Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Transients events“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Transients events" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Transients events"
Li, Yaqiong, Emily Biermann, Sigurd Naess, Simone Aiola, Rui An, Nicholas Battaglia, Tanay Bhandarkar et al. „The Atacama Cosmology Telescope: Systematic Transient Search of 3 Day Maps“. Astrophysical Journal 956, Nr. 1 (01.10.2023): 36. http://dx.doi.org/10.3847/1538-4357/ace599.
Der volle Inhalt der QuelleNgeow, Chow-Choong, Nick Konidaris, Robert Quimby, Andreas Ritter, Alexander R. Rudy, Edward Lin und Sagi Ben-Ami. „The SED Machine: A Spectrograph to Efficiently Classify Transient Events Discovered by PTF“. Proceedings of the International Astronomical Union 8, S290 (August 2012): 281–82. http://dx.doi.org/10.1017/s1743921312020017.
Der volle Inhalt der QuelleSinha, Pampa, Sudipta Debath und Swapan Kumar Goswami. „Classification of Power Quality Events Using Wavelet Analysis and Probabilistic Neural Network“. IAES International Journal of Artificial Intelligence (IJ-AI) 5, Nr. 1 (20.08.2016): 1. http://dx.doi.org/10.11591/ijai.v5.i1.pp1-12.
Der volle Inhalt der QuelleQin, Yu-Jing, Ann Zabludoff, Marina Kisley, Yuantian Liu, Iair Arcavi, Kobus Barnard, Peter Behroozi, K. Decker French, Curtis McCully und Nirav Merchant. „Linking Extragalactic Transients and Their Host Galaxy Properties: Transient Sample, Multiwavelength Host Identification, and Database Construction“. Astrophysical Journal Supplement Series 259, Nr. 1 (24.02.2022): 13. http://dx.doi.org/10.3847/1538-4365/ac2fa1.
Der volle Inhalt der QuelleDuza, Tasmia, und Ingrid H. Sarelius. „Localized transient increases in endothelial cell Ca2+ in arterioles in situ: implications for coordination of vascular function“. American Journal of Physiology-Heart and Circulatory Physiology 286, Nr. 6 (Juni 2004): H2322—H2331. http://dx.doi.org/10.1152/ajpheart.00006.2004.
Der volle Inhalt der QuelleWhitfield, Paul H., und Kathleen Dohan. „Identification and characterization of water quality transients using wavelet analysis. II. Application to electronic water quality data“. Water Science and Technology 36, Nr. 5 (01.09.1997): 337–48. http://dx.doi.org/10.2166/wst.1997.0232.
Der volle Inhalt der QuelleKlimov, Pavel, Gali Garipov, Boris Khrenov, Violetta Morozenko, Vera Barinova, Vitaly Bogomolov, Margarita Kaznacheeva, Mikhail Panasyuk, Kirill Saleev und Sergey Svertilov. „Vernov Satellite Data of Transient Atmospheric Events“. Journal of Applied Meteorology and Climatology 56, Nr. 8 (August 2017): 2189–201. http://dx.doi.org/10.1175/jamc-d-16-0309.1.
Der volle Inhalt der QuelleAnderson, G. E., B. W. Stappers, I. Andreoni, M. Caleb, D. Coppejans, S. Corbel, R. P. Fender et al. „Radio Transients in the Era of Multi-Messenger Astrophysics“. Proceedings of the International Astronomical Union 14, S339 (November 2017): 207–14. http://dx.doi.org/10.1017/s1743921318002624.
Der volle Inhalt der QuelleYillia, P. T., N. Kreuzinger und K. K. Mwetu. „Temporal variability of two contrasting transient pollution events in a pastoral stream“. Water Science and Technology 61, Nr. 4 (01.02.2010): 1053–63. http://dx.doi.org/10.2166/wst.2010.566.
Der volle Inhalt der QuelleTucker, M. A., B. J. Shappee, M. E. Huber, A. V. Payne, A. Do, J. T. Hinkle, T. de Jaeger et al. „The Spectroscopic Classification of Astronomical Transients (SCAT) Survey: Overview, Pipeline Description, Initial Results, and Future Plans“. Publications of the Astronomical Society of the Pacific 134, Nr. 1042 (01.12.2022): 124502. http://dx.doi.org/10.1088/1538-3873/aca719.
Der volle Inhalt der QuelleDissertationen zum Thema "Transients events"
Owsley, Lane M. D. „Classification of transient events in time series /“. Thesis, Connect to this title online; UW restricted, 1998. http://hdl.handle.net/1773/5989.
Der volle Inhalt der QuelleSantos, Rui Pedro Silvestre dos. „Time series morphological analysis applied to biomedical signals events detection“. Master's thesis, Faculdade de Ciências e Tecnologia, 2011. http://hdl.handle.net/10362/10227.
Der volle Inhalt der QuelleAutomated techniques for biosignal data acquisition and analysis have become increasingly powerful, particularly at the Biomedical Engineering research field. Nevertheless, it is verified the need to improve tools for signal pattern recognition and classification systems, in which the detection of specific events and the automatic signal segmentation are preliminary processing steps. The present dissertation introduces a signal-independent algorithm, which detects significant events in a biosignal. From a time series morphological analysis, the algorithm computes the instants when the most significant standard deviation discontinuities occur, segmenting the signal. An iterative optimization step is then applied. This assures that a minimal error is achieved when modeling these segments with polynomial regressions. The adjustment of a scale factor gives different detail levels of events detection. An accurate and objective algorithm performance evaluation procedure was designed. When applied on a set of synthetic signals, with known and quantitatively predefined events, an overall mean error of 20 samples between the detected and the actual events showed the high accuracy of the proposed algorithm. Its ability to perform the detection of signal activation onsets and transient waveshapes was also assessed, resulting in higher reliability than signal-specific standard methods. Some case studies, with signal processing requirements for which the developed algorithm can be suitably applied, were approached. The algorithm implementation in real-time, as part of an application developed during this research work, is also reported. The proposed algorithm detects significant signal events with accuracy and significant noise immunity. Its versatile design allows the application in different signals without previous knowledge on their statistical properties or specific preprocessing steps. It also brings added objectivity when compared with the exhaustive and time-consuming examiner analysis. The tool introduced in this dissertation represents a relevant contribution in events detection, a particularly important issue within the wide digital biosignal processing research field.
Deshpande, Kshitija Bharat. „A Dedicated Search for Low Frequency Radio Transient Astrophysical Events using ETA“. Thesis, Virginia Tech, 2009. http://hdl.handle.net/10919/35666.
Der volle Inhalt der QuelleMaster of Science
Allgood, Michael David Baginski Michael E. „Finite element analysis of the mesosphere's electromagnetic response to large scale lightning associated with sprites and other transient luminous events“. Auburn, Ala, 2008. http://repo.lib.auburn.edu/EtdRoot/2008/SPRING/Electrical_and_Computer_Engineering/Thesis/Allgood_Michael_37.pdf.
Der volle Inhalt der QuelleHoeker, Gregory Scott. „MECHANISMS OF CALCIUM-MEDIATED ARRHYTHMOGENESIS IN HEART FAILURE“. Case Western Reserve University School of Graduate Studies / OhioLINK, 2008. http://rave.ohiolink.edu/etdc/view?acc_num=case1195243457.
Der volle Inhalt der QuelleHidalga, García-Bermejo Patricio. „Development and validation of a multi-scale and multi-physics methodology for the safety analysis of fast transients in Light Water Reactors“. Doctoral thesis, Universitat Politècnica de València, 2021. http://hdl.handle.net/10251/160135.
Der volle Inhalt der Quelle[CA] La tecnologia nuclear per a l'ús civil genera més preocupació per la seguretat que moltes altres tecnologies d'ús quotidià. L'Autoritat Nuclear defineix les bases de com ha de realitzar-se l'operació segura d'una Central Nuclear. D'acord amb les directrius establertes per l'Autoritat Nuclear, una Central Nuclear ha d'analitzar una envoltant d'escenaris hipotètics I comprovar de manera determinista que els criteris d'acceptació per a l'esdeveniment seleccionat es compleixen. L'Anàlisi Determinista de Seguretat utilitza eines de simulació que apliquen la física coneguda sobre el comportament de la Central Nuclear per avaluar l'evolució d'una variable de seguretat i assegurar que els límits no es traspassen. El desenvolupament de la tecnologia informàtica, els mètodes matemàtics i de la física que envolta el comportament d'una Central Nuclear han proporcionat eines de simulació potents amb capacitat de predir el comportament de les variables de seguretat amb una precisió significativa. Això permet analitzar escenaris de manera realista evitant assumir condicions conservadores que fins al moment compensaven la mancança de coneixement. Les eines de simulació conegudes com De Millor Estimació son capaces d'analitzar esdeveniment transitoris a diferent escales. A més, utilitzen models analítics per a les diferents físiques amb més detall així com correlacions experimentals més actualitzades i realistes. Un pas més endavant en l'Anàlisi Determinista de Seguretat pretén combinar les diferents eines de Millor Estimació que se utilitzen per analitzar les distintes físiques d'una Central Nuclear, considerant inclús la interacció entre ells i l'anàlisi progressiu a diferents escales, amb la finalitat de poder analitzar fenòmens locals. Per a aquest fi, esta tesi presenta una metodologia d'anàlisi multi-física i multi-escala que utilitza diferents codis de simulació analitzant l'escenari proposat a diferents escales, és a dir, des d'un nivell de planta que inclou els distints components, fins al volum de control que suposa el refrigerant passant entre les varetes de combustible. Esta metodologia permet un flux de informació que va des de l'anàlisi d'una escala major a una menor. El desenvolupament d'aquesta metodologia ha sigut validada i verificada amb dades de planta i els resultats han sigut analitzats a fi d'avaluar la capacitat de la metodologia i les possibles línies de treball futur. A més s'han afegit els principals resultats de verificació i validació que han sorgit en les distintes etapes d'aquest treball.
[EN] The nuclear technology for civil use has generated more concerns for the safety than several other technologies applied to the daily life. The Nuclear Regulators define the basis of how the Safety Operation of Nuclear Power Plants is to be done. According to these guidelines, a Nuclear Power Plant must analyze an envelope of hypothetical events and deterministically define if the acceptance criteria for these events is met. The Deterministic Safety Analysis uses simulation tools that apply the physics known in the behavior of the Nuclear Power Plant to evaluate the evolution of a safety varia-ble and assure that the safety limits will not be exceeded. The development of the computer science, the numerical methods and the physics involved in the behavior of a Nuclear Power Plant have yield powerful simulation tools that are capable to predict the evolution of safety variables which significant accuracy. This allows to consider more realistic simulation scenarios instead of con-servative approaches in order to compensate the lack of knowledge in the applied prediction methods. The so called Best Estimate simulation tools are capable to analyze the transient events in different scales. Furthermore, they account more detailed analytical models and experimental correlations. A step forward in the Deterministic Safety Analysis intends to combine the Best Estimate simulation tools of the different physics considering the interaction among them and analyzing the different scales, considering more local approaches if necessary. For this purpose, this thesis work presents a multi-scale and multi-physics methodology that uses different physics codes and has the aim of modeling postulated scenarios in different scales, i.e. from system models representing the components of the plants to the subchannel models that analyze the behavior of the coolant between the fuel rods. This methodology allows a flow of information where the output of one scale is used as input in a more detailed scale to predict a more local analysis of parameters, such as the Critical Power Ratio, which are of great importance for the estimation of safety margins. The development of this methodology has been validated against plant data with the aim of evaluating the scope of this methodology and in order to provide future lines of development. In addition, different results of the validation and verifi-cation yielded in the development of the parts of this methodology are presented.
Hidalga García-Bermejo, P. (2020). Development and validation of a multi-scale and multi-physics methodology for the safety analysis of fast transients in Light Water Reactors [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/160135
TESIS
Westlund, Kenneth P. (Kenneth Peter). „Recording and processing data from transient events“. Thesis, Massachusetts Institute of Technology, 1988. https://hdl.handle.net/1721.1/129961.
Der volle Inhalt der QuelleIncludes bibliographical references.
by Kenneth P. Westlund Jr.
Thesis (B.S.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 1988.
Boyd, Alistair Richard. „Fluid-structure interaction under fast transient dynamic events“. Thesis, University of Edinburgh, 1999. http://hdl.handle.net/1842/10835.
Der volle Inhalt der QuelleDusek, Daniel P. „Ocean mixed layer biological response to transient ocean events“. Monterey, Calif. : Springfield, Va. : Naval Postgraduate School ; Available from National Technical Information Service, 1997. http://handle.dtic.mil/100.2/ADA340990.
Der volle Inhalt der Quelle"September 1997." Thesis advisor(s): Roland W. Garwood. Includes bibliographical references (p. 61-63). Also available online.
Price, Daniel James. „Forward modelling of transient events in the solar atmosphere“. Thesis, Aberystwyth University, 2017. http://hdl.handle.net/2160/50cf4525-e93c-4c15-9c63-c5ed7daba471.
Der volle Inhalt der QuelleBücher zum Thema "Transients events"
Dusek, Daniel P. Ocean mixed layer biological response to transient ocean events. Monterey, Calif: Naval Postgraduate School, 1997.
Den vollen Inhalt der Quelle findenRibeiro, Deivid. Observations of Transient Events with Very-High-Energy Gamma-Ray Telescopes. [New York, N.Y.?]: [publisher not identified], 2022.
Den vollen Inhalt der Quelle findenOsborne, William Dale. NPSNET: An accurate low-cost technique for real-time display of transient events : vehicle collisions, explosions and terrain modifications. Monterey, Calif: Naval Postgraduate School, 1991.
Den vollen Inhalt der Quelle findenD, Bechtel R., und Ames Research Center, Hrsg. A fast data acquisition system for the study of transient events by high repetition rate time-of-flight mass spectrometry. Moffett Field, Calif: National Aeronautics and Space Administration, Ames Research Center, 1987.
Den vollen Inhalt der Quelle findenOesterreich, Mark H. Transient response analysis of the 72 Inch TAC-4 ruggedized shipboard rack subjected to an underwater explosion event. Monterey, Calif: Naval Postgraduate School, 1998.
Den vollen Inhalt der Quelle findenG, Choi, Iyer Ravishankar K und United States. National Aeronautics and Space Administration. Scientific and Technical Information Division., Hrsg. Analog-digital simulation of transient-induced logic errors and upset susceptibility of an advanced control system. [Washington, DC]: National Aeronautics and Space Administration, Office of Management, Scientific and Technical Information Division, 1990.
Den vollen Inhalt der Quelle findenG, Choi, Iyer Ravishankar K und United States. National Aeronautics and Space Administration. Scientific and Technical Information Division., Hrsg. Analog-digital simulation of transient-induced logic errors and upset susceptibility of an advanced control system. [Washington, DC]: National Aeronautics and Space Administration, Office of Management, Scientific and Technical Information Division, 1990.
Den vollen Inhalt der Quelle findenG, Choi, Iyer R. K und United States. National Aeronautics and Space Administration. Scientific and Technical Information Division., Hrsg. Analog-digital simulation of transient-induced logic errors and upset susceptibility of an advanced control system. [Washington, DC]: National Aeronautics and Space Administration, Office of Management, Scientific and Technical Information Division, 1990.
Den vollen Inhalt der Quelle findenCarreno, Victor A. Analog-digital simulation of transient-induced logic errors and upset susceptibility of an advanced control system. Hampton, Va: Langley Research Center, 1990.
Den vollen Inhalt der Quelle findenSawaya-Lacoste, Huguette. Proceedings of SOHO-13: Waves, oscillations and small-scale transient events in the solar atmosphere : a joint view from SOHO and TRACE, 29 September - 3 October 2003, Palma de Mallorca, Balearic Islands, Spain. Noordwijk, the Netherlands: ESA Publication Division, 2004.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Transients events"
Webb, David, und Nariaki Nitta. „Understanding Problem Forecasts of ISEST Campaign Flare-CME Events“. In Earth-affecting Solar Transients, 703–27. Dordrecht: Springer Netherlands, 2017. http://dx.doi.org/10.1007/978-94-024-1570-4_34.
Der volle Inhalt der QuelleAslam, O. P. M., und Badruddin. „Study of the Geoeffectiveness and Galactic Cosmic-Ray Response of VarSITI-ISEST Campaign Events in Solar Cycle 24“. In Earth-affecting Solar Transients, 347–63. Dordrecht: Springer Netherlands, 2017. http://dx.doi.org/10.1007/978-94-024-1570-4_16.
Der volle Inhalt der QuelleBocchialini, K., B. Grison, M. Menvielle, A. Chambodut, N. Cornilleau-Wehrlin, D. Fontaine, A. Marchaudon et al. „Statistical Analysis of Solar Events Associated with Storm Sudden Commencements over One Year of Solar Maximum During Cycle 23: Propagation from the Sun to the Earth and Effects“. In Earth-affecting Solar Transients, 377–438. Dordrecht: Springer Netherlands, 2018. http://dx.doi.org/10.1007/978-94-024-1570-4_18.
Der volle Inhalt der QuelleZhao, Zixiang, Zhongdi Duan, Hongxiang Xue, Yuchao Yuan und Shiwen Liu. „Effects of Inlet Conditions on the Two-Phase Flow Water Hammer Transients in Elastic Tube“. In Springer Proceedings in Physics, 955–72. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-1023-6_81.
Der volle Inhalt der QuelleNickolaenko, Alexander, und Masashi Hayakawa. „Transient Events“. In Schumann Resonance for Tyros, 187–216. Tokyo: Springer Japan, 2013. http://dx.doi.org/10.1007/978-4-431-54358-9_9.
Der volle Inhalt der QuelleCooke, A. Christian, und B. Benjamin Mestel. „Simulating the Effects of Inertia and Frequency Response Services on Transient Propagation in a Networked Grid“. In Springer Proceedings in Energy, 73–80. Cham: Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-30960-1_8.
Der volle Inhalt der QuelleDigel, Ilya. „Primary Thermosensory Events in Cells“. In Transient Receptor Potential Channels, 451–68. Dordrecht: Springer Netherlands, 2010. http://dx.doi.org/10.1007/978-94-007-0265-3_25.
Der volle Inhalt der QuelleZoltani, Csaba K., und Kevin J. White. „Tomography of Transient Events“. In Optical Methods in Dynamics of Fluids and Solids, 333–40. Berlin, Heidelberg: Springer Berlin Heidelberg, 1985. http://dx.doi.org/10.1007/978-3-642-82459-3_42.
Der volle Inhalt der QuelleDamarla, Thyagaraju. „Localization of Transient Events“. In Battlefield Acoustics, 145–75. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-16036-8_9.
Der volle Inhalt der QuelleYamada, Lidia, Shelly Ozark und Bruce Ovbiagele. „Ischemic stroke and transient events, TIA“. In International Neurology, 3–6. Chichester, UK: John Wiley & Sons, Ltd, 2016. http://dx.doi.org/10.1002/9781118777329.ch2.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Transients events"
Hadasch, Daniela. „Exploring the Universe's Extreme Events: Galactic Transients at High and Very High Energies“. In 38th International Cosmic Ray Conference, 022. Trieste, Italy: Sissa Medialab, 2024. http://dx.doi.org/10.22323/1.444.0022.
Der volle Inhalt der QuelleEzekoye, L. Ike, Thomas Beagen, Brian S. Gordon und John W. Boufford. „Long Term Operation of Safety Valves at Pressures Near the Set Pressure“. In ASME 2017 Pressure Vessels and Piping Conference. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/pvp2017-66040.
Der volle Inhalt der QuelleMarroquin, Amy, und Scott Lang. „Addressing Low Pressure Transients“. In ASME 2020 Pressure Vessels & Piping Conference. American Society of Mechanical Engineers, 2020. http://dx.doi.org/10.1115/pvp2020-21858.
Der volle Inhalt der QuelleLu, Kai, Jinya Katsuyama und Yinsheng Li. „Extension of PASCAL4 Code for Probabilistic Fracture Mechanics Analysis of Reactor Pressure Vessel in Boiling Water Reactor“. In ASME 2020 Pressure Vessels & Piping Conference. American Society of Mechanical Engineers, 2020. http://dx.doi.org/10.1115/pvp2020-21421.
Der volle Inhalt der QuelleLongley, John P. „Calculating Stall and Surge Transients“. In ASME Turbo Expo 2007: Power for Land, Sea, and Air. ASMEDC, 2007. http://dx.doi.org/10.1115/gt2007-27378.
Der volle Inhalt der QuelleMiranda, Samuel. „Strategies to Prevent Benign Transients From Becoming Serious Accidents“. In 2016 24th International Conference on Nuclear Engineering. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/icone24-60472.
Der volle Inhalt der QuelleAgostinho, Mariele De Souza Parra Agostinho, Danieli Mara Ferreira und Cristovão Vicente Scapulatempo Fernandes. „Physical and water quality indicators assessment in main pipelines: The impact of hydraulic transient events“. In 2nd WDSA/CCWI Joint Conference. València: Editorial Universitat Politècnica de València, 2022. http://dx.doi.org/10.4995/wdsa-ccwi2022.2022.14730.
Der volle Inhalt der QuelleOrekhova, N. V., G. M. Beskin, A. V. Birykov, S. F. Bondar, E. A. Ivanov, S. V. Karpov, E. V. Katkova, A. V. Perkov, V. L. Plokhotnichenko und V. V. Sasyk. „Search and study of optical transients with Mini-MegaTORTORA“. In The multi-messenger astronomy: gamma-ray bursts, search for electromagnetic counterparts to neutrino events and gravitational waves. Sneg, 2019. http://dx.doi.org/10.26119/sao.2019.1.35544.
Der volle Inhalt der QuelleRobinson, L., R. Xu, M. Littlefair, A. Gallant und A. Horsfall. „Impact of turn off transients on MOSFET failure during short circuit events“. In 11th International Conference on Power Electronics, Machines and Drives (PEMD 2022). Institution of Engineering and Technology, 2022. http://dx.doi.org/10.1049/icp.2022.1139.
Der volle Inhalt der QuelleMoisseytsev, Anton, und James J. Sienicki. „Analysis of Thermal Transients for sCO2 Brayton Cycle Heat Exchangers“. In ASME Turbo Expo 2019: Turbomachinery Technical Conference and Exposition. American Society of Mechanical Engineers, 2019. http://dx.doi.org/10.1115/gt2019-90374.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Transients events"
Ahrens, D. M. Fast Flux Test Facility thermal and pressure transient events during Cycle 11. Office of Scientific and Technical Information (OSTI), März 1992. http://dx.doi.org/10.2172/10197314.
Der volle Inhalt der QuelleWilson, D. K., V. A. Nguyen, Nassy Srour und John Noble. Sound Exposure Calculations for Transient Events and Other Improvements to an Acoustical Tactical Decision Aid. Fort Belvoir, VA: Defense Technical Information Center, August 2002. http://dx.doi.org/10.21236/ada406703.
Der volle Inhalt der QuelleMackowiak, D. P., C. D. Gentillon und K. L. Smith. Development of transient initiating event frequencies for use in probabilistic risk assessments. Office of Scientific and Technical Information (OSTI), Mai 1985. http://dx.doi.org/10.2172/5573321.
Der volle Inhalt der QuelleBoulghassoul, Y., L. W. Massengill, A. L. Sternberg, R. L. Pease, S. Buchner, J. W. Howard, D. McMorrow, M. W. Savage und C. Poivey. Circuit Modeling of the LM124 Operational Amplifier for Analog Single-Event Transient Analysis. Fort Belvoir, VA: Defense Technical Information Center, Januar 2002. http://dx.doi.org/10.21236/ada525692.
Der volle Inhalt der QuelleMueller, C. J. Uncertainties in inherent shutdown of generic unprotected loss-of-flow and transient overpower events in innovative designs. Office of Scientific and Technical Information (OSTI), Oktober 1987. http://dx.doi.org/10.2172/713938.
Der volle Inhalt der QuellePong, L. Assessment of the combustion model in the HECTR (Hydrogen Event: Containment Transient Response) code. Office of Scientific and Technical Information (OSTI), November 1990. http://dx.doi.org/10.2172/6396610.
Der volle Inhalt der QuelleFroehle, P., A. Tentner und C. Wang. Modeling and analysis of transient vehicle underhood thermo - hydrodynamic events using computational fluid dynamics and high performance computing. Office of Scientific and Technical Information (OSTI), September 2003. http://dx.doi.org/10.2172/834718.
Der volle Inhalt der QuelleRoberts, J. S., S. L. Woosley, D. L. Lessor und C. Strachan. Preliminary investigation of the potential for transient vapor release events during in situ vitrification based on thermal- hydraulic modeling. Office of Scientific and Technical Information (OSTI), Juli 1992. http://dx.doi.org/10.2172/10166606.
Der volle Inhalt der QuelleRoberts, J. S., S. L. Woosley, D. L. Lessor und C. Strachan. Preliminary investigation of the potential for transient vapor release events during in situ vitrification based on thermal- hydraulic modeling. Office of Scientific and Technical Information (OSTI), Juli 1992. http://dx.doi.org/10.2172/7310002.
Der volle Inhalt der QuelleAadithya, Karthik, Eric Keiter und Ting Mei. DAGSENS: Directed Acyclic Graph Based Direct and Adjoint Transient Sensitivity Analysis for Event-Driven Objective Functions. Office of Scientific and Technical Information (OSTI), August 2017. http://dx.doi.org/10.2172/1761808.
Der volle Inhalt der Quelle