Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Transmission neuronale“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Transmission neuronale" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Transmission neuronale"
Vincent, Jean-Didier, und Pierre-Marie Lledo. „Connectivité neuronale et médiateurs chimiques impliqués dans la transmission du message olfactif“. Bulletin de l'Académie Nationale de Médecine 185, Nr. 4 (April 2001): 689–705. http://dx.doi.org/10.1016/s0001-4079(19)34516-9.
Der volle Inhalt der QuelleMartin-Soelch, C. „Modelle der Substanzabhängigkeit“. Zeitschrift für Neuropsychologie 21, Nr. 3 (Januar 2010): 153–66. http://dx.doi.org/10.1024/1016-264x/a000015.
Der volle Inhalt der QuelleKlaiber, Stefan, Fabian Bauer und Peter Bretschneider. „Verbesserung der Netzverlustprognose für Energieübertragungsnetze“. at - Automatisierungstechnik 68, Nr. 9 (25.09.2020): 738–49. http://dx.doi.org/10.1515/auto-2020-0076.
Der volle Inhalt der QuelleSARRADIN, P., P. BERTHON und F. LANTIER. „Le point sur l’épidémiologie et la physiopathologie des encéphalopathies spongiformes des ruminants“. INRAE Productions Animales 10, Nr. 2 (07.04.1997): 123–32. http://dx.doi.org/10.20870/productions-animales.1997.10.2.3988.
Der volle Inhalt der QuelleVerkhratsky, Alexei, und Frank Kirchhoff. „Glutamate-mediated neuronal?glial transmission“. Journal of Anatomy 210, Nr. 6 (Juni 2007): 651–60. http://dx.doi.org/10.1111/j.1469-7580.2007.00734.x.
Der volle Inhalt der QuelleMacarthur, H., G. H. Wilken, T. C. Westfall und L. L. Kolo. „Neuronal and non-neuronal modulation of sympathetic neurovascular transmission“. Acta Physiologica 203, Nr. 1 (01.03.2011): 37–45. http://dx.doi.org/10.1111/j.1748-1716.2010.02242.x.
Der volle Inhalt der QuelleSHAPIRO, KAREN, MELISSA A. MILLER, ANDREA E. PACKHAM, BEATRIZ AGUILAR, PATRICIA A. CONRAD, ELIZABETH VANWORMER und MICHAEL J. MURRAY. „Dual congenital transmission ofToxoplasma gondiiandSarcocystis neuronain a late-term aborted pup from a chronically infected southern sea otter (Enhydra lutris nereis)“. Parasitology 143, Nr. 3 (23.10.2015): 276–88. http://dx.doi.org/10.1017/s0031182015001377.
Der volle Inhalt der QuelleWu, Xiaoyin, Jun Gao, Jin Yan, Jing Fan, Chung Owyang und Ying Li. „Role for NMDA receptors in visceral nociceptive transmission in the anterior cingulate cortex of viscerally hypersensitive rats“. American Journal of Physiology-Gastrointestinal and Liver Physiology 294, Nr. 4 (April 2008): G918—G927. http://dx.doi.org/10.1152/ajpgi.00452.2007.
Der volle Inhalt der QuelleTsai, M. C., K. Tanaka, L. Overstreet-Wadiche und J. I. Wadiche. „Neuronal Glutamate Transporters Regulate Glial Excitatory Transmission“. Journal of Neuroscience 32, Nr. 5 (01.02.2012): 1528–35. http://dx.doi.org/10.1523/jneurosci.5232-11.2012.
Der volle Inhalt der QuelleLaduron, Pierre M. „Presynaptic heteroreceptors in regulation of neuronal transmission“. Biochemical Pharmacology 34, Nr. 4 (Februar 1985): 467–70. http://dx.doi.org/10.1016/0006-2952(85)90176-5.
Der volle Inhalt der QuelleDissertationen zum Thema "Transmission neuronale"
Roux, Sébastien. „L'influence des aspects temporels dans la planification motrice : activité neuronale, interactions neuronales, potentiels de champs locaux“. Aix-Marseille 2, 2006. http://theses.univ-amu.fr.lama.univ-amu.fr/2006AIX22068.pdf.
Der volle Inhalt der QuelleNeuronal correlates of movement preparation and execution are generally studied by using tasks in which the different steps of the motor plan are triggered by stimuli. However in natural conditions, movements are rarely triggered. Time estimation processes play an important role in motor performance, but only a few studies take this fact in account. To study the influence of time estimation processes in motor cortical activity, we trained monkeys to estimate and discriminate durations in order to perform the required arm reaching movement. Movements were either self initiated or triggered by a signal. We also manipulated the probability of signal occurrence to induce signal expectancy. By using a multi-electrode device, we recorded multiple single-neuron activity and local field potentials (LFP) in primary motor cortex (MI). We found neuronal correlates of time estimation processes in motor cortical activity, such as single neuron activity, precise spike synchronizations and LFP patterns linked to signal expectancy. To better understand the relationship between spiking activity and LFPs, we also studied the correlation between the two. In general, we found that, for a given mouvement, neuronal activity is largely influenced by the temporal context of the task
Casassus, Guillaume. „La transmission glutamatergique cortico-accumbens : régulation et plasticité pré-synaptique“. Bordeaux 2, 2004. http://www.theses.fr/2004BOR21131.
Der volle Inhalt der QuelleThe nucleus accumbens forms the ventral part of the striatum. It has been proposed to serve as an interface between the limbic system and the motor system. Medium spiny neurons of the nucleus accumbens, that depend on excitatory afferents to generate action potentials, receive a dense glutamatergic innervation from the prefrontal cortex and form various limbic structures, including the hippocampal formation, the basolateral amygdala and the thalamus. Despite growing evidence that the nucleus accumbens is involved in important brain functions such as motivation, attention or reward, physiological regulation of the glutamatergic input in medium spiny neurons is still largely unknown. The efficacy of excitatory glutamatergic synaptic transmission is highly dependent on the activation of presynaptic autoreceptors and on the temporal pattern of activity of afferents. Using patch-clamp whole-cell recordings in acute slices of the mouse nucleus accumbens, we have highlighted new forms of synaptic modulation of the cortico-accumbens pathway : (1) functional presynaptic kainate receptors on cortical afferrents fibers inhibited glutamatergic synaptic transmission, (2) increase in tonic frequency stimulation of the cortical input to the nucleus accumbens induced a presynaptic facilitation or depression of the synaptic transmission depending on the initial release probability, (3) burst stimulation of cortical afferent fibers lead to a cumulative increase of the glutamatergic synaptic input through presynaptic increase in axonal reliability of action potentials propagation, and (4) sustained stimulation (14 Hz, 2 min) of cortical afferent fibers, induced long-term potentiation of glutamatergic synaptic transmission through presynaptic mechanisms and activation of ionotropic glutamate receptors. These results demonstrtate new original phenomenons that modulate cortico-accumbens glutamatergic synaptic strength in nucleus accumbens efferent neurons
Thévenot, Emmanuel. „Caractérisation des partenaires de la Kinase neuronale PAK3, et rôle de ces complexes dans la plasticité neuronale“. Paris 11, 2009. http://www.theses.fr/2009PA11T058.
Der volle Inhalt der QuelleChambet, Nicolas. „Modélisation physique des réseaux de neurones : étude de comportements collectifs : application au traitement de l'information“. Angers, 1995. http://www.theses.fr/1995ANGE0014.
Der volle Inhalt der QuelleRajalu, Mathieu. „Plasticité de la transmission synaptique inhibitrice dans le système nociceptif spinal de la souris“. Université Louis Pasteur (Strasbourg) (1971-2008), 2008. http://www.theses.fr/2008STR13193.
Der volle Inhalt der QuelleThe synaptic inhibition is important in the control of neurons excitability. In the spinal lamina II, the balance between inhibitory and excitatory components regulates the transmission of the peripheral nociceptive inputs to supraspinal structures. During my PhD, I worked on the plasticity of inhibitory synaptic transmission in lamina II of mouse. Using the patch-clamp technique on acute slices, I first characterized the inhibitory synaptic transmission and then its plasticity throughout the postnatal development as in a transgenic model where a subunit of the glycine receptor is knocked-out. At last, I studied the short and long lasting positive modulation of inhibitory synaptic transmission by the oxytocinergic descending pathway that produces an impairment of thermal and mechanical hyperalgesia in an inflammatory model of pain
Carlier, Florent. „Nouvelle technique neuronale de détection multi-utilisateurs : Applications aux systèmes MC-CDMA“. Rennes, INSA, 2003. http://www.theses.fr/2003ISAR0019.
Der volle Inhalt der QuelleLegendre, Arnaud. „Modélisation fonctionnelle de l'activité neuronale hippocampique : Applications pharmacologiques“. Thesis, Mulhouse, 2015. http://www.theses.fr/2015MULH7271/document.
Der volle Inhalt der QuelleThe work of this thesis aims to apply modeling and simulation techniques to mechanisms underlying neuronal activity, in order to promote drug discovery for the treatment of nervous system diseases. The models are developed and integrated at different scales: 1) the so-called "elementary models" permit to simulate dynamics of receptors, ion channels and biochemical reactions in intracellular signaling pathways; 2) models at the neuronal level allow to study the electrophysiological activity of these cells; and 3) microcircuits models help to understand the emergent properties of these complex systems, while maintaining the basic mechanisms that are the targets of pharmaceutical molecules. After a bibliographic synthesis of necessary elements of neurobiology, and an outline of the implemented mathematical and computational tools, the manuscript describes the developed models, as well as their validation process, ranging from the neurotransmitter receptor to the microcircuit. Moreover, these developments have been applied to three studies aiming to understand: 1) pharmacological modulation of the long-term potentiation (LTP) of glutamatergic synapses in the hippocampus, 2) mechanisms of neuronal hyperexcitability in the mesial temporal lobe epilepsy (MTLE), based on in vitro and in vivo experimental results, and 3) cholinergic modulation of hippocampal activity, particularly the theta rhythm associated with septo-hippocampal pathway
Bosch, Clémentine. „Transmission et plasticité au sein de la voie hyperdirecte des ganglions de la base“. Paris 6, 2011. http://www.theses.fr/2011PA066232.
Der volle Inhalt der QuelleLavoie, Nathalie. „Étude sur le rôle physiologique du zinc endogène dans l'excitabilité neuronale et la transmission synaptique hippocampale“. Thesis, Université Laval, 2010. http://www.theses.ulaval.ca/2010/26859/26859.pdf.
Der volle Inhalt der QuelleRobbe, David. „Régulation et plasticité de la transmission synaptique dans le noyau accumbens. Modulation par les drogues addictives“. Montpellier 2, 2002. http://www.theses.fr/2002MON20076.
Der volle Inhalt der QuelleBücher zum Thema "Transmission neuronale"
Hlscher, Christian. Neuronal Mechanisms of Memory Formation: Concepts of Long-term Potentiation and Beyond. Cambridge: Cambridge University Press, 2000.
Den vollen Inhalt der Quelle findenGeorg, Hertting, Spatz Hanns-Christof und North Atlantic Treaty Organization. Scientific Affairs Division., Hrsg. Modulation of synaptic transmission and plasticity in nervous systems. Berlin: Springer-Verlag, 1988.
Den vollen Inhalt der Quelle findenThe cerebellum: Brain for an implicit self. Upper Saddle River, N.J: FT Press, 2012.
Den vollen Inhalt der Quelle findenSynaptic plasticity: Dynamics, development and disease. Wien: Springer, 2012.
Den vollen Inhalt der Quelle findenTomas, Hökfelt, Fuxe Kjell, Pernow Bengt und Marcus Wallenberg Foundation for International Cooperation in Science., Hrsg. Coexistence of neuronal messengers: A new principle in chemical transmission : proceedings of the Marcus Wallenberg Symposium, held at the Grand Hotel, Saltsjöbaden, Stockholm, on 26-28 June, 1985. Amsterdam: Elsevier, 1986.
Den vollen Inhalt der Quelle findenTaupin, Philippe. The hippocampus: Neurotransmission and plasticity in the nervous system. New York: Nova Biomedical Books, 2007.
Den vollen Inhalt der Quelle findenNonsynaptic diffusion neurotransmission and late brain reorganization. New York: Demos, 1995.
Den vollen Inhalt der Quelle finden(Foreword), Per Anderson, Michel Baudry (Editor) und Joel L. Davis (Editor), Hrsg. Long-Term Potentiation, Vol. 1: A Debate of Current Issues. The MIT Press, 1991.
Den vollen Inhalt der Quelle findenMichel, Baudry, und Davis Joel 1948-, Hrsg. Long-term potentiation: A debate of current issues. Cambridge, Mass: MIT Press, 1991.
Den vollen Inhalt der Quelle findenApergis-Schoute, John, Geoffrey Burnstock, Michael P. Nusbaum, David Parker, Miguel A. Morales, Louis-Eric Trudeau und Erik Svensson, Hrsg. Neuronal Co-transmission. Frontiers Media SA, 2019. http://dx.doi.org/10.3389/978-2-88945-945-2.
Der volle Inhalt der QuelleBuchteile zum Thema "Transmission neuronale"
Müller-Esterl, Werner. „Neuronale Erregung und Transmission“. In Biochemie, 449–65. Heidelberg: Spektrum Akademischer Verlag, 2011. http://dx.doi.org/10.1007/978-3-8274-2227-9_32.
Der volle Inhalt der QuelleMüller-Esterl, Werner. „Neuronale Erregung und Transmission“. In Biochemie, 483–99. Berlin, Heidelberg: Springer Berlin Heidelberg, 2017. http://dx.doi.org/10.1007/978-3-662-54851-6_32.
Der volle Inhalt der QuelleRahmann, Hinrich, und Mathilde Rahmann. „Modulation of Neuronal Information Transmission“. In The Neurobiological Basis of Memory and Behavior, 169–86. New York, NY: Springer New York, 1992. http://dx.doi.org/10.1007/978-1-4612-2772-4_8.
Der volle Inhalt der QuelleDudel, J. „Calcium, A Cofactor in Neuromuscular Transmission“. In Calcium Electrogenesis and Neuronal Functioning, 155–65. Berlin, Heidelberg: Springer Berlin Heidelberg, 1986. http://dx.doi.org/10.1007/978-3-642-70744-5_14.
Der volle Inhalt der QuelleXu, Zao C. „Alterations of Synaptic Transmission Following Transient Cerebral Ischemia“. In Neuronal and Vascular Plasticity, 117–34. Boston, MA: Springer US, 2003. http://dx.doi.org/10.1007/978-1-4615-0282-1_5.
Der volle Inhalt der QuelleSkok, V. I., A. A. Selyanko und V. A. Derkach. „The Relation of Nicotinic Receptor Open-Channel Blockade to Blockade of Synaptic Transmission“. In Neuronal Acetylcholine Receptors, 171–77. Boston, MA: Springer US, 1989. http://dx.doi.org/10.1007/978-1-4684-1668-8_7.
Der volle Inhalt der QuelleInbar, Gideon. „Information Transmission in Parallel Neuronal Channels“. In Analysis and Modeling of Neural Systems, 393–97. Boston, MA: Springer US, 1992. http://dx.doi.org/10.1007/978-1-4615-4010-6_39.
Der volle Inhalt der QuelleSwann, John W., Karen L. Smith und Robert J. Brady. „Neural Networks and Synaptic Transmission in Immature Hippocampus“. In Excitatory Amino Acids and Neuronal Plasticity, 161–71. Boston, MA: Springer US, 1990. http://dx.doi.org/10.1007/978-1-4684-5769-8_19.
Der volle Inhalt der QuelleHeinemann, U., H. Clusmann, J. Dreier und J. Stabel. „Changes in Synaptic Transmission in the Kindled Hippocampus“. In Excitatory Amino Acids and Neuronal Plasticity, 445–50. Boston, MA: Springer US, 1990. http://dx.doi.org/10.1007/978-1-4684-5769-8_49.
Der volle Inhalt der QuelleBraak, H., und E. Braak. „Evolution of neuronal changes in the course of Alzheimer’s disease“. In Journal of Neural Transmission. Supplementa, 127–40. Vienna: Springer Vienna, 1998. http://dx.doi.org/10.1007/978-3-7091-6467-9_11.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Transmission neuronale"
Xing Jiang, Xiangben Jiang, Lin Peng und Xiaoming Li. „Microwave transmission approach for human neuronal activities detection“. In 2016 IEEE International Conference on Microwave and Millimeter Wave Technology (ICMMT). IEEE, 2016. http://dx.doi.org/10.1109/icmmt.2016.7761816.
Der volle Inhalt der QuelleNhat Vu und B. S. Manjunath. „Graph cut segmentation of neuronal structures from transmission electron micrographs“. In 2008 15th IEEE International Conference on Image Processing. IEEE, 2008. http://dx.doi.org/10.1109/icip.2008.4711857.
Der volle Inhalt der QuelleQin, Yingmei, Chunxiao Han, Bei Liu und Yanqiu Che. „Minimal Neuronal Model for the Transmission Path of Acupuncture Signal“. In 2015 International Conference on Computer Science and Intelligent Communication. Paris, France: Atlantis Press, 2015. http://dx.doi.org/10.2991/csic-15.2015.35.
Der volle Inhalt der QuelleGoh, Aik, Stefan Craciun, Sudhir Rao, David Cheney, Karl Gugel, Justin C. Sanchez und Jose C. Principe. „Wireless transmission of neuronal recordings using a portable real-time discrimination/compression algorithm“. In 2008 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE, 2008. http://dx.doi.org/10.1109/iembs.2008.4650196.
Der volle Inhalt der QuelleBaysal, Veli, Ergin Yilmaz und Mahmut Ozer. „Blocking of weak signal propagation via autaptic transmission in scale-free neuronal networks“. In 2016 Medical Technologies National Congress (TIPTEKNO). IEEE, 2016. http://dx.doi.org/10.1109/tiptekno.2016.7863093.
Der volle Inhalt der QuelleWei, Xile, Yinhong Chen, Jiang Wang, Bin Deng, Meili Lu und Yanqiu Che. „External electric field effect on the PR neuronal firing under the ephaptic transmission“. In 2011 4th International Conference on Biomedical Engineering and Informatics (BMEI). IEEE, 2011. http://dx.doi.org/10.1109/bmei.2011.6098722.
Der volle Inhalt der QuelleBaysal, Veli, Ergin Yilmaz und Mahmut Ozer. „Effects of autapse on the transmission of localized rhythmic activity in small-world neuronal networks“. In 2015 23th Signal Processing and Communications Applications Conference (SIU). IEEE, 2015. http://dx.doi.org/10.1109/siu.2015.7130029.
Der volle Inhalt der Quelle