework in diffusion tensor imaging“. Universitätsbibliothek Leipzig, 2015. http://nbn-resolving.de/urn:nbn:de:bsz:15-qucosa-184368.
Der volle Inhalt der QuelleSalameh, Wassim, Sébastien Leclerc, Didier Stemmelen und Jean-Marie Escanyé. „NMR imaging of water flow in packed beds“. Universitätsbibliothek Leipzig, 2015. http://nbn-resolving.de/urn:nbn:de:bsz:15-qucosa-186395.
Der volle Inhalt der QuelleSteele, Gary Alexander. „Imaging transport resonances in the quantum Hall effect“. Thesis, Massachusetts Institute of Technology, 2006. http://hdl.handle.net/1721.1/34401.
Der volle Inhalt der QuelleMIT Institute Archives copy: p. 201-231 bound in reverse order.
Includes bibliographical references (p. 213-231).
We image charge transport in the quantum Hall effect using a scanning charge accumulation microscope. Applying a DC bias voltage to the tip induces a highly resistive ring-shaped incompressible strip (IS) in a very high mobility 2D electron system (2DES). The IS moves with the tip as it is scanned, and acts as a barrier that prevents charging of the region under the tip. At certain tip positions, short-range disorder in the 2DES creates a quantum dot island inside the IS that enables breaching of the IS barrier by means of resonant tunneling through the island. Striking ring shapes appear in the images that directly reflect the shape of the IS created in the 2DES by the tip. Through the measurements of leakage across the IS, we extract information about energy gaps in the quantum Hall system. Varying the magnetic field, the tunneling resistance of the IS varies significantly, and takes on drastically different values at different filling factors. Measuring this tunneling resistance provides a unique microscopic probe of energy gaps in the quantum Hall system. Simulations of the interaction of the tip with the quantum Hall liquid show that native disorder from remote ionized donors can create the islands. The simulations predict the shape of the IS created in the 2DES in the presence of disorder, and comparison of the images with simulation results provides a direct and quantitative view of the disorder potential of a very high mobility 2DES. We also draw a connection to bulk transport. At quantum Hall plateaus, electrons in the bulk are localized by a network of ISs.
We have observed that the conductance across one IS is drastically enhanced by resonant tunneling through quantum dot islands. Similarly, this resonant tunneling process will dramatically enhance the conductance of certain hopping paths in the localized bulk and could play an important role in dissipative transport at quantum Hall plateaus.
by Gary Alexander Steele.
Ph.D.
Dean, Ryan J., Timothy Stait-Gardner, Simon J. Clarke, Suzy Y. Rogiers und William S. Pricea. „Diffusion Tensor Imaging (DTI) studies of the grape berry“. Universitätsbibliothek Leipzig, 2015. http://nbn-resolving.de/urn:nbn:de:bsz:15-qucosa-184852.
Der volle Inhalt der QuelleBücher zum Thema "Transport imaging"
1970-, Bal Guillaume, und International Workshop on Inverse Transport Theory and Tomography (2009 : Banff, Alta.), Hrsg. Tomography and inverse transport theory: International Workshop on Mathematical Methods in Emerging Modalities of Medical Imaging, October 25-30, 2009, Banff, Canada : International Workshop on Inverse Transport Theory and Tomography, May 16-21, 2010, Banff, Canada. Providence, R.I: American Mathematical Society, 2011.
Den vollen Inhalt der Quelle finden(Editor), Samuel Sideman, Hrsg. Visualization and Imaging in Transport Phenomena. New York Academy of Sciences, 2002.
Den vollen Inhalt der Quelle findenImaging Transport: Optical Measurements of Diffusion and Drift in Semiconductor Materials and Devices. Storming Media, 2004.
Den vollen Inhalt der Quelle findenVisualization and Imaging in Transport Phenomena (Annals of the New York Academy of Sciences). New York Academy of Sciences, 2003.
Den vollen Inhalt der Quelle findenPineda, Jesús, und Nathalie Reyns, Hrsg. Larval Transport in the Coastal Zone: Biological and Physical Processes. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198786962.003.0011.
Der volle Inhalt der QuelleNmr Methods For The Investigation Of Structure And Transport. Springer, 2011.
Den vollen Inhalt der Quelle findenF, Brennan K., Summers C. J und United States. National Aeronautics and Space Administration., Hrsg. An acoustic charge transport imager for high definition television applications. Atlanta, Ga: Georgia Institute of Technology, 1993.
Den vollen Inhalt der Quelle findenF, Brennan K., Summers C. J und United States. National Aeronautics and Space Administration., Hrsg. An acoustic charge transport imager for high definition television applications. Atlanta, Ga: Georgia Institute of Technology, 1993.
Den vollen Inhalt der Quelle findenF, Brennan K., Summers C. J und United States. National Aeronautics and Space Administration., Hrsg. An acoustic charge transport imager for high definition television applications. Atlanta, Ga: Georgia Institute of Technology, 1993.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Transport imaging"
Blümich, Bernhard. „Imaging and Transport“. In Essential NMR, 73–109. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-10704-8_4.
Der volle Inhalt der QuelleAnikonov, D. S., A. E. Kovtanyuk und I. V. Prokhorov. „Tomography Through the Transport Equation“. In Computational Radiology and Imaging, 33–44. New York, NY: Springer New York, 1999. http://dx.doi.org/10.1007/978-1-4612-1550-9_3.
Der volle Inhalt der QuelleCelotta, Robert J., John Unguris und Daniel T. Pierce. „Magnetic Domain Imaging of Spintronic Devices“. In Magnetic Interactions and Spin Transport, 341–74. Boston, MA: Springer US, 2003. http://dx.doi.org/10.1007/978-1-4615-0219-7_6.
Der volle Inhalt der QuelleCourse, Meredith M., Chung-Han Hsieh, Pei-I. Tsai, Jennifer A. Codding-Bui, Atossa Shaltouki und Xinnan Wang. „Live Imaging Mitochondrial Transport in Neurons“. In Neuromethods, 49–66. New York, NY: Springer New York, 2017. http://dx.doi.org/10.1007/978-1-4939-6890-9_3.
Der volle Inhalt der QuelleRösgen, T., und R. Totaro. „Low Coherence Techniques for Imaging in Multiphase Flows“. In Sedimentation and Sediment Transport, 255–67. Dordrecht: Springer Netherlands, 2003. http://dx.doi.org/10.1007/978-94-017-0347-5_41.
Der volle Inhalt der QuellePanigrahi, Pradipta Kumar, und Krishnamurthy Muralidhar. „Transport Phenomena in Crystal Growth“. In Imaging Heat and Mass Transfer Processes, 59–100. New York, NY: Springer New York, 2012. http://dx.doi.org/10.1007/978-1-4614-4791-7_4.
Der volle Inhalt der QuelleMuste, Marian, und Kwonkyu Yu. „Advancements in Sediment Transport Investigations using Quantitative Imaging Techniques“. In Sedimentation and Sediment Transport, 237–40. Dordrecht: Springer Netherlands, 2003. http://dx.doi.org/10.1007/978-94-017-0347-5_37.
Der volle Inhalt der QuelleGrogono, A. W., A. P. K. Verkaaik und W. Erdmann. „Informative Imaging of Oxygen Supply Parameters in Clinical Practice“. In Oxygen Transport to Tissue XIV, 315–18. Boston, MA: Springer US, 1992. http://dx.doi.org/10.1007/978-1-4615-3428-0_33.
Der volle Inhalt der QuelleHardy, Edme H. „Imaging with an Inhomogeneous Gradient“. In NMR Methods for the Investigation of Structure and Transport, 203–5. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-21628-2_9.
Der volle Inhalt der QuelleFeydy, Jean, und Alain Trouvé. „Global Divergences Between Measures: From Hausdorff Distance to Optimal Transport“. In Shape in Medical Imaging, 102–15. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-030-04747-4_10.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Transport imaging"
Kutulakos, Kyros N., und Matthew O'Toole. „Transport-aware imaging“. In SPIE OPTO, herausgegeben von Michael R. Douglass, Philip S. King und Benjamin L. Lee. SPIE, 2015. http://dx.doi.org/10.1117/12.2085305.
Der volle Inhalt der QuelleManros, Carl-Uno, und Richard Shockey. „Transport of document images over the Internet“. In Electronic Imaging, herausgegeben von Giordano B. Beretta und Raimondo Schettini. SPIE, 1999. http://dx.doi.org/10.1117/12.373448.
Der volle Inhalt der QuelleAraki, Ryuichiro. „NEAR-INFRARED IMAGING IN VIVO“. In International Symposium on Imaging in Transport Processes. Connecticut: Begellhouse, 1992. http://dx.doi.org/10.1615/ichmt.1992.intsympimgtranspproc.510.
Der volle Inhalt der QuelleHeneghan, Jack. „Image Transport Quality? No Problem“. In SMPTE Advanced Motion Imaging Conference. IEEE, 2002. http://dx.doi.org/10.5594/m00228.
Der volle Inhalt der QuelleCollmus, Bob. „Next Generation Transport for Broadcasters“. In SMPTE Advanced Motion Imaging Conference. IEEE, 2006. http://dx.doi.org/10.5594/m00366.
Der volle Inhalt der QuelleTaratorin, Alexander M., und Samuel Sideman. „IMAGING AND ANALYSIS OF DYNAMIC FIELDS“. In International Symposium on Imaging in Transport Processes. Connecticut: Begellhouse, 1992. http://dx.doi.org/10.1615/ichmt.1992.intsympimgtranspproc.50.
Der volle Inhalt der QuelleZhou, Haowen, und Partha P. Banerjee. „Transport of intensity phase imaging with error correction using transport of phase equation“. In Ultra-High-Definition Imaging Systems IV, herausgegeben von Toyohiko Yatagai, Yasuhiro Koike und Seizo Miyata. SPIE, 2021. http://dx.doi.org/10.1117/12.2582398.
Der volle Inhalt der QuelleLin, Ching-Long, und Eric A. Hoffman. „A numerical study of gas transport in human lung models“. In Medical Imaging, herausgegeben von Amir A. Amini und Armando Manduca. SPIE, 2005. http://dx.doi.org/10.1117/12.601169.
Der volle Inhalt der QuelleDurand, Frédo. „A Frequency Analysis of Light Transport“. In Computational Optical Sensing and Imaging. Washington, D.C.: OSA, 2011. http://dx.doi.org/10.1364/cosi.2011.jtud1.
Der volle Inhalt der QuelleSchotland, John C. „Radiative Transport and Scattering of Entangled Two-photon States“. In Mathematics in Imaging. Washington, D.C.: OSA, 2016. http://dx.doi.org/10.1364/math.2016.mw3h.1.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Transport imaging"
Crabtree, G. W., U. Welp, D. O. Gunter, W. Zhong, U. Balachandran, P. Haldar, R. S. Sokolowski, V. K. Vlasko-Vlasov und V. I. Nikitenko. Magneto-optical imaging of transport current densities in superconductors. Office of Scientific and Technical Information (OSTI), Dezember 1995. http://dx.doi.org/10.2172/195706.
Der volle Inhalt der QuelleBotto, R. E., und G. D. Cody. Magnetic resonance imaging of solvent transport in polymer networks. Office of Scientific and Technical Information (OSTI), Februar 1995. http://dx.doi.org/10.2172/26588.
Der volle Inhalt der QuelleMajer, Ernest L., Kenneth H. Williams, John E. Peterson und Glendon W. Gee. High Resolution Imaging of Vadose Zone Transport using Crosswell Methods. Office of Scientific and Technical Information (OSTI), Juli 2001. http://dx.doi.org/10.2172/15010150.
Der volle Inhalt der QuelleVerbinski, Victor. Imaging Gamma-Ray Contraband Detector for Empty Liquid Transport Containers. Fort Belvoir, VA: Defense Technical Information Center, November 1994. http://dx.doi.org/10.21236/ada288557.
Der volle Inhalt der QuelleD.P. Stotler, D.A. DIppolito, B. LeBlanc, R.J. Maqueda, J.R. Myra, S.A. Sabbagh und S.J. Zweben. Three-Dimensional Neutral Transport Simulations of Gas Puff Imaging Experiments. Office of Scientific and Technical Information (OSTI), September 2003. http://dx.doi.org/10.2172/815148.
Der volle Inhalt der QuelleD.P. Stotler, B. LaBombard, J.L. Terry und S.J. Zweben. Neutral Transport Simulations of Gas Puff Imaging Experiments on Alcator C-Mod. Office of Scientific and Technical Information (OSTI), Juni 2002. http://dx.doi.org/10.2172/798193.
Der volle Inhalt der QuelleMajer, Ernest L., Kenneth H. Williams, John E. Peterson und Thomas E. Daley. High resolution imaging of vadose zone transport using crosswell radar and seismic methods. Office of Scientific and Technical Information (OSTI), Oktober 2001. http://dx.doi.org/10.2172/792946.
Der volle Inhalt der QuelleMajer, Ernest L., John E. Peterson, Kenneth H. Williams, Thomas M. Daley und Glendon W. Gee. High Resolution Imaging of Vadose Zone Transport using Crosswell Radar and Seismic Methods. Office of Scientific and Technical Information (OSTI), September 2000. http://dx.doi.org/10.2172/15010152.
Der volle Inhalt der QuelleMoffatt, Robert. Two-Dimensional Spatial Imaging of Charge Transport in Germanium Crystals at Cryogenic Temperatures. Office of Scientific and Technical Information (OSTI), März 2016. http://dx.doi.org/10.2172/1350526.
Der volle Inhalt der QuelleDAY, DAVID M., und GREGORY A. NEWMAN. Fast Solutions of Maxwell's Equation for High Resolution Electromagnetic Imaging of Transport Pathways. Office of Scientific and Technical Information (OSTI), Oktober 1999. http://dx.doi.org/10.2172/14164.
Der volle Inhalt der Quelle