Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Transparentní materiál“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Transparentní materiál" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Transparentní materiál"
Zaichuk, A. V. „Radio-transparent ceramic materials of spodumene-cordierite composition“. Functional materials 26, Nr. 1 (22.03.2019): 174–81. http://dx.doi.org/10.15407/fm26.01.174.
Der volle Inhalt der QuelleDierke, H., und R. Tutsch. „Transparente Materialien optisch messen*/Measuring transparent materials by optical means - Consideration of influences of the materials under test“. wt Werkstattstechnik online 105, Nr. 11-12 (2015): 770–74. http://dx.doi.org/10.37544/1436-4980-2015-11-12-10.
Der volle Inhalt der QuelleChong Chen, Chong Chen, Yi Ni Yi Ni, Shengming Zhou Shengming Zhou, Hui Lin Hui Lin und Xuezhuan Yi Xuezhuan Yi. „Preparation of (Tb0.8Y0.2)3Al5O12 transparent ceramic as novel magneto-optical isolator material“. Chinese Optics Letters 11, Nr. 2 (2013): 021601–21603. http://dx.doi.org/10.3788/col201311.021601.
Der volle Inhalt der QuelleKagawa, Yutaka. „Optically Transparent Materials“. Materia Japan 39, Nr. 2 (2000): 113. http://dx.doi.org/10.2320/materia.39.113.
Der volle Inhalt der QuelleInoue, Hiroyuki. „Transparent Glass Materials.“ Materia Japan 39, Nr. 2 (2000): 123–26. http://dx.doi.org/10.2320/materia.39.123.
Der volle Inhalt der QuelleKuwabara, Makoto. „Transparent Functional Ceramics.“ Materia Japan 39, Nr. 2 (2000): 132–36. http://dx.doi.org/10.2320/materia.39.132.
Der volle Inhalt der QuelleKagawa, Yutaka, und Hisayoshi Iba. „Optically Transparent Composites.“ Materia Japan 39, Nr. 2 (2000): 137–40. http://dx.doi.org/10.2320/materia.39.137.
Der volle Inhalt der QuelleMüller, R., L. Hörauf, C. Speicher und D. Burkhard. „Transparente Produktionsprozesse/Transparent production processes – Information gathering through retrofitting of existing machinery for the transparent control of production processes“. wt Werkstattstechnik online 109, Nr. 04 (2019): 223–26. http://dx.doi.org/10.37544/1436-4980-2019-04-21.
Der volle Inhalt der QuelleKim, Moojoong, Kuentae Park, Gwantaek Kim, Jaisuk Yoo, Dong-Kwon Kim und Hyunjung Kim. „Collinear Deflection Method for the Measurement of Thermal Conductivity of Transparent Single Layer Anisotropic Material“. Applied Sciences 9, Nr. 8 (12.04.2019): 1522. http://dx.doi.org/10.3390/app9081522.
Der volle Inhalt der QuelleEnoki, Hirotoshi. „Oxide Transparent Electrodes Materials.“ Materia Japan 34, Nr. 3 (1995): 344–51. http://dx.doi.org/10.2320/materia.34.344.
Der volle Inhalt der QuelleDissertationen zum Thema "Transparentní materiál"
Hykolli, Denis. „Jednostupňová převodovka vyrobená 3D tiskem“. Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2021. http://www.nusl.cz/ntk/nusl-443218.
Der volle Inhalt der QuelleTásler, Jan. „Příprava a vlastnosti transparentních polykrystalických keramických materiálů“. Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2020. http://www.nusl.cz/ntk/nusl-416665.
Der volle Inhalt der QuelleMartin, Alexis. „Conception et étude d'antennes actives optiquement transparentes : de la VHF jusqu'au millimétrique“. Thesis, Rennes 1, 2017. http://www.theses.fr/2017REN1S126/document.
Der volle Inhalt der QuelleWithin the development of the Internet of Things (IoT) and the increase of the wireless communications, antennas are even more present on everyday life. However, antenna implementation is a real challenge, from a technological point of view (antenna integration into the devices) and from a psychological point of view (acceptability by the general public). Within this framework, the development of optically transparent antennas on new surfaces (glass windows, smartphone screens . . . ) is of great interest to improve the network coverage and to assist the general public in acceptability thanks to the low visual impact of such printed antennas. The present work deals with the design, the fabrication and the characterization of optically transparent and active antennas. The transparent and conducting material used is a micrometric mesh metal film specifically developed, associating high electrical conductivity and high optical transparency. A first optically transparent and miniature FM antenna based on a MESFET transistor with micrometric size has been designed and fabricated. Frequency agile antennas operating in X-band (~10 GHz), based on a beam-lead varactor (agility ~10%) and on a ferroelectric material agility ~2%), have been developed and characterized. An optically transparent and passive antenna has been studied in V-band (~60 GHz). At last, optics (1540 nm) / microwave (1.4 GHz) transition has been performed based on the transmission of a laser beam through the transparent antenna. For all prototypes, an optical transparency level higher than 80% coupled with a sheet resistance value lower than 0.1 ohm/sq have been used
Colucci, Renan [UNESP]. „Desenvolvimento de um compósito contendo polímero condutor (PEDOT:PSS) e material ORMOSIL (GPTMS) com aplicação na fabricação de dispositivos eletroluminescentes“. Universidade Estadual Paulista (UNESP), 2016. http://hdl.handle.net/11449/141509.
Der volle Inhalt der QuelleApproved for entry into archive by Ana Paula Grisoto (grisotoana@reitoria.unesp.br) on 2016-07-15T16:29:02Z (GMT) No. of bitstreams: 1 colucci_r_me_rcla.pdf: 3242692 bytes, checksum: c7bf17a6e3f70f7b97cb6c8ecfa1e065 (MD5)
Made available in DSpace on 2016-07-15T16:29:02Z (GMT). No. of bitstreams: 1 colucci_r_me_rcla.pdf: 3242692 bytes, checksum: c7bf17a6e3f70f7b97cb6c8ecfa1e065 (MD5) Previous issue date: 2016-06-27
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Atualmente é possível fabricar dispositivos eletroluminescentes (EL) utilizando como material ativo uma dispersão de um pó eletroluminescente inorgânico em uma matriz polimérica condutora. Entretanto, esses materiais são quimicamente instáveis, o que impede a deposição de alguns materiais solúveis sobre eles, como por exemplo, eletrodos de tinta prata. Para solucionar este problema, desenvolvemos uma matriz condutora e quimicamente estável formada pelo polímero condutor poli(3,4-etileno dioxitiofeno):poliestireno sulfonado (PEDOT:PSS) e pelo material sílica-orgânico 3-glicidoxipropil trimetilsilano (GPTMS). Foram produzidos compósitos de PEDOT:PSS/GPTMS com diversas concentrações de PEDOT:PSS, com os quais foram produzidos filmes uniformes, insolúveis e com condutividade elétrica entre 2 S/cm e 400 S/cm. A dependência da condutividade elétrica destes materiais em função da temperatura e da concentração de PEDOT:PSS foi descrita pelo modelo de transporte de cargas variable range hopping (VRH-3D). Adicionando-se o material eletroluminescente (EL) inorgânico silicato de zinco dopado com manganês (Zn2SiO4:Mn) à matriz condutora de PEDOT:PSS/GPTMS foi obtido um compósito para a produção de dispositivos EL. Depositando-se este compósito EL sobre substratos de vidro contendo eletrodos transparentes de óxido de estanho e índio, foram obtidos dispositivos EL com tensão de operação de 30 V e eficiência luminosa de 1,3 cd/A. Além disso, a transmitância óptica e a resistência de folha de filmes do compósito condutor (PEDOT:PSS/GPTMS) foram avaliadas, demonstrando que este material apresenta propriedades compatíveis com a aplicação como eletrodo transparente. Por fim, foram produzidos dispositivos EL utilizando o compósito condutor PEDOT:PSS/GPTMS como eletrodos e o compósito EL PEDOT:PSS/GPTMS/ Zn2SiO4:Mn como material ativo. Com este experimento, foi demonstrada a possibilidade de fabricar dispositivos EL por rota líquida, onde o compósito PEDOT:PSS/GPTMS foi utilizado tanto para a fabricação dos eletrodos como para a produção do material ativo do dispositivo.
It is possible to fabricate light-emitting (LE) devices with LE composites as active material. These light-emitting composites are produced with a LE inorganic powder dispersed into a conducting polymer matrix. However, these composites are chemically unstable, limiting the deposition of soluble materials over it. To overcome this problem we developed a high-stability conductive matrix comprising the conductive polymer poly(3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS) and the organic-silicate 3-glycidyloxypropyl)trimethoxysilane (GPTMS). Composites PEDOT:PSS/GPTMS with diverse weight concentrations of PEDOT:PSS were produced and used to fabricate high-stability films with electrical conductivity from 2 S/cm up to 400 S/cm. The charge transport in these conductive composites were studied as function of the temperature, as well as of the PEDOT:PSS concentration, and described by the 3D variable range hopping model. A light-emitting composite was produced adding to this conductive composite the inorganic electroluminescent powder Mn-doped zinc silicate (Zn2SiO4:Mn). Light-emitting devices, with turn-on voltage of 30 V and luminous efficacy of 1.3 cd/A, were produced with a coating of the developed LE composite done over glass substrates containing indium tin oxide transparent electrodes. Additionally, the optical transmittance and sheet resistance of films produced with the conductive composite PEDOT:PSS/GPTMS were evaluated showing that this material is suitable to fabricate transparent electrodes. Finally, were produced light-emitting devices employing the conductive composite PEDOT:PSS/GPTMS as electrodes and the light-emitting composite PEDOT:PSS/GPTMS/ Zn2SiO4:Mn as active material. This experiment has shown the fabrication of solution-processed light-emitting devices using the composite PEDOT:PSS/GPTMS as transparent electrode and as component of the active material.
Polster, Steffen. „Laserdurchstrahlschweissen transparenter Polymerbauteile“. Bamberg Meisenbach, 2009. http://d-nb.info/995566216/04.
Der volle Inhalt der QuelleYang, Weijia. „Femtosecond laser writing in transparent materials“. Thesis, University of Southampton, 2008. https://eprints.soton.ac.uk/65510/.
Der volle Inhalt der QuelleAvelas, Resende Joao. „Copper-based p-type semiconducting oxides : from materials to devices“. Thesis, Université Grenoble Alpes (ComUE), 2017. http://www.theses.fr/2017GREAI072/document.
Der volle Inhalt der QuelleThe lack of a successful p-type semiconductor oxides delays the future implementation of transparent electronics and oxide-based photovoltaic devices. In the group semiconducting compounds, copper-based oxides present promising electrical, optical and manufacturing features that establish this family of materials suitable for p-type semiconductor applications. In this work, we focused on the growth of cation doped Cu2O and intrinsic CuCrO2 thin films, aiming for enhancements of their optical and electrical response. Furthermore, we implemented these oxide films into pn junction devices, such as solar cells and UV photodetectors.In the work on Cu2O, we achieved the incorporation of magnesium up to 17% in thin films by aerosol-assisted chemical vapor deposition, resulting in morphology changes. Electrical resistivity was reduced down to values as low as 6.6 ohm.cm, due to the increase of charge-carrier density up to 10^18 cm-3. The incorporation of magnesium had additionally an impact on the stability of the Cu2O phase. The transformation of Cu2O into CuO under oxidizing conditions is significantly postponed by the presence of Mg in the films, due to the inhibition of copper split vacancies formation. The integration into pn junctions was successfully achieved using only chemical vapor deposition routes, in combination with n-type ZnO. Nevertheless, the application of Mg-doped Cu2O in solar cells present a meager photovoltaic performance, far from the state-of-the-art reports.In the work on CuCrO2, we demonstrate the first fabrication of ZnO/CuCrO2 core-shell nanowire heterostructures using low-cost, surface scalable, easily implemented chemical deposition techniques at moderate temperatures, and their integration into self-powered UV photodetectors. A conformal CuCrO2 shell with the delafossite phase and with high uniformity is formed by aerosol-assisted chemical vapor deposition over an array of vertically aligned ZnO nanowires grown by chemical bath deposition. The ZnO/CuCrO2 core-shell nanowire heterostructures present a significant rectifying behavior, with a maximum rectification ratio of 5500 at ±1V, which is much better than similar 2D devices, as well as a high absorption above 85% in the UV region. When applied as self-powered UV photodetectors, the optimized heterojunctions exhibit a maximum responsivity of 187 µA/W under zero bias at 374 nm as well as a high selectivity with a UV-to-visible (374-550 nm) rejection ratio of 68 under an irradiance of 100 mW/cm2
Noriega, Motta Julio Amilcar. „Portable transparent indenter instrumentation for material surface characterization“. Morgantown, W. Va. : [West Virginia University Libraries], 2006. https://eidr.wvu.edu/etd/documentdata.eTD?documentid=4765.
Der volle Inhalt der QuelleTitle from document title page. Document formatted into pages; contains xiii, 105 p. : ill. (some col.). Includes abstract. Includes bibliographical references (p. 97-98).
Alston, M. E. „Biologically inspired transparent material as an energy system“. Thesis, University of Salford, 2017. http://usir.salford.ac.uk/44731/.
Der volle Inhalt der QuelleSantos, Joaquim Cesar Pizzutti dos. „Desempenho térmico e visual de elementos transparentes frente à radiação solar“. Universidade de São Paulo, 2002. http://www.teses.usp.br/teses/disponiveis/88/88131/tde-22092016-152800/.
Der volle Inhalt der QuelleThe specification of the transparent elements is one of the most complex decisions in the ambit of the architectural project. It involves several constructive factors and human necessities related to the environmental comfort, associated to a great variety of available products in the market. The aim of this work is to facilitate the specification process to the planners, supplying values of the performance parameters of the transparent elements in relation to the analysis of thermal and visual comfort, coherent with the Brazilian climatic reality and with real incidence of the solar radiation along of the day. It were studied the ordinary, laminate and reflective glasses, the solar control films, policarbonates and acrylic used in Brazilian constructions. The spectrophotometry analysis was used to obtain the reflectance, the transmittance and the absortance values for the different regions of the solar spectrum, with varied incidence angles. Starting from the relationship of those results, considering the similar behavior of variation of the Solar Heat Factor (FCS) and of Transmittance of the Visible Light (Tv) with the incidence angle, it was developed a methodology that facilitates the simplified calculation of heat and natural light gains.
Bücher zum Thema "Transparentní materiál"
Levy, David, und Erick CastellÓn, Hrsg. Transparent Conductive Materials. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2018. http://dx.doi.org/10.1002/9783527804603.
Der volle Inhalt der QuelleBarquinha, Pedro. Transparent oxide electronics: From materials to devices. Hoboken, N.J: Wiley, 2012.
Den vollen Inhalt der Quelle findenDao, Lê H. Development of transparent low-cost organic aerogel materials for transparent glass window insulation. Ottawa, Ont: CANMET Energy Technology Centre, 1998.
Den vollen Inhalt der Quelle findenMooney, Peter J. Transparent plastics: Broadening the base of materials and applications. Norwalk, CT: Business Communications Co., 1990.
Den vollen Inhalt der Quelle findenHang kong zuo cang tou ming cai liao ying yong yan jiu xin jin zhan. Beijing Shi: Guo fang gong ye chu ban she, 2011.
Den vollen Inhalt der Quelle findenBanerjee, Arghya N. P-type transparent semiconducting delafossite cualo2+x thin film. New York: Nova Science Publishers, 2008.
Den vollen Inhalt der Quelle findenGhosh, Dhriti Sundar. Ultrathin Metal Transparent Electrodes for the Optoelectronics Industry. Heidelberg: Springer International Publishing, 2013.
Den vollen Inhalt der Quelle findenTōmei sankabutsu kinō zairyō no kaihatsu to ōyō: Developments and applications of transparent oxides as active electronic materials. Tōkyō: Shīemushī Shuppan, 2011.
Den vollen Inhalt der Quelle findenForum on New Materials (5th 2010 Montecatini Terme, Italy). New materials III: Transparent conducting and semiconducting oxides, solid state lighting, novel superconductors and electromagnetic metamaterials : proceedings of the 5th Forum on New Materials, part of CIMTEC 2010--12th International Ceramics Congress and 5th Forum on New Materials, Montecatini Terme, Italy, June 13-18, 2010. Stafa-Zuerich: Trans Tech Pubs. ltd. on behalf of Techna Group, 2011.
Den vollen Inhalt der Quelle findenTransparent Electronics. Springer, 2007.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Transparentní materiál"
Kong, Ling Bing, Yizhong Huang, Wenxiu Que, Tianshu Zhang, Sean Li, Jian Zhang, Zhili Dong und Dingyuan Tang. „Transparent Ceramic Materials“. In Transparent Ceramics, 29–91. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-18956-7_2.
Der volle Inhalt der QuelleFortunato, Elvira, Pedro Barquinha, Gonçalo Gonçalves, Luís Pereira und Rodrigo Martins. „Oxide Semiconductors: From Materials to Devices“. In Transparent Electronics, 141–83. Chichester, UK: John Wiley & Sons, Ltd, 2010. http://dx.doi.org/10.1002/9780470710609.ch6.
Der volle Inhalt der QuelleGoetzberger, A. „Transparent Insulation Materials“. In Physics and Technology of Solar Energy, 425–45. Dordrecht: Springer Netherlands, 1987. http://dx.doi.org/10.1007/978-94-009-3941-7_16.
Der volle Inhalt der QuelleHosono, Hideo. „Non-conventional Materials“. In Handbook of Transparent Conductors, 313–51. Boston, MA: Springer US, 2010. http://dx.doi.org/10.1007/978-1-4419-1638-9_10.
Der volle Inhalt der QuelleAndrés, Alicia de, Félix Jiménez-Villacorta und Carlos Prieto. „The Compromise Between Conductivity and Transparency“. In Transparent Conductive Materials, 1–30. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2018. http://dx.doi.org/10.1002/9783527804603.ch1.
Der volle Inhalt der QuelleEllmer, Klaus, Rainald Mientus und Stefan Seeger. „Metallic Oxides (ITO, ZnO, SnO2 , TiO2 )“. In Transparent Conductive Materials, 31–80. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2018. http://dx.doi.org/10.1002/9783527804603.ch2_1.
Der volle Inhalt der QuelleFuchs, Peter, Yaroslav E. Romanyuk und Ayodhya N. Tiwari. „Chemical Bath Deposition“. In Transparent Conductive Materials, 81–103. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2018. http://dx.doi.org/10.1002/9783527804603.ch2_2.
Der volle Inhalt der QuelleChen, Chao, und Changhui Ye. „Metal Nanowires“. In Transparent Conductive Materials, 105–31. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2018. http://dx.doi.org/10.1002/9783527804603.ch2_3.
Der volle Inhalt der QuelleSalazar-Bloise, Félix. „Carbon Nanotubes“. In Transparent Conductive Materials, 133–64. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2018. http://dx.doi.org/10.1002/9783527804603.ch3_1.
Der volle Inhalt der QuelleWu, Judy Z. „Graphene“. In Transparent Conductive Materials, 165–92. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2018. http://dx.doi.org/10.1002/9783527804603.ch3_2.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Transparentní materiál"
Wittwer, Volker, Joerg J. Dengler und Werner J. Platzer. „Transparent insulation materials“. In Optical Materials Technology for Energy Efficiency and Solar Energy, herausgegeben von Anne Hugot-Le Goff, Claes-Goeran Granqvist und Carl M. Lampert. SPIE, 1992. http://dx.doi.org/10.1117/12.130518.
Der volle Inhalt der QuelleWittwer, Volker, und Werner J. Platzer. „Transparent insulation materials“. In The Hague '90, 12-16 April, herausgegeben von Claes-Goeran Granqvist und Carl M. Lampert. SPIE, 1990. http://dx.doi.org/10.1117/12.20450.
Der volle Inhalt der QuelleSherman, Kenneth C. „Infrared Transparent Reflector Materials“. In International Congress & Exposition. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 1995. http://dx.doi.org/10.4271/950556.
Der volle Inhalt der QuelleDeGroot, Jr., Jon V., Ann Norris, Shedric O. Glover und Terry V. Clapp. „Highly transparent silicone materials“. In Optical Science and Technology, the SPIE 49th Annual Meeting, herausgegeben von Robert A. Norwood, Manfred Eich und Mark G. Kuzyk. SPIE, 2004. http://dx.doi.org/10.1117/12.557665.
Der volle Inhalt der QuellePlatzer, Werner J. „Solar Transmission Of Transparent Insulation Material“. In 1986 International Symposium/Innsbruck, herausgegeben von Claes-Goeran Granqvist, Carl M. Lampert, John J. Mason und Volker Wittwer. SPIE, 1986. http://dx.doi.org/10.1117/12.938312.
Der volle Inhalt der Quelle„Society related material“. In 2006 International Conference on Transparent Optical Networks. IEEE, 2006. http://dx.doi.org/10.1109/icton.2006.248488.
Der volle Inhalt der QuelleClawson, James, Alex Hoehn und Kurt Maute. „Materials for Transparent Inflatable Greenhouses“. In International Conference On Environmental Systems. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2003. http://dx.doi.org/10.4271/2003-01-2326.
Der volle Inhalt der QuelleCallet, Patrick. „Transparent materials - Colour and appearance“. In 2018 Colour and Visual Computing Symposium (CVCS). IEEE, 2018. http://dx.doi.org/10.1109/cvcs.2018.8496479.
Der volle Inhalt der QuellePfluger, Antonio. „Transparent Insulation Materials (Thermal Conductivity)“. In 1986 International Symposium/Innsbruck, herausgegeben von Claes-Goeran Granqvist, Carl M. Lampert, John J. Mason und Volker Wittwer. SPIE, 1986. http://dx.doi.org/10.1117/12.938309.
Der volle Inhalt der QuellePlatzer, Werner J. „Transparent insulation materials: a review“. In Optical Materials Technology for Energy Efficiency and Solar Energy Conversion XIII, herausgegeben von Volker Wittwer, Claes G. Granqvist und Carl M. Lampert. SPIE, 1994. http://dx.doi.org/10.1117/12.185405.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Transparentní materiál"
McGrath, James E. Aromatic Polyester-Polysiloxane Block Copolymers: Multiphase Transparent Damping Materials. Fort Belvoir, VA: Defense Technical Information Center, Oktober 1986. http://dx.doi.org/10.21236/ada182623.
Der volle Inhalt der QuelleEmrich, Carol, und Roy Coffman. Evaluation of Transparent Insulation Materials in Flat Plate Collectors. Office of Scientific and Technical Information (OSTI), Dezember 1994. http://dx.doi.org/10.2172/1577037.
Der volle Inhalt der QuelleStrano, Michael S. Multifunctional Materials: Transparent Reactive Armor Utilizing Single-Walled Carbon Nanotube Frameworks. Fort Belvoir, VA: Defense Technical Information Center, März 2010. http://dx.doi.org/10.21236/ada563683.
Der volle Inhalt der QuelleStrano, Michael S. Multifunctional Materials: Transparent Reactive Armor Utilizing Single-Walled Carbon Nanotube Frameworks. Fort Belvoir, VA: Defense Technical Information Center, März 2010. http://dx.doi.org/10.21236/ada547469.
Der volle Inhalt der QuelleRen, Zhifeng. High performance bulk thermoelectric materials and flexible transparent electrodes. Final Technical Report. Office of Scientific and Technical Information (OSTI), September 2019. http://dx.doi.org/10.2172/1561264.
Der volle Inhalt der QuelleYu, Jian H., und Alex J. Hsieh. Real-Time Dynamic Impact Strain Deformation Measurements of Transparent Poly(urethane urea) Materials. Fort Belvoir, VA: Defense Technical Information Center, September 2010. http://dx.doi.org/10.21236/ada532114.
Der volle Inhalt der QuelleMelanie, Haupt, und Hellweg Stefanie. Synthesis of the NRP 70 joint project “Waste management to support the energy turnaround (wastEturn)”. Swiss National Science Foundation (SNSF), Januar 2020. http://dx.doi.org/10.46446/publication_nrp70_nrp71.2020.2.en.
Der volle Inhalt der QuelleStein, Ernesto, und Lilia Stubrin. Competitividad, desarrollo productivo y mejora burocrática: El caso de la Secretaría de Simplificación Productiva de Argentina. Inter-American Development Bank, März 2021. http://dx.doi.org/10.18235/0003134.
Der volle Inhalt der QuelleMelanie, Haupt, und Hellweg Stefanie. Synthese des NFP-70-Verbundprojekts «Abfallmanagement als Beitrag zur Energiewende (wastEturn)». Swiss National Science Foundation (SNSF), Januar 2020. http://dx.doi.org/10.46446/publikation_nfp70_nfp71.2020.2.de.
Der volle Inhalt der Quelle