Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Transistor effect“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Transistor effect" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Transistor effect"
Horng. „Thin Film Transistor“. Crystals 9, Nr. 8 (09.08.2019): 415. http://dx.doi.org/10.3390/cryst9080415.
Der volle Inhalt der QuelleKim, Taegeon, und Changhwan Shin. „Effects of Interface Trap on Transient Negative Capacitance Effect: Phase Field Model“. Electronics 9, Nr. 12 (14.12.2020): 2141. http://dx.doi.org/10.3390/electronics9122141.
Der volle Inhalt der QuelleKumar, Prateek, Maneesha Gupta, Naveen Kumar, Marlon D. Cruz, Hemant Singh, Ishan und Kartik Anand. „Performance Evaluation of Silicon-Transition Metal Dichalcogenides Heterostructure Based Steep Subthreshold Slope-Field Effect Transistor Using Non-Equilibrium Green’s Function“. Sensor Letters 18, Nr. 6 (01.06.2020): 468–76. http://dx.doi.org/10.1166/sl.2020.4236.
Der volle Inhalt der QuelleElamin, Abdenabi Ali, und Waell H. Alawad. „Effect of Gamma Radiation on Characteristic of bipolar junction Transistors (BJTs )“. Journal of The Faculty of Science and Technology, Nr. 6 (12.01.2021): 1–9. http://dx.doi.org/10.52981/jfst.vi6.597.
Der volle Inhalt der QuelleLuzader, Stephen, und Eduardo Sánchez‐Velasco. „Transistor effect in improperly connected transistors“. Physics Teacher 34, Nr. 2 (Februar 1996): 118–19. http://dx.doi.org/10.1119/1.2344364.
Der volle Inhalt der QuelleVukic, Vladimir, und Predrag Osmokrovic. „Power lateral pnp transistor operating with high current density in irradiated voltage regulator“. Nuclear Technology and Radiation Protection 28, Nr. 2 (2013): 146–57. http://dx.doi.org/10.2298/ntrp1302146v.
Der volle Inhalt der QuelleNASTAUSHEV, Yu V., T. A. GAVRILOVA, M. M. KACHANOVA, O. V. NAUMOVA, I. V. ANTONOVA, V. P. POPOV, L. V. LITVIN, D. V. SHEGLOV, A. V. LATYSHEV und A. L. ASEEV. „FIELD EFFECT NANOTRANSISTOR ON ULTRATHIN SILICON-ON-INSULATOR“. International Journal of Nanoscience 03, Nr. 01n02 (Februar 2004): 155–60. http://dx.doi.org/10.1142/s0219581x04001936.
Der volle Inhalt der QuelleQi, Cheng, Yaswanth Rangineni, Gary Goncher, Raj Solanki, Kurt Langworthy und Jay Jordan. „SiGe Nanowire Field Effect Transistors“. Journal of Nanoscience and Nanotechnology 8, Nr. 1 (01.01.2008): 457–60. http://dx.doi.org/10.1166/jnn.2008.083.
Der volle Inhalt der QuelleHashim, Yasir, und Othman Sidek. „Dimensional Effect on DIBL in Silicon Nanowire Transistors“. Advanced Materials Research 626 (Dezember 2012): 190–94. http://dx.doi.org/10.4028/www.scientific.net/amr.626.190.
Der volle Inhalt der QuelleWerkmeister, F. X., T. Koide und B. A. Nickel. „Ammonia sensing for enzymatic urea detection using organic field effect transistors and a semipermeable membrane“. Journal of Materials Chemistry B 4, Nr. 1 (2016): 162–68. http://dx.doi.org/10.1039/c5tb02025e.
Der volle Inhalt der QuelleDissertationen zum Thema "Transistor effect"
Pratapgarhwala, Mustansir M. „Characterization of Transistor Matching in Silicon-Germanium Heterojunction Bipolar Transistors“. Thesis, Georgia Institute of Technology, 2005. http://hdl.handle.net/1853/7536.
Der volle Inhalt der QuelleJohnson, Simon. „Field effect transistor type sensors“. Thesis, Cardiff University, 1989. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.259174.
Der volle Inhalt der QuelleChen, Qiang. „Scaling limits and opportunities of double-gate MOSFETS“. Diss., Georgia Institute of Technology, 2003. http://hdl.handle.net/1853/15011.
Der volle Inhalt der QuelleMuntahi, Abdussamad. „NANOSCALE EFFECTS IN JUNCTIONLESS FIELD EFFECT TRANSISTORS“. OpenSIUC, 2018. https://opensiuc.lib.siu.edu/dissertations/1527.
Der volle Inhalt der QuelleDölle, Michael. „Field effect transistor based CMOS stress sensors /“. Tönning ; Lübeck Marburg : Der Andere Verlag, 2006. http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&doc_number=016086105&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA.
Der volle Inhalt der QuelleTakshi, Arash. „Organic metal-semiconductor field-effect transistor (OMESFET)“. Thesis, University of British Columbia, 2007. http://hdl.handle.net/2429/31531.
Der volle Inhalt der QuelleApplied Science, Faculty of
Electrical and Computer Engineering, Department of
Graduate
Wiederspahn, H. Lee. „Quantum model of the modulation doped field effect transistor“. Diss., Georgia Institute of Technology, 1992. http://hdl.handle.net/1853/13355.
Der volle Inhalt der QuelleLebby, M. S. „Fabrication and characterisation of the Heterojunction field effect transistor (HFET) and the bipolar inversion channel field effect transistor (BIFCET)“. Thesis, University of Bradford, 1987. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.379863.
Der volle Inhalt der QuelleLee, Yi-Che. „Development of III-nitride transistors: heterojunction bipolar transistors and field-effect transistors“. Diss., Georgia Institute of Technology, 2014. http://hdl.handle.net/1853/53472.
Der volle Inhalt der QuelleGünther, Alrun Aline. „Vertical Organic Field-Effect Transistors“. Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2016. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-207731.
Der volle Inhalt der QuelleThis work represents a comprehensive study of the so-called vertical organic field-effect transistor (VOFET), a novel transistor geometry originating from the fast-growing field of organic electronics. This device has already demonstrated its potential to overcome one of the fundamental limitations met in conventional organic transistor architectures (OFETs): In the VOFET, it is possible to reduce the channel length and thus increase On-state current and switching frequency without using expensive and complex structuring methods. Yet the VOFET's operational principles are presently not understood in full detail. By simulating the expected device behaviour and correlating it with experimental findings, a basic understanding of the charge transport in VOFETs is established and this knowledge is subsequently applied in order to manipulate certain parameters and materials in the VOFET. In particular, it is found that the morphology, and thus the deposition parameters, of the organic semiconductor play an important role, both for a successful VOFET fabrication and for the charge transport in the finished device. Furthermore, it is shown that VOFETs, just like their conventional counterparts, are greatly improved by the application of contact doping. This result, in turn, is used to demonstrate that the VOFET essentially works in almost exactly the same way as a conventional OFET, with only minor changes due to the altered contact arrangement. Working from this realisation, a vertical organic transistor is developed which operates in the inversion regime, thus closing the gap to conventional MOSFET technology and providing a truly promising candidate for high-performance organic transistors as the building blocks for advanced, flexible electronics applications
Bücher zum Thema "Transistor effect"
Zhang, Lining, und Mansun Chan, Hrsg. Tunneling Field Effect Transistor Technology. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-31653-6.
Der volle Inhalt der QuelleWang, Shiyu, Zakir Hossain, Yan Zhao und Tao Han. Graphene Field-Effect Transistor Biosensors. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-1212-1.
Der volle Inhalt der QuellePark, Byung-Eun, Hiroshi Ishiwara, Masanori Okuyama, Shigeki Sakai und Sung-Min Yoon, Hrsg. Ferroelectric-Gate Field Effect Transistor Memories. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-1212-4.
Der volle Inhalt der QuellePark, Byung-Eun, Hiroshi Ishiwara, Masanori Okuyama, Shigeki Sakai und Sung-Min Yoon, Hrsg. Ferroelectric-Gate Field Effect Transistor Memories. Dordrecht: Springer Netherlands, 2016. http://dx.doi.org/10.1007/978-94-024-0841-6.
Der volle Inhalt der QuelleShvart͡s, N. Z. Usiliteli SVCh na polevykh tranzistorakh. Moskva: Radio i sviazʹ, 1987.
Den vollen Inhalt der Quelle findenCorporation, Mitsubishi Electric. Ga As field effect transistor(chip) databook. Tokyo: Mitsubishi Electric Corporation, 1986.
Den vollen Inhalt der Quelle findenAmiri, Iraj Sadegh, und Mahdiar Ghadiry. Analytical Modelling of Breakdown Effect in Graphene Nanoribbon Field Effect Transistor. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-10-6550-7.
Der volle Inhalt der QuelleMarston, R. M. Diode, transistor & FET circuits manual. Oxford: Newnes, 1991.
Den vollen Inhalt der Quelle findenCorporation, Mitsubishi Electric. GaAs field effect transistor MGF 1900 series user's manual. Tokyo: Mitsubishi Electric Corporation, 1987.
Den vollen Inhalt der Quelle findenCorporation, Mitsubishi Electric. Mitsubishi semiconductors 1991: GaAs field effect transistor [data book]. Tokyo: Mitsubishi Electric Corporation, 1991.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Transistor effect"
Weik, Martin H. „effect transistor“. In Computer Science and Communications Dictionary, 483. Boston, MA: Springer US, 2000. http://dx.doi.org/10.1007/1-4020-0613-6_5842.
Der volle Inhalt der QuelleTietze, Ulrich, Christoph Schenk und Eberhard Gamm. „Field Effect Transistor“. In Electronic Circuits, 169–268. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008. http://dx.doi.org/10.1007/978-3-540-78655-9_3.
Der volle Inhalt der QuelleWeik, Martin H. „field-effect transistor“. In Computer Science and Communications Dictionary, 601. Boston, MA: Springer US, 2000. http://dx.doi.org/10.1007/1-4020-0613-6_7077.
Der volle Inhalt der QuelleGift, Stephan J. G., und Brent Maundy. „Field-Effect Transistor“. In Electronic Circuit Design and Application, 89–125. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-46989-4_3.
Der volle Inhalt der QuelleRitchie, G. J. „Field-effect transistors and circuits“. In Transistor Circuit Techniques, 128–52. Boston, MA: Springer US, 1993. http://dx.doi.org/10.1007/978-1-4899-6890-6_7.
Der volle Inhalt der QuelleWeik, Martin H. „negative field-effect transistor“. In Computer Science and Communications Dictionary, 1078. Boston, MA: Springer US, 2000. http://dx.doi.org/10.1007/1-4020-0613-6_12154.
Der volle Inhalt der QuelleHori, Takashi. „MOS Fielid-Effect Transistor“. In Gate Dielectrics and MOS ULSIs, 75–147. Berlin, Heidelberg: Springer Berlin Heidelberg, 1997. http://dx.doi.org/10.1007/978-3-642-60856-8_3.
Der volle Inhalt der QuelleWeik, Martin H. „field-effect transistor photodetector“. In Computer Science and Communications Dictionary, 601. Boston, MA: Springer US, 2000. http://dx.doi.org/10.1007/1-4020-0613-6_7079.
Der volle Inhalt der QuelleJayendran, Ariacutty, und Rajah Jayendran. „The field effect transistor“. In Englisch für Elektroniker, 102–11. Wiesbaden: Vieweg+Teubner Verlag, 1996. http://dx.doi.org/10.1007/978-3-322-84907-6_14.
Der volle Inhalt der QuelleWang, Shiyu, Zakir Hossain, Yan Zhao und Tao Han. „Graphene Field-Effect Transistor Biosensor“. In Graphene Field-Effect Transistor Biosensors, 45–67. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-1212-1_4.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Transistor effect"
Roy, V. A. L., Zong-Xiang Xu, Beiping Yan, Hei-Feng Xiang und Chi-Ming Che. „Zinc-oxide based nano-composite field effect transistor devices“. In Organic Field-Effect Transistors V. SPIE, 2006. http://dx.doi.org/10.1117/12.679760.
Der volle Inhalt der QuelleJung, Ilwoo, Byoungdeok Choi, Bonggu Sung, Daejung Kim, Ilgweon Kim, Hyoungsub Kim und Gyoyoung Jin. „Body Effect Measurement in DRAM Cell Transistor Using Memory Test System“. In ISTFA 2016. ASM International, 2016. http://dx.doi.org/10.31399/asm.cp.istfa2016p0085.
Der volle Inhalt der QuelleDiemer, Peter J., Angela F. Harper, Muhammad Rizwan Khan Niazi, John E. Anthony, Aram Amassian und Oana D. Jurchescu. „Organic thin-film transistor fabrication using a laser printer (Conference Presentation)“. In Organic Field-Effect Transistors XVI, herausgegeben von Oana D. Jurchescu und Iain McCulloch. SPIE, 2017. http://dx.doi.org/10.1117/12.2275249.
Der volle Inhalt der QuelleSheleg, Gil, und Nir Tessler. „Contact engineering in vertical hybrid field effect transistor“. In Organic and Hybrid Field-Effect Transistors XIX, herausgegeben von Oana D. Jurchescu und Iain McCulloch. SPIE, 2020. http://dx.doi.org/10.1117/12.2570138.
Der volle Inhalt der QuelleNoriko, Hara, Bito Nanami, Ebisuda Mai, Tabata Suguru, Numazaki Naoki, Masuda Kazunori und Kami Naoya. „Study on Effect of Electron Beam Irradiation in SEM-Based Nanoprobing on MOS Transistor“. In ISTFA 2016. ASM International, 2016. http://dx.doi.org/10.31399/asm.cp.istfa2016p0128.
Der volle Inhalt der QuelleKo, Seung Hwan, Inkyu Park, Heng Pan, Albert P. Pisano und Costas P. Grigoropoulos. „Low Temperature OFET (Organic Field Effect Transistor) Fabrication by Metal Nanoparticle Imprinting“. In ASME 2007 InterPACK Conference collocated with the ASME/JSME 2007 Thermal Engineering Heat Transfer Summer Conference. ASMEDC, 2007. http://dx.doi.org/10.1115/ipack2007-33448.
Der volle Inhalt der QuelleAyasli, Y. „Field effect transistor circulators“. In International Magnetics Conference. IEEE, 1989. http://dx.doi.org/10.1109/intmag.1989.689920.
Der volle Inhalt der QuelleWernersson, Lars-Erik. „Nanowire Field Effect Transistor“. In 2006 International Conference on Solid State Devices and Materials. The Japan Society of Applied Physics, 2006. http://dx.doi.org/10.7567/ssdm.2006.a-1-1.
Der volle Inhalt der QuelleFortunato, E., Nuno Correia, Pedro Barquinha, Cláudia Costa, Luís Pereira, Gonçalo Gonçalves und Rodrigo Martins. „Paper field effect transistor“. In SPIE OPTO: Integrated Optoelectronic Devices, herausgegeben von Ferechteh H. Teherani, Cole W. Litton und David J. Rogers. SPIE, 2009. http://dx.doi.org/10.1117/12.816547.
Der volle Inhalt der QuelleGu, Libo, JingHong Han, Hong Zhang und Xiang Chen. „DNA field effect transistor“. In International Conference on Sensing units and Sensor Technology, herausgegeben von Yikai Zhou und Shunqing Xu. SPIE, 2001. http://dx.doi.org/10.1117/12.440140.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Transistor effect"
Dorsey, Andrew M., und Matthew H. Ervin. Effects of Differing Carbon Nanotube Field-effect Transistor Architectures. Fort Belvoir, VA: Defense Technical Information Center, Juli 2009. http://dx.doi.org/10.21236/ada502660.
Der volle Inhalt der QuelleSuslov, Alexey, und Tzu-Ming Lu. Capacitance of a Ge/SiGe heterostructure field-effect transistor. Office of Scientific and Technical Information (OSTI), November 2018. http://dx.doi.org/10.2172/1484586.
Der volle Inhalt der QuelleBlair, S. M. AlGaN/InGaN Nitride Based Modulation Doped Field Effect Transistor. Fort Belvoir, VA: Defense Technical Information Center, November 2003. http://dx.doi.org/10.21236/ada422632.
Der volle Inhalt der QuelleSun, W. D., Fred H. Pollak, Patrick A. Folkes und Godfrey A. Gumbs. Band-Bending Effect of Low-Temperature GaAs on a Pseudomorphic Modulation-Doped Field-Effect Transistor. Fort Belvoir, VA: Defense Technical Information Center, März 1999. http://dx.doi.org/10.21236/ada361412.
Der volle Inhalt der QuelleJackson, H. G., T. T. Shimizu und B. Leskovar. Preliminary measurements of gamma ray effects on characteristics of broad-band GaAs field-effect transistor preamplifiers. Office of Scientific and Technical Information (OSTI), Januar 1985. http://dx.doi.org/10.2172/5126571.
Der volle Inhalt der QuelleHuebschman, Benjamin D., Pankaj B. Shah und Romeo Del Rosario. Theory and Operation of Cold Field-effect Transistor (FET) External Parasitic Parameter Extraction. Fort Belvoir, VA: Defense Technical Information Center, Mai 2009. http://dx.doi.org/10.21236/ada499619.
Der volle Inhalt der QuelleHarrison, Richard Karl, Stephen Wayne Howell, Jeffrey B. Martin und Allister B. Hamilton. Exploring graphene field effect transistor devices to improve spectral resolution of semiconductor radiation detectors. Office of Scientific and Technical Information (OSTI), Dezember 2013. http://dx.doi.org/10.2172/1200672.
Der volle Inhalt der QuelleCooper, Donald E., und Steven C. Moss. Picosecond Optoelectronic Measurement of the High Frequency Scattering Parameters of a GaAs FET (Field Effect Transistor). Fort Belvoir, VA: Defense Technical Information Center, Juni 1986. http://dx.doi.org/10.21236/ada170618.
Der volle Inhalt der QuelleAizin, Gregory. Plasmon Enhanced Electron Drag and Terahertz Photoconductance in a Grating-Gated Field-Effect Transistor with Two-Dimensional Electron Channel. Fort Belvoir, VA: Defense Technical Information Center, Januar 2006. http://dx.doi.org/10.21236/ada447174.
Der volle Inhalt der QuelleXing, Huili. Ideal Channel Field Effect Transistors. Fort Belvoir, VA: Defense Technical Information Center, März 2010. http://dx.doi.org/10.21236/ada518256.
Der volle Inhalt der Quelle