Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Transmembrane mucins“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Transmembrane mucins" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Transmembrane mucins"
van Putten, Jos P. M., und Karin Strijbis. „Transmembrane Mucins: Signaling Receptors at the Intersection of Inflammation and Cancer“. Journal of Innate Immunity 9, Nr. 3 (2017): 281–99. http://dx.doi.org/10.1159/000453594.
Der volle Inhalt der QuelleSun, Lingbo, Yuhan Zhang, Wenyan Li, Jing Zhang und Yuecheng Zhang. „Mucin Glycans: A Target for Cancer Therapy“. Molecules 28, Nr. 20 (11.10.2023): 7033. http://dx.doi.org/10.3390/molecules28207033.
Der volle Inhalt der QuelleBallester, Milara und Cortijo. „Mucins as a New Frontier in Pulmonary Fibrosis“. Journal of Clinical Medicine 8, Nr. 9 (11.09.2019): 1447. http://dx.doi.org/10.3390/jcm8091447.
Der volle Inhalt der QuelleChatterjee, Maitrayee, Liane Z. X. Huang, Anna Z. Mykytyn, Chunyan Wang, Mart M. Lamers, Bart Westendorp, Richard W. Wubbolts et al. „Glycosylated extracellular mucin domains protect against SARS-CoV-2 infection at the respiratory surface“. PLOS Pathogens 19, Nr. 8 (10.08.2023): e1011571. http://dx.doi.org/10.1371/journal.ppat.1011571.
Der volle Inhalt der QuelleHauber, Hans-Peter, Susan C. Foley und Qutayba Hamid. „Mucin Overproduction in Chronic Inflammatory Lung Disease“. Canadian Respiratory Journal 13, Nr. 6 (2006): 327–35. http://dx.doi.org/10.1155/2006/901417.
Der volle Inhalt der QuelleConstantinou, Pamela E., Brian P. Danysh, Neeraja Dharmaraj und Daniel D. Carson. „Transmembrane mucins as novel therapeutic targets“. Expert Review of Endocrinology & Metabolism 6, Nr. 6 (November 2011): 835–48. http://dx.doi.org/10.1586/eem.11.70.
Der volle Inhalt der QuelleHansson, Gunnar C. „Mucins and the Microbiome“. Annual Review of Biochemistry 89, Nr. 1 (20.06.2020): 769–93. http://dx.doi.org/10.1146/annurev-biochem-011520-105053.
Der volle Inhalt der QuelleMall, A. S. „Analysis of mucins: role in laboratory diagnosis“. Journal of Clinical Pathology 61, Nr. 9 (19.07.2008): 1018–24. http://dx.doi.org/10.1136/jcp.2008.058057.
Der volle Inhalt der QuelleItah, Shir, David Elad, Ariel J. Jaffa, Dan Grisaru und Mordechai Rosner. „Transmembrane Mucin Response in Conjunctival Epithelial Cells Exposed to Wall Shear Stresses“. International Journal of Molecular Sciences 24, Nr. 7 (01.04.2023): 6589. http://dx.doi.org/10.3390/ijms24076589.
Der volle Inhalt der QuelleKramer, Jessica R., Bibiana Onoa, Carlos Bustamante und Carolyn R. Bertozzi. „Chemically tunable mucin chimeras assembled on living cells“. Proceedings of the National Academy of Sciences 112, Nr. 41 (29.09.2015): 12574–79. http://dx.doi.org/10.1073/pnas.1516127112.
Der volle Inhalt der QuelleDissertationen zum Thema "Transmembrane mucins"
Lang, Tiange. „Evolution of transmembrane and gel-forming mucins studied with bioinformatic methods /“. Göteborg : The Sahlgrenska Academy at Göteborg University, Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, 2007. http://hdl.handle.net/2077/7502.
Der volle Inhalt der QuelleAmmam, Ianis. „Études et caractérisations tribologiques des mécanismes biophysiques de la lubrification orale“. Electronic Thesis or Diss., Ecully, Ecole centrale de Lyon, 2024. http://www.theses.fr/2024ECDL0042.
Der volle Inhalt der QuelleThe study of oral lubrication has become a current concern for the food industry. Quantitative analyses allow for understanding and anticipating physiological mechanisms, such as predicting astringency phenomena in food products. Astringency is characterized by a decrease in oral mucosa lubrication following the consumption of plant-based products. However, current research on oral lubrication relies on synthetic materials that poorly represent oral tissues, neglecting interactions between secreted salivary proteins and transmembrane proteins, thus limiting the understanding of lubrication mechanisms. This thesis is part of the MACARON project, which aims to investigate the role of oral mucosa in sensory perception. In vitro models of oral mucosa expressing the transmembrane protein MUC1 have been developed to simulate fundamental interactions between MUC1 and salivary proteins responsible for tissue lubrication and hydration. Additionally, a tribometer has been designed to perform in vitro tribological tests on these epithelial models to monitor their lubrication state. Thus, this thesis focuses on studying the molecular mechanisms of oral lubrication through an in vitro tribological approach, using macro- and micrometric physical parameters. Firstly, this manuscript provides a study on the crucial role of MUC1 mucin and its structure in oral lubrication. The presence of MUC1 enhances lubrication by improving the retention of salivary proteins on the cell surface. Secondly, the manuscript explores molecular mechanisms of astringency. In vitro tribological tests in the presence of astringent compounds show that these substances form aggregations on the epithelial surface, reducing oral lubrication. Concurrently, our work demonstrates protective mechanisms, including the dissociation of MUC1 and the interaction of proline-rich proteins with tannins, mitigating these adverse effects on lubrication. Through additional study, correlations between sensory perception and our measured physical properties are established, demonstrating the ability of our methodology to classify individuals based on their sensitivity to astringency. Finally, the last study presents the development of a new oral mucosa model aiming to reproduce mechanical and physicochemical properties of in vivo mucosa. This thesis proposes an innovative methodology for studying oral lubrication, particularly focusing on mechanisms responsible for astringency sensation through the use of mucosa models increasingly closer to physiological oral tissues
Chan, Becky Ka Man. „Expression of beta subunit of epithelium sodium channel and cystic fibrosis transmembrane regulator in small airways obstruction in chronic obstructive pulmonary disease“. Thesis, University of British Columbia, 2008. http://hdl.handle.net/2429/4072.
Der volle Inhalt der QuelleTushar, Piyush. „The role of transmembrane mucin protein MUC1 in anoikis and in EGFR activation of human epithelial cancer cells“. Thesis, University of Liverpool, 2018. http://livrepository.liverpool.ac.uk/3018915/.
Der volle Inhalt der QuelleSyrjänen, R. (Riikka). „TIM family molecules in hematopoiesis“. Doctoral thesis, Oulun yliopisto, 2014. http://urn.fi/urn:isbn:9789526204246.
Der volle Inhalt der QuelleTiivistelmä Verisolut eli punasolut, verihiutaleet ja immuunipuolustuksessa tärkeät valkosolut kehittyvät alkion veren kantasoluista prosessissa, joka on kaikissa selkärankaisissa samankaltainen. Veren kanta- ja esisolujen sekä ympäröivän mikroympäristön tuottamat molekyylit säätelevät hematopoieesia eli verisolujen kehitystä. Näiden molekyylien tunteminen on tärkeää, sillä useat normaalia verisolujen kehitystä säätelevät geenit ovat osallisena myös verisyöpien synnyssä. Lisäksi tätä tietoa on mahdollista hyödyntää verisolujen tehokkaammassa eristämisessä ja kasvattamisessa hoitoja varten. Immuunipuolustuksen solut, kuten syöjäsolut eli makrofagit ja T-solut, ilmentävät TIM-molekyylejä (Transmembrane Immunoglobulin and Mucin). Ne toimivat immunologisen vasteen säätelyssä sekä solusyönnissä, mutta niiden roolia verisolujen kehittymisessä ei ole selvitetty aikaisemmin. Tässä väitöstutkimuksessa etsittiin uusia hematopoieesiin vaikuttavia geenejä käyttäen mallieläiminä sekä kanaa että hiirtä. Tutkimuksessa luotiin geenikirjasto kanan alkion para-aortaalisen alueen veren kanta- ja esisoluista. Kirjastosta tunnistettiin useita ennalta tiedettyjä sekä uusia verisolujen kehitykseen vaikuttavia geenejä. Tutkimuksessa analysoitiin tarkemmin kirjastosta löytyneiden TIM-geeniperheen jäsenten ilmentymistä ja roolia verisolujen kehityksessä. Tutkimuksessa osoitettiin, että TIM-2 proteiinin ilmentymistä säädellään tarkasti B-solujen kehityksen aikana. Lymfosyyttien yhteiset esisolut sekä suuret pro-B- ja pre-B-solut ilmentävät TIM-2 proteiinia B-solukehityksen aikana sekä alkion maksassa että aikuisen luuytimessä. Hiiren alkiossa tim-4 geenin ilmentyminen oli rajoittunut maksaan, jossa erottui kaksi erillistä solupopulaatiota: F4/80hiTIM-4hi ja F4/80loTIM-4lo. Tutkimuksen tulokset viittaavat siihen, että maksan F4/80hiTIM-4hi solut ovat ruskuaispussista lähtöisin olevia syöjäsoluja ja F4/80loTIM-4lo solut myeloidisen linjan esisoluja. Tämä tutkimus on ensimmäinen osoitus TIM-molekyylien ilmentymisestä kehittyvissä verisoluissa. Havaitsimme, että TIM-2 ja TIM-4-molekyylejä ekspressoidaan tietyissä soluissa verisolujen erilaistumisen aikana, joten tulevaisuudessa niitä on mahdollista käyttää merkkiproteiineina hematopoieettisten solujen esiasteita eristettäessä
Bücher zum Thema "Transmembrane mucins"
Pérez Reytor,, Diliana Celeste. Identificación de nuevos marcadores de virulencia en cepas no toxigénicas de vibrio parahaemolyticus. Universidad Autónoma de Chile, 2019. http://dx.doi.org/10.32457/20.500.12728/87462019dcbm7.
Der volle Inhalt der QuelleBuchteile zum Thema "Transmembrane mucins"
Constantinou, Pamela E., Micaela Morgado und Daniel D. Carson. „Transmembrane Mucin Expression and Function in Embryo Implantation and Placentation“. In Regulation of Implantation and Establishment of Pregnancy in Mammals, 51–68. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-15856-3_4.
Der volle Inhalt der QuelleAydin Acar, Cigdem. „Cystic Fibrosis: Clinical Characteristics, Molecular Mechanisms and Treatment“. In Molecular Approaches in Medicine, 135–51. Istanbul: Nobel Tip Kitabevleri, 2024. http://dx.doi.org/10.69860/nobel.9786053359524.7.
Der volle Inhalt der Quelle„Transmembrane Mucin 1“. In Encyclopedia of Signaling Molecules, 5680. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-67199-4_103949.
Der volle Inhalt der QuelleRobinson, Chapman. „Cystic fibrosis (CF)“. In Oxford Handbook of Respiratory Medicine, herausgegeben von Stephen J. Chapman, Grace V. Robinson, Rahul Shrimanker, Chris D. Turnbull und John M. Wrightson, 237–60. Oxford University Press, 2021. http://dx.doi.org/10.1093/med/9780198837114.003.0024.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Transmembrane mucins"
Maher, Diane M., Phillip Stephenson, Brij K. Gupta, Nichole A. Bauer, Michael Koch, Susan Eliason, Meena Jaggi und Subhash C. Chauhan. „Abstract 3589: Comparative expression profile of transmembrane mucin MUC1 in breast cancer from American Indian and Caucasian women“. In Proceedings: AACR 103rd Annual Meeting 2012‐‐ Mar 31‐Apr 4, 2012; Chicago, IL. American Association for Cancer Research, 2012. http://dx.doi.org/10.1158/1538-7445.am2012-3589.
Der volle Inhalt der QuelleAbraham, William, Juan Sabater und Tahir Ahmed. „Allosteric inhibition of the cystic fibrosis transmembrane conductance regulator (CFTR) slows airway mucus transport in normal sheep“. In Annual Congress 2015. European Respiratory Society, 2015. http://dx.doi.org/10.1183/13993003.congress-2015.pa2054.
Der volle Inhalt der Quelle