Inhaltsverzeichnis

  1. Zeitschriftenartikel

Auswahl der wissenschaftlichen Literatur zum Thema „Transit-time ultrasonic flowmeters“

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Transit-time ultrasonic flowmeters" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Zeitschriftenartikel zum Thema "Transit-time ultrasonic flowmeters"

1

Tang, Jing Yuan, Jian Ming Chen, Hong Bin Ma, and Guang Yu Tang. "Numerical Analysis of Flow Field Characteristics in Three-Z-Shaped Ultrasonic Flowmeter." Applied Mechanics and Materials 226-228 (November 2012): 1829–34. http://dx.doi.org/10.4028/www.scientific.net/amm.226-228.1829.

Der volle Inhalt der Quelle
Annotation:
The flow field characteristics in U-typed bend has been extensively studied for transit time ultrasonic flowmeters designing, but for the flowmeter with three-Z-shaped round pipe there is still lack of corresponding research. This paper presents a computational fluid dynamics (CFD) approach for modeling of the three-Z-shaped ultrasonic flowmeter and studying of internal fluid field characteristics based on Reynolds stress model (RSM). The fluid velocity profile in the three ultrasound path is obtained using CFD and secondary flow in cross section also is analyzed. The simulation results show that the internal flow fields in the flowmeter are not fully developed turbulence with asymmetric axial velocity distribution and dramatic changes along the flow direction, and there are obvious secondary cross flows on theirs cross-sections. The CFD simulations provide useful insights into the flow field associated with ultrasonic flowmeters design.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Zhang, Hui, Chuwen Guo, and Jie Lin. "Effects of Velocity Profiles on Measuring Accuracy of Transit-Time Ultrasonic Flowmeter." Applied Sciences 9, no. 8 (2019): 1648. http://dx.doi.org/10.3390/app9081648.

Der volle Inhalt der Quelle
Annotation:
Ultrasonic wave carries the information for flowing velocity when it is propagating in flowing fluids. Flowrate can be obtained by measuring the propagation time of ultrasonic wave. The principle of transit-time ultrasonic flowmeters used today was based on that the velocity is uniform along the propagation path of the ultrasonic wave. However, it is well known that the velocity profiles in a pipe are not uniform both in laminar flow and turbulent flow. Emphasis on the effects of velocity profiles across the pipe on the propagation time of ultrasonic wave, theoretical flowrate correction factors considering the real velocity profile were proposed for laminar and turbulent flow to obtain higher accuracy. Experiment data of ultrasonic flowmeter and weighting method are compared to verify the proposed theoretical correction factors. The average relative error of proposed correction factor is determined to be 0.976% for laminar flow and 0.25% for turbulent flow.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Coulthard, J., and Y. Yan. "Ultrasonic Cross-Correlation Flowmeters." Measurement and Control 26, no. 6 (1993): 164–67. http://dx.doi.org/10.1177/002029409302600601.

Der volle Inhalt der Quelle
Annotation:
Cross-correlation transit-time measuring instrumentation is now inherently accurate to a few ppm depending upon the sensing technology, but when ultrasonic sensors are used to measure fluid flow the accuracy is determined mainly by the fluid properties and flow profile. This paper describes the operation of the ultrasonic cross-correlation flowmeter and its performance in different applications.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Ge, Liang, Hongxia Deng, Qing Wang, Ze Hu, and Junlan Li. "Study of the influence of temperature on the measurement accuracy of transit-time ultrasonic flowmeters." Sensor Review 39, no. 2 (2019): 269–76. http://dx.doi.org/10.1108/sr-01-2018-0005.

Der volle Inhalt der Quelle
Annotation:
Purpose The purpose of this study is to deal largely with the influence of temperature variation on the measurement accuracy of transit-time ultrasonic flowmeter. Design/methodology/approach The causes of measurement error due to temperature are qualitatively and quantitatively analyzed, and a mathematical model is established. The experimental data are processed and analyzed, and the temperature compensation coefficient of flow measurement is obtained. Findings The experimental results show that the flow measurement results by temperature compensation are helpful in improving the measurement accuracy of the ultrasonic flowmeter. Practical implications This study has certain application value, which can provide theoretical support for the design of high-precision ultrasonic flowmeters and design guidance. Originality/value It is worth emphasizing that there are few research studies on the influence factors of temperature. This paper focuses on the influence of the temperature change on the flowmeter that is modeled, and the high precision flow parameter test system is designed based on the established model.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Nguyen, Thi Huong Ly, and Suhyun Park. "Multi-Angle Liquid Flow Measurement Using Ultrasonic Linear Array Transducer." Sensors 20, no. 2 (2020): 388. http://dx.doi.org/10.3390/s20020388.

Der volle Inhalt der Quelle
Annotation:
Most ultrasonic flowmeters utilize several wedge sensors for transmission and reception. Thus, the location and alignment of the sensors are critical factors that determine the performance of the ultrasonic flowmeter. In this study, we proposed an ultrasound liquid flowmeter utilizing a 128-element linear array transducer with a transmit delay control for varying the incidence angles of ultrasound wave transmission. The performance of the flowmeter was evaluated at flow rates of 0–50 L/min in a specially designed pipe system. Flow estimation was performed with the transit-time method using cross-correlation with phase zero-crossing for sub-sample estimation. While a single plane wave approach performed invasive electromagnetic measurements with only 74% accuracy as a reference, a multiple angular compensation method with 24 angles was proposed to increase the accuracy of measurements up to 93%. This study demonstrated the capability of the non-invasive single-sided ultrasonic flowmeter with a linear array transducer for liquid flow measurements in the metal pipe system.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Moore, Pamela I., Gregor J. Brown, and Brian P. Stimpson. "Ultrasonic transit-time flowmeters modelled with theoretical velocity profiles: methodology." Measurement Science and Technology 11, no. 12 (2000): 1802–11. http://dx.doi.org/10.1088/0957-0233/11/12/321.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Luca, Adrian, Regis Marchiano, and Jean-Camille Chassaing. "Numerical Simulation of Transit-Time Ultrasonic Flowmeters by a Direct Approach." IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control 63, no. 6 (2016): 886–97. http://dx.doi.org/10.1109/tuffc.2016.2545714.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Mousavi, Seyed Foad, Seyed Hassan Hashemabadi, and Jalil Jamali. "New semi three-dimensional approach for simulation of Lamb wave clamp-on ultrasonic gas flowmeter." Sensor Review 40, no. 4 (2020): 465–76. http://dx.doi.org/10.1108/sr-08-2019-0203.

Der volle Inhalt der Quelle
Annotation:
Purpose The purpose of this study is to numerically simulate the Lamb wave propagation through a clamp-on ultrasonic gas flowmeter (UGF) in contact mode, using a new semi three-dimensional approach. Moreover, experimental and analytical modeling results for transit time difference method have been used to confirm the simulation results at different gas flow velocities from 0.3 to 2.4 m/s. Design/methodology/approach The new semi three-dimensional approach involves the simulation of the flow field of the gas in a three-dimensional model and subsequently the simulation of wave generation, propagation and reception in a two-dimensional (2D) model. Moreover, the analytical model assumes that the wave transitions occur in a 2D mode. Findings The new approach is a semi three-dimensional approach used in this work, has better accuracy than a complete 2D simulation while maintaining the computing time and costs approximately constant. It is faster and less expensive than a complete 3D simulation and more accurate than a complete 2D simulation. It was concluded that the new approach could be extended to simulate all types of ultrasonic gas and non-gas flowmeters, even under harsh conditions. Originality/value In this work, a new approach for the numerical simulation of all types of ultrasonic flowmeters is introduced. It was used for simulation of a Lamb wave ultrasonic flow meter in contact mode.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Dadashnialehi, Amir, and Behzad Moshiri. "Online monitoring of transit-time ultrasonic flowmeters based on fusion of optical observation." Measurement 44, no. 6 (2011): 1028–37. http://dx.doi.org/10.1016/j.measurement.2011.02.010.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Heritage, J. E. "The performance of transit time ultrasonic flowmeters under good and disturbed flow conditions." Flow Measurement and Instrumentation 1, no. 1 (1989): 24–30. http://dx.doi.org/10.1016/0955-5986(89)90006-x.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Mehr Quellen
Wir bieten Rabatte auf alle Premium-Pläne für Autoren, deren Werke in thematische Literatursammlungen aufgenommen wurden. Kontaktieren Sie uns, um einen einzigartigen Promo-Code zu erhalten!