Auswahl der wissenschaftlichen Literatur zum Thema „Transistor effect“

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Transistor effect" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Zeitschriftenartikel zum Thema "Transistor effect"

1

Horng. „Thin Film Transistor“. Crystals 9, Nr. 8 (09.08.2019): 415. http://dx.doi.org/10.3390/cryst9080415.

Der volle Inhalt der Quelle
Annotation:
The special issue is "Thin Film Transistor". There are eight contributed papers. They focus on organic thin film transistors, fluorinated oligothiophenes transistors, surface treated or hydrogen effect on oxide-semiconductor-based thin film transistors, and their corresponding application in flat panel displays and optical detecting. The present special issue on “Thin Film Transistor” can be considered as a status report reviewing the progress that has been made recently on thin film transistor technology. These papers can provide the readers with more research information and corresponding application potential about Thin Film Transistors.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Kim, Taegeon, und Changhwan Shin. „Effects of Interface Trap on Transient Negative Capacitance Effect: Phase Field Model“. Electronics 9, Nr. 12 (14.12.2020): 2141. http://dx.doi.org/10.3390/electronics9122141.

Der volle Inhalt der Quelle
Annotation:
Ferroelectric materials have received significant attention as next-generation materials for gates in transistors because of their negative differential capacitance. Emerging transistors, such as the negative capacitance field effect transistor (NCFET) and ferroelectric field-effect transistor (FeFET), are based on the use of ferroelectric materials. In this work, using a multidomain 3D phase field model (based on the time-dependent Ginzburg–Landau equation), we investigate the impact of the interface-trapped charge (Qit) on the transient negative capacitance in a ferroelectric capacitor (i.e., metal/Zr-HfO2/heavily doped Si) in series with a resistor. The simulation results show that the interface trap reinforces the effect of transient negative capacitance.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Kumar, Prateek, Maneesha Gupta, Naveen Kumar, Marlon D. Cruz, Hemant Singh, Ishan und Kartik Anand. „Performance Evaluation of Silicon-Transition Metal Dichalcogenides Heterostructure Based Steep Subthreshold Slope-Field Effect Transistor Using Non-Equilibrium Green’s Function“. Sensor Letters 18, Nr. 6 (01.06.2020): 468–76. http://dx.doi.org/10.1166/sl.2020.4236.

Der volle Inhalt der Quelle
Annotation:
With technology invading nanometer regime performance of the Metal-Oxide-semiconductor Field Effect Transistor is largely hampered by short channel effects. Most of the simulation tools available do not include short channel effects and quantum effects in the analysis which raises doubt on their authenticity. Although researchers have tried to provide an alternative in the form of tunnel field-effect transistors, junction-less transistors, etc. but they all suffer from their own set of problems. Therefore, Metal-Oxide-Semiconductor Field-Effect Transistor remains the backbone of the VLSI industry. This work is dedicated to the design and study of the novel tub-type Metal-Oxide-Semiconductor Field-Effect Transistor. For simulation Non-Equilibrium Green’s Function is used as the primary model of simulation. The device is analyzed under different physical variations like work function, permittivity, and interface trap charge. This work uses Silicon-Molybdenum Disulphide heterojunction and Silicon-Tungsten Disulphide heterojunction as channel material. Results for both the heterojunctions are compared. It was analyzed that Silicon-Molybdenum Disulphide heterojunction provides better linearity and Silicon-Tungsten Disulphide heterojunction provides better switching speed than conventional Metal-Oxide-Semiconductor Field-Effect Transistor.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Elamin, Abdenabi Ali, und Waell H. Alawad. „Effect of Gamma Radiation on Characteristic of bipolar junction Transistors (BJTs )“. Journal of The Faculty of Science and Technology, Nr. 6 (12.01.2021): 1–9. http://dx.doi.org/10.52981/jfst.vi6.597.

Der volle Inhalt der Quelle
Annotation:
This paper describes the effects of 60Cogamma radiation hardness of characteristic and parameters of Bipolar Junction Transistors in order to analyze the performance changes of the individual devices used in nuclear field. Bipolar Junction Transistor (BJT) of the type (BC-301) (npn) silicon, Transistor was irradiated by gamma radiation using 60Cosource at different doses (1, 2, 3, 4, and 5) KGy. The characteristics and parameter of Bipolar Junction Transistor was studied before and after irradiated by using Transistor Characteristics Apparatus with regulated power supplies. Obtained result showed that, the saturation voltage VCE(sat) of Bipolar Junction Transistor decreased because of the gain degradation of the transistor and increased silicon resistivity, Another parameter of a bipolar junction transistor affected by ionizing radiation is a collector-base leakage current, a strong increase of the current is caused by the build-up charge near the junction.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Luzader, Stephen, und Eduardo Sánchez‐Velasco. „Transistor effect in improperly connected transistors“. Physics Teacher 34, Nr. 2 (Februar 1996): 118–19. http://dx.doi.org/10.1119/1.2344364.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Vukic, Vladimir, und Predrag Osmokrovic. „Power lateral pnp transistor operating with high current density in irradiated voltage regulator“. Nuclear Technology and Radiation Protection 28, Nr. 2 (2013): 146–57. http://dx.doi.org/10.2298/ntrp1302146v.

Der volle Inhalt der Quelle
Annotation:
The operation of power lateral pnp transistors in gamma radiation field was examined by detection of the minimum dropout voltage on heavily loaded low-dropout voltage regulators LM2940CT5, clearly demonstrating their low radiation hardness, with unacceptably low values of output voltage and collector-emitter voltage volatility. In conjunction with previous results on base current and forward emitter current gain of serial transistors, it was possible to determine the positive influence of high load current on a slight improvement of voltage regulator LM2940CT5 radiation hardness. The high-current flow through the wide emitter aluminum contact of the serial transistor above the isolation oxide caused intensive annealing of the positive oxide-trapped charge, leading to decrease of the lateral pnp transistor's current gain, but also a more intensive recovery of the small-signal npn transistors in the control circuit. The high current density in the base area of the lateral pnp transistor immediately below the isolation oxide decreased the concentration of negative interface traps. Consequently, the positive influence of the reduced concentration of the oxide-trapped charge on the negative feedback reaction circuit, together with the favourable effect of reduced interface traps concentration, exceeded negative influence of the annealed oxide-trapped charge on the serial pnp transistor's forward emitter current gain.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

NASTAUSHEV, Yu V., T. A. GAVRILOVA, M. M. KACHANOVA, O. V. NAUMOVA, I. V. ANTONOVA, V. P. POPOV, L. V. LITVIN, D. V. SHEGLOV, A. V. LATYSHEV und A. L. ASEEV. „FIELD EFFECT NANOTRANSISTOR ON ULTRATHIN SILICON-ON-INSULATOR“. International Journal of Nanoscience 03, Nr. 01n02 (Februar 2004): 155–60. http://dx.doi.org/10.1142/s0219581x04001936.

Der volle Inhalt der Quelle
Annotation:
Peculiarities of the fabrication of field effect transistor (FET) at nanoscaled size on ultrathin silicon-on-insulator (SOI) was studied in details. Two types of FET transistor were successfully realized: in-plane-gate FET (IPGFET) with 40 nm minimum channel size and multichannel top-gate MOSFET on silicon-on-insulator. The deep submicron top-gate of Ti/Au embraces each of the conductive oxidized silicon wires placed with 400 nm pitch. The type and concentration of carries in a conductive channel of the ultrathin SOI was controlled by a bottom gate. The fabricated transistors demonstrated high transconductance and low threshold voltage. Some results of electron properties of the nano-FET transistors are presented.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Qi, Cheng, Yaswanth Rangineni, Gary Goncher, Raj Solanki, Kurt Langworthy und Jay Jordan. „SiGe Nanowire Field Effect Transistors“. Journal of Nanoscience and Nanotechnology 8, Nr. 1 (01.01.2008): 457–60. http://dx.doi.org/10.1166/jnn.2008.083.

Der volle Inhalt der Quelle
Annotation:
Si0.5Ge0.5 nanowires have been utilized to fabricate source-drain channels of p-type field effect transistors (p-FETs). These transistors were fabricated using two methods, focused ion beam (FIB) and electron beam lithography (EBL). The electrical analyses of these devices show field effect transistor characteristics. The boron-doped SiGe p-FETs with a high-k (HfO2) insulator and Pt electrodes, made via FIB produced devices with effective hole mobilities of about 50 cm2V−1s−1. Similar transistors with Ti/Au electrodes made via EBL had effective hole mobilities of about 350 cm2V−1s−1.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Hashim, Yasir, und Othman Sidek. „Dimensional Effect on DIBL in Silicon Nanowire Transistors“. Advanced Materials Research 626 (Dezember 2012): 190–94. http://dx.doi.org/10.4028/www.scientific.net/amr.626.190.

Der volle Inhalt der Quelle
Annotation:
Drain-induced barrier lowering (DIBL) is crucial in many applications of silicon nanowire transistors. This paper determined the effect of the dimensions of nanowires on DIBL. The MuGFET simulation tool was used to investigate the characteristics of the transistors. The transfer characteristics of transistors with different dimensions were simulated. The results show that longer nanowires with smaller diameters and lower oxide thickness decrease DIBL and tend to possess the best transistor characteristics.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Werkmeister, F. X., T. Koide und B. A. Nickel. „Ammonia sensing for enzymatic urea detection using organic field effect transistors and a semipermeable membrane“. Journal of Materials Chemistry B 4, Nr. 1 (2016): 162–68. http://dx.doi.org/10.1039/c5tb02025e.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Dissertationen zum Thema "Transistor effect"

1

Pratapgarhwala, Mustansir M. „Characterization of Transistor Matching in Silicon-Germanium Heterojunction Bipolar Transistors“. Thesis, Georgia Institute of Technology, 2005. http://hdl.handle.net/1853/7536.

Der volle Inhalt der Quelle
Annotation:
Transistor mismatch is a crucial design issue in high precision analog circuits, and is investigated here for the first time in SiGe HBTs. The goal of this work is to study the effects of mismatch under extreme conditions including radiation, high temperature, and low temperature. One portion of this work reports collector current mismatch data as a function of emitter geometry both before and after 63 MeV proton exposure for first-generation SiGe HBTs with a peak cut-off frequency of 60 GHz. However, minimal changes in device-to-device mismatch after radiation exposure were experienced. Another part of the study involved measuring similar devices at different temperatures ranging from 298K to 377K. As a general trend, it was observed that device-to-device mismatch improved with increasing temperature.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Johnson, Simon. „Field effect transistor type sensors“. Thesis, Cardiff University, 1989. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.259174.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Chen, Qiang. „Scaling limits and opportunities of double-gate MOSFETS“. Diss., Georgia Institute of Technology, 2003. http://hdl.handle.net/1853/15011.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Muntahi, Abdussamad. „NANOSCALE EFFECTS IN JUNCTIONLESS FIELD EFFECT TRANSISTORS“. OpenSIUC, 2018. https://opensiuc.lib.siu.edu/dissertations/1527.

Der volle Inhalt der Quelle
Annotation:
Though the concept of junctionless field effect transistor (JLFET) is old, it was not possible to fabricate a useful JLFET device, as it requires a very shallow channel region. Very recently, the emergence of new and advanced technologies has made it possible to create viable JLFET devices using nanowires. This work aims to computationally investigate the interplay of quantum size-quantization and random dopant fluctuations (RDF) effects in nanoscale JLFETs. For this purpose, a 3-D fully atomistic quantum-corrected Monte Carlo device simulator has been integrated and used in this work. The size-quantiza¬tion effect has been accounted for via a param¬eter-free effec¬tive potential scheme and benchmarked against the NEGF approach in the ballistic limit. To study the RDF effects and treat full Coulomb (electron-ion and electron-electron) interactions in the real-space and beyond the Poisson picture, the simulator implements a corrected-Coulomb electron dynamics (QC-ED) approach. The essential bandstructure and scattering parameters (energy bandgap, effective masses, and the density-of-states) have been computed using an atomistic 20-band nearest-neighbour sp3d5s* tight-binding scheme. First, an experimental device was simulated to evaluate the validity of the simulator. Because of the small dimension, quantum mechanical confinement was found to be the dominant mechanism that significantly degrades the current drive capability of nanoscale JLFETs. Surface roughness scattering is not as prominent as observed in conventional MOSFETs. Also, because of its small size, the performance of the device is prone to the effect of variability, for which a discrete doping model was proved essential. Finally, a new JLFET was designed and optimized in this work. The proposed device is based on a gate-all-around silicon nanowire. Source/drain length is 32.5 nm and channel length is 14 nm. Gate contact length is 9 nm. The EOT (equivalent oxide thickness) is 1 nm. It has a metal gate with a workfunction of 4.55 eV. The source, channel and drain regions are n-type with a doping density of 1.5×1019 cm-3. Detailed simulation shows that the two most influential mechanisms that degrade the drive capability are quantum mechanical confinement and Coulomb scattering. Surface roughness scattering is found to be very weak. In addition, thinner nanowire is more prone to Coulomb scattering exhibiting a reduced ON-current (ION). Simulation results show that silicon nanowires with a side length (width and depth) of 3 nm and a doping density of 1.5×1019 cm-3 produce satisfactory drive current.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Dölle, Michael. „Field effect transistor based CMOS stress sensors /“. Tönning ; Lübeck Marburg : Der Andere Verlag, 2006. http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&doc_number=016086105&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Takshi, Arash. „Organic metal-semiconductor field-effect transistor (OMESFET)“. Thesis, University of British Columbia, 2007. http://hdl.handle.net/2429/31531.

Der volle Inhalt der Quelle
Annotation:
Organic electronics offers the possibility of producing ultra-low-cost and large-area electronics using printing methods. Two challenges limiting the utility of printed electronic circuits are the high operating voltage and the relatively poor performance of printed transistors. It is shown that voltages can be reduced by replacing the capacitive gate used in Organic Field-Effect Transistors (OFETs) with a Schottky contact, creating a thin-film Organic Metal-Semiconductor Field-Effect Transistor (OMESFET). This geometry solves the voltage issue, and promises to be useful in situations where low voltage operation is important, but good performance is not essential. In cases where high voltage is acceptable or required, it is shown that OFET performance can be greatly improved by employing a Schottky contact as a second gate. The relatively thick insulating layer between the gate and the semiconductor in OFETs makes it necessary to employ a large change of gate voltage (~40 V) to control the drain current. In order to reduce the voltage to less than 5 V a very thin (<10 nm) insulating layer and/or high-k dielectric materials can be used, but these solutions are not compatible with current printing technology. Simulations and implementations of OMESFET devices demonstrate low voltage operation (<5 V) and improved sub-threshold swing compared to the OFET. However, these benefits are achieved at the expense of mobility. In order to achieve good performance in an OFET, including threshold voltage, current ratio and output resistance, the semiconductor thickness has to be less than 50 nm, whereas the thickness of a printed semiconductor is typically larger than 200 nm. The addition of a top Schottky contact on the OFET creates a depletion region thereby reducing the effective thickness of the semiconductor, and resulting in enhanced transistor performance. Simulations and experimental results show improvements in the threshold voltage, the current ratio, and the output resistance of a dual gate transistor, when compared to those in an OFET of the same thickness. The transistors introduced in this work demonstrate means of improving the performance of thick-film OFETs and of achieving substantially lower operation voltage in organic transistors.
Applied Science, Faculty of
Electrical and Computer Engineering, Department of
Graduate
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Wiederspahn, H. Lee. „Quantum model of the modulation doped field effect transistor“. Diss., Georgia Institute of Technology, 1992. http://hdl.handle.net/1853/13355.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Lebby, M. S. „Fabrication and characterisation of the Heterojunction field effect transistor (HFET) and the bipolar inversion channel field effect transistor (BIFCET)“. Thesis, University of Bradford, 1987. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.379863.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Lee, Yi-Che. „Development of III-nitride transistors: heterojunction bipolar transistors and field-effect transistors“. Diss., Georgia Institute of Technology, 2014. http://hdl.handle.net/1853/53472.

Der volle Inhalt der Quelle
Annotation:
The fabrication processes development for on III-nitride (III-N) heterojunction bipolar transistors (HBTs), heterojunction field-effect transistors (HFETs) and metal-insulator-semiconductor field-effect transistors (MISFETs) were performed. D.c, microwave and quasi-static I-V and C-V measurements were carried out to characterize the fabricated III-N transistors and diodes. The GaN/InGaN direct-growth HBTs (DG-HBTs) grown on free-standing GaN (FS-GaN) substrates demonstrated a high current gain (hfe) > 110, high current density (JC) > 141 kA/cm2, and high power density (Pdc) > 3 MW/cm2. The first III-N DG-HBT showing fT > 8 GHz and fmax > 1.3 GHz were also demonstrated on sapphire substrates. Recessed-gate AlGaN/AlN/GaN HFETs demonstrated Vth = 0 V with 0.17 V deviation across the sample. Baliga's figure of merit is 240 MW/cm2 was achieved. Current collapse was eliminated and the dynamic on-resistance was reduced by 67% after using a remote-oxygen-plasma treatment. Normally-off recessed-gate AlGaN/AlN/GaN MISFETs with Vth = 0.9 V were also fabricated with the remote-oxygen-plasma treatment. Low leakage current (< 1 pA/mm), high on-off ratio (> 2.2E11) are achieved. These achievements suggest that high-performance III-N transistors are very promising for high-power switching and microwave amplification. Findings concerning remaining process issues and implications for future research are also discussed.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Günther, Alrun Aline. „Vertical Organic Field-Effect Transistors“. Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2016. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-207731.

Der volle Inhalt der Quelle
Annotation:
Diese Arbeit stellt eine eingehende Studie des sogenannten Vertikalen Organischen Feld-Effekt-Transistors (VOFET) dar, einer neuen Transistor-Geometrie, welche dem stetig wachsenden Bereich der organischen Elektronik entspringt. Dieses neuartige Bauteil hat bereits bewiesen, dass es in der Lage ist, eine der fundamentalen Einschränkungen herkömmlicher organischer Feld-Effekt-Transistoren (OFETs) zu überwinden: Die für Schaltfrequenz und An-Strom wichtige Kanallänge des Transistors kann im VOFET stark reduziert werden, ohne dass teure und komplexe Strukturierungsmethoden genutzt werden müssen. Das genaue Funktionsprinzip des VOFET ist bisher jedoch weitgehend unerforscht. Durch den Vergleich von experimentellen Daten mit Simulationsdaten des erwarteten Bauteil-Verhaltens wird hier ein erstes, grundlegendes Verständnis des VOFETs erarbeitet. Die so gewonnenen Erkenntnisse werden im Folgenden genutzt, um bestimmte Parameter des VOFETs kontrolliert zu manipulieren. So wird beispielsweise gezeigt, dass die Morphologie des organischen Halbleiters, und damit seine Abscheidungsparameter, sowohl für die VOFET-Herstellung als auch für den Ladungsträgertransport im fertigen Bauteil eine wichtige Rolle spielen. Weiterhin wird gezeigt, dass der VOFET, genau wie der konventionelle OFET, durch das Einbringen von Kontaktdotierung deutlich verbessert werden kann. Mit Hilfe dieser Ergebnisse kann gezeigt werden, dass das Funktionsprinzip des VOFETs mit dem eines konventionellen OFETs nahezu identisch ist, wenn man von geringen Abweichungen aufgrund der unterschiedlichen Geometrien absieht. Basierend auf dieser Erkenntnis wird schließlich ein VOFET präsentiert, welcher im Inversionsmodus betrieben werden kann und so die Lücke zur konventionellen MOSFET-Technologie schließt. Dieser Inversions-VOFET stellt folglich einen vielversprechenden Ansatz für leistungsfähige organische Transistoren dar, welche als Grundbausteine für komplexe Elektronikanwendungen auf flexiblen Substraten genutzt werden können
This work represents a comprehensive study of the so-called vertical organic field-effect transistor (VOFET), a novel transistor geometry originating from the fast-growing field of organic electronics. This device has already demonstrated its potential to overcome one of the fundamental limitations met in conventional organic transistor architectures (OFETs): In the VOFET, it is possible to reduce the channel length and thus increase On-state current and switching frequency without using expensive and complex structuring methods. Yet the VOFET's operational principles are presently not understood in full detail. By simulating the expected device behaviour and correlating it with experimental findings, a basic understanding of the charge transport in VOFETs is established and this knowledge is subsequently applied in order to manipulate certain parameters and materials in the VOFET. In particular, it is found that the morphology, and thus the deposition parameters, of the organic semiconductor play an important role, both for a successful VOFET fabrication and for the charge transport in the finished device. Furthermore, it is shown that VOFETs, just like their conventional counterparts, are greatly improved by the application of contact doping. This result, in turn, is used to demonstrate that the VOFET essentially works in almost exactly the same way as a conventional OFET, with only minor changes due to the altered contact arrangement. Working from this realisation, a vertical organic transistor is developed which operates in the inversion regime, thus closing the gap to conventional MOSFET technology and providing a truly promising candidate for high-performance organic transistors as the building blocks for advanced, flexible electronics applications
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Bücher zum Thema "Transistor effect"

1

Zhang, Lining, und Mansun Chan, Hrsg. Tunneling Field Effect Transistor Technology. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-31653-6.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Wang, Shiyu, Zakir Hossain, Yan Zhao und Tao Han. Graphene Field-Effect Transistor Biosensors. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-1212-1.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Park, Byung-Eun, Hiroshi Ishiwara, Masanori Okuyama, Shigeki Sakai und Sung-Min Yoon, Hrsg. Ferroelectric-Gate Field Effect Transistor Memories. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-1212-4.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Park, Byung-Eun, Hiroshi Ishiwara, Masanori Okuyama, Shigeki Sakai und Sung-Min Yoon, Hrsg. Ferroelectric-Gate Field Effect Transistor Memories. Dordrecht: Springer Netherlands, 2016. http://dx.doi.org/10.1007/978-94-024-0841-6.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Shvart͡s, N. Z. Usiliteli SVCh na polevykh tranzistorakh. Moskva: Radio i sviazʹ, 1987.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Corporation, Mitsubishi Electric. Ga As field effect transistor(chip) databook. Tokyo: Mitsubishi Electric Corporation, 1986.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Amiri, Iraj Sadegh, und Mahdiar Ghadiry. Analytical Modelling of Breakdown Effect in Graphene Nanoribbon Field Effect Transistor. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-10-6550-7.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Marston, R. M. Diode, transistor & FET circuits manual. Oxford: Newnes, 1991.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Corporation, Mitsubishi Electric. GaAs field effect transistor MGF 1900 series user's manual. Tokyo: Mitsubishi Electric Corporation, 1987.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Corporation, Mitsubishi Electric. Mitsubishi semiconductors 1991: GaAs field effect transistor [data book]. Tokyo: Mitsubishi Electric Corporation, 1991.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Buchteile zum Thema "Transistor effect"

1

Weik, Martin H. „effect transistor“. In Computer Science and Communications Dictionary, 483. Boston, MA: Springer US, 2000. http://dx.doi.org/10.1007/1-4020-0613-6_5842.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Tietze, Ulrich, Christoph Schenk und Eberhard Gamm. „Field Effect Transistor“. In Electronic Circuits, 169–268. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008. http://dx.doi.org/10.1007/978-3-540-78655-9_3.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Weik, Martin H. „field-effect transistor“. In Computer Science and Communications Dictionary, 601. Boston, MA: Springer US, 2000. http://dx.doi.org/10.1007/1-4020-0613-6_7077.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Gift, Stephan J. G., und Brent Maundy. „Field-Effect Transistor“. In Electronic Circuit Design and Application, 89–125. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-46989-4_3.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Ritchie, G. J. „Field-effect transistors and circuits“. In Transistor Circuit Techniques, 128–52. Boston, MA: Springer US, 1993. http://dx.doi.org/10.1007/978-1-4899-6890-6_7.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Weik, Martin H. „negative field-effect transistor“. In Computer Science and Communications Dictionary, 1078. Boston, MA: Springer US, 2000. http://dx.doi.org/10.1007/1-4020-0613-6_12154.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Hori, Takashi. „MOS Fielid-Effect Transistor“. In Gate Dielectrics and MOS ULSIs, 75–147. Berlin, Heidelberg: Springer Berlin Heidelberg, 1997. http://dx.doi.org/10.1007/978-3-642-60856-8_3.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Weik, Martin H. „field-effect transistor photodetector“. In Computer Science and Communications Dictionary, 601. Boston, MA: Springer US, 2000. http://dx.doi.org/10.1007/1-4020-0613-6_7079.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Jayendran, Ariacutty, und Rajah Jayendran. „The field effect transistor“. In Englisch für Elektroniker, 102–11. Wiesbaden: Vieweg+Teubner Verlag, 1996. http://dx.doi.org/10.1007/978-3-322-84907-6_14.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Wang, Shiyu, Zakir Hossain, Yan Zhao und Tao Han. „Graphene Field-Effect Transistor Biosensor“. In Graphene Field-Effect Transistor Biosensors, 45–67. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-1212-1_4.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Konferenzberichte zum Thema "Transistor effect"

1

Roy, V. A. L., Zong-Xiang Xu, Beiping Yan, Hei-Feng Xiang und Chi-Ming Che. „Zinc-oxide based nano-composite field effect transistor devices“. In Organic Field-Effect Transistors V. SPIE, 2006. http://dx.doi.org/10.1117/12.679760.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Jung, Ilwoo, Byoungdeok Choi, Bonggu Sung, Daejung Kim, Ilgweon Kim, Hyoungsub Kim und Gyoyoung Jin. „Body Effect Measurement in DRAM Cell Transistor Using Memory Test System“. In ISTFA 2016. ASM International, 2016. http://dx.doi.org/10.31399/asm.cp.istfa2016p0085.

Der volle Inhalt der Quelle
Annotation:
Abstract Body effect is the key characteristic of DRAM cell transistor. Conventional method uses a TEG structure for body effect measurement. But this measurement is not accurate, because TEG structure has only several transistors and it is located outside of the DRAM die. This paper suggests a viable method for measuring DRAM cell transistor body effect. It uses a memory test system for fast, massive, nondestructive measurement. Newly developed method can measure 100,000 DRAM cell body effects in two minute, without sample damage. The test gives one median value and 100,000 individual values of body effects. Median value of measured body effects is equal to the TEG body effect. An individual DRAM cell body effect has a correlation with the fin height.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Diemer, Peter J., Angela F. Harper, Muhammad Rizwan Khan Niazi, John E. Anthony, Aram Amassian und Oana D. Jurchescu. „Organic thin-film transistor fabrication using a laser printer (Conference Presentation)“. In Organic Field-Effect Transistors XVI, herausgegeben von Oana D. Jurchescu und Iain McCulloch. SPIE, 2017. http://dx.doi.org/10.1117/12.2275249.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Sheleg, Gil, und Nir Tessler. „Contact engineering in vertical hybrid field effect transistor“. In Organic and Hybrid Field-Effect Transistors XIX, herausgegeben von Oana D. Jurchescu und Iain McCulloch. SPIE, 2020. http://dx.doi.org/10.1117/12.2570138.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Noriko, Hara, Bito Nanami, Ebisuda Mai, Tabata Suguru, Numazaki Naoki, Masuda Kazunori und Kami Naoya. „Study on Effect of Electron Beam Irradiation in SEM-Based Nanoprobing on MOS Transistor“. In ISTFA 2016. ASM International, 2016. http://dx.doi.org/10.31399/asm.cp.istfa2016p0128.

Der volle Inhalt der Quelle
Annotation:
Abstract Nanoprobing is an indispensable method for failure analysis to identify failure cells and to approach the root causes, providing electric characteristics of the failure of the MOS transistor. In this paper, the characteristic degradation on MOS transistors with SEM-based nanoprobing is studied to find out the critical accelerating voltage, comparing it to the characteristic obtained by the mechanical prober. In this experiment, n-type MOS transistors with thick gate oxide layer (40nm) were used. The effect of electron beam irradiation was also investigated. Significant change was not observed in n+(drain)/p-well IV curves. The paper looks at the influence of the additional phenomena during SEM-based nanoprobing analysis on a characteristics change of a specimen. For MOS transistor with thick gate oxide used in this study, irradiation influence is possibly more notable than normal voltage cell cases.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Ko, Seung Hwan, Inkyu Park, Heng Pan, Albert P. Pisano und Costas P. Grigoropoulos. „Low Temperature OFET (Organic Field Effect Transistor) Fabrication by Metal Nanoparticle Imprinting“. In ASME 2007 InterPACK Conference collocated with the ASME/JSME 2007 Thermal Engineering Heat Transfer Summer Conference. ASMEDC, 2007. http://dx.doi.org/10.1115/ipack2007-33448.

Der volle Inhalt der Quelle
Annotation:
The low temperature fabrication of OFET (organic field effect transistor) is presented in this paper. PDMS imprinting mold was used to pattern gold nano-particles suspended in Alpha-Terpineol solvent. After imprinting, nanoparticles was dried and then sintered at plastic compatible low temperature. Finally, air stable semiconductor polymer (modified polythiophene) in dichlorobenzene (o-DCB) solution to fabricate OFETs on flexible polymer substrates. The performance of the transistors were characterized and discussed.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Ayasli, Y. „Field effect transistor circulators“. In International Magnetics Conference. IEEE, 1989. http://dx.doi.org/10.1109/intmag.1989.689920.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Wernersson, Lars-Erik. „Nanowire Field Effect Transistor“. In 2006 International Conference on Solid State Devices and Materials. The Japan Society of Applied Physics, 2006. http://dx.doi.org/10.7567/ssdm.2006.a-1-1.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Fortunato, E., Nuno Correia, Pedro Barquinha, Cláudia Costa, Luís Pereira, Gonçalo Gonçalves und Rodrigo Martins. „Paper field effect transistor“. In SPIE OPTO: Integrated Optoelectronic Devices, herausgegeben von Ferechteh H. Teherani, Cole W. Litton und David J. Rogers. SPIE, 2009. http://dx.doi.org/10.1117/12.816547.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Gu, Libo, JingHong Han, Hong Zhang und Xiang Chen. „DNA field effect transistor“. In International Conference on Sensing units and Sensor Technology, herausgegeben von Yikai Zhou und Shunqing Xu. SPIE, 2001. http://dx.doi.org/10.1117/12.440140.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Berichte der Organisationen zum Thema "Transistor effect"

1

Dorsey, Andrew M., und Matthew H. Ervin. Effects of Differing Carbon Nanotube Field-effect Transistor Architectures. Fort Belvoir, VA: Defense Technical Information Center, Juli 2009. http://dx.doi.org/10.21236/ada502660.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Suslov, Alexey, und Tzu-Ming Lu. Capacitance of a Ge/SiGe heterostructure field-effect transistor. Office of Scientific and Technical Information (OSTI), November 2018. http://dx.doi.org/10.2172/1484586.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Blair, S. M. AlGaN/InGaN Nitride Based Modulation Doped Field Effect Transistor. Fort Belvoir, VA: Defense Technical Information Center, November 2003. http://dx.doi.org/10.21236/ada422632.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Sun, W. D., Fred H. Pollak, Patrick A. Folkes und Godfrey A. Gumbs. Band-Bending Effect of Low-Temperature GaAs on a Pseudomorphic Modulation-Doped Field-Effect Transistor. Fort Belvoir, VA: Defense Technical Information Center, März 1999. http://dx.doi.org/10.21236/ada361412.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Jackson, H. G., T. T. Shimizu und B. Leskovar. Preliminary measurements of gamma ray effects on characteristics of broad-band GaAs field-effect transistor preamplifiers. Office of Scientific and Technical Information (OSTI), Januar 1985. http://dx.doi.org/10.2172/5126571.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Huebschman, Benjamin D., Pankaj B. Shah und Romeo Del Rosario. Theory and Operation of Cold Field-effect Transistor (FET) External Parasitic Parameter Extraction. Fort Belvoir, VA: Defense Technical Information Center, Mai 2009. http://dx.doi.org/10.21236/ada499619.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Harrison, Richard Karl, Stephen Wayne Howell, Jeffrey B. Martin und Allister B. Hamilton. Exploring graphene field effect transistor devices to improve spectral resolution of semiconductor radiation detectors. Office of Scientific and Technical Information (OSTI), Dezember 2013. http://dx.doi.org/10.2172/1200672.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Cooper, Donald E., und Steven C. Moss. Picosecond Optoelectronic Measurement of the High Frequency Scattering Parameters of a GaAs FET (Field Effect Transistor). Fort Belvoir, VA: Defense Technical Information Center, Juni 1986. http://dx.doi.org/10.21236/ada170618.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Aizin, Gregory. Plasmon Enhanced Electron Drag and Terahertz Photoconductance in a Grating-Gated Field-Effect Transistor with Two-Dimensional Electron Channel. Fort Belvoir, VA: Defense Technical Information Center, Januar 2006. http://dx.doi.org/10.21236/ada447174.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Xing, Huili. Ideal Channel Field Effect Transistors. Fort Belvoir, VA: Defense Technical Information Center, März 2010. http://dx.doi.org/10.21236/ada518256.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Wir bieten Rabatte auf alle Premium-Pläne für Autoren, deren Werke in thematische Literatursammlungen aufgenommen wurden. Kontaktieren Sie uns, um einen einzigartigen Promo-Code zu erhalten!

Zur Bibliographie