Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Transformer inrush current“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Transformer inrush current" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Transformer inrush current"
Wang, Xiao Fang. „Transformer Inrush Current Identification Based on EMD+TEO Methods“. Applied Mechanics and Materials 556-562 (Mai 2014): 3129–33. http://dx.doi.org/10.4028/www.scientific.net/amm.556-562.3129.
Der volle Inhalt der QuelleDesai, B. T., H. O. Gupta und M. K. Vasantha. „Current transformer performance for inrush current in power transformers“. Electric Power Systems Research 14, Nr. 3 (Juni 1988): 237–41. http://dx.doi.org/10.1016/0378-7796(88)90057-0.
Der volle Inhalt der QuelleZhang, Bin Qiao, und Wei Wei Yao. „Recognition of the Transformer Sympathetic Inrush Current Based on Hilbert-Huang Transform“. Applied Mechanics and Materials 441 (Dezember 2013): 227–30. http://dx.doi.org/10.4028/www.scientific.net/amm.441.227.
Der volle Inhalt der QuelleWang, Hui, Kun Yan, Hou Lei Gao und Xue Wei Chen. „Simulation and Analysis of Transformer Inrush Current and its Impact on Current Differential Protection“. Advanced Materials Research 732-733 (August 2013): 712–16. http://dx.doi.org/10.4028/www.scientific.net/amr.732-733.712.
Der volle Inhalt der QuelleXiang, Dong, und Fei Yu. „Characteristic Analysis of Ship Transformer Magnetizing Inrush Current and its Suppression Method“. Advanced Materials Research 1070-1072 (Dezember 2014): 1154–58. http://dx.doi.org/10.4028/www.scientific.net/amr.1070-1072.1154.
Der volle Inhalt der QuelleWojtasiewicz, G., G. Komarzyniec, T. Janowski, S. Kozak, J. Kozak, M. Majka und B. Kondratowicz-Kucewicz. „Inrush Current of Superconducting Transformer“. IEEE Transactions on Applied Superconductivity 23, Nr. 3 (Juni 2013): 5500304. http://dx.doi.org/10.1109/tasc.2012.2234498.
Der volle Inhalt der QuelleJiale, Suo Nan, Li Qiang Xu, Zai Bin Jiao und Bin Du. „Discrimination of Three-Phase Three-Limb Transformer Inrush Current Based on Characteristics of Instantaneous Excitation Inductances“. Advanced Materials Research 433-440 (Januar 2012): 7267–74. http://dx.doi.org/10.4028/www.scientific.net/amr.433-440.7267.
Der volle Inhalt der QuelleIqteit, Nassim A., und Khalid Yahya. „Simulink model of transformer differential protection using phase angle difference based algorithm“. International Journal of Power Electronics and Drive Systems (IJPEDS) 11, Nr. 2 (01.06.2020): 1088. http://dx.doi.org/10.11591/ijpeds.v11.i2.pp1088-1098.
Der volle Inhalt der QuelleGunda, Sunil Kumar, und Venkata Samba Sesha Siva Sarma Dhanikonda. „Discrimination of Transformer Inrush Currents and Internal Fault Currents Using Extended Kalman Filter Algorithm (EKF)“. Energies 14, Nr. 19 (22.09.2021): 6020. http://dx.doi.org/10.3390/en14196020.
Der volle Inhalt der QuelleAlibašić, Emir, Predrag Marić und Srete N. Nikolovski. „Transient Phenomena during the Three-Phase 300MVA Transformer Energization on the Transmission Network“. International Journal of Electrical and Computer Engineering (IJECE) 6, Nr. 6 (01.12.2016): 2499. http://dx.doi.org/10.11591/ijece.v6i6.11406.
Der volle Inhalt der QuelleDissertationen zum Thema "Transformer inrush current"
Solh, Joukhah Zahra. „Operation of HVDC converters for transformer inrush current reduction“. Doctoral thesis, Universitat Politècnica de Catalunya, 2017. http://hdl.handle.net/10803/461569.
Der volle Inhalt der QuelleEsta tesis doctoral estudia las corrientes de energización de transformadores de parques eólicos marinos con aerogeneradores con convertidores en fuente de tensión (VSC) de plena potencia conectados a través de una conexión de Alta Tensión en Corriente Continua (HVDC). Las corrientes de energización pueden disminuir la fiabilidad de la transmisión eléctrica debido a disparos intempestivos de las protecciones durante la puesta en marcha o recuperación de una falta. Para la mitigación de las corrientes de energización durante la puesta en marcha del parque esta tesis propone una nueva estrategia basada en incrementar la tensión aplicada por el convertidor del parque eólico en forma de rampa (VRS). Este método persigue energizar el parque eólico con el menor coste y máxima fiabilidad. La tesis analiza diferentes escenarios y diferentes rampas. Otro momento en que las corrientes de energización pueden dar lugar a un disparo intempestivo de las protecciones es durante la recuperación de una falta en la red de alterna del parque eólico marino. Esta tesis extiende la estrategia VRS, utilizada durante la puesta en marcha del convertidor del parque, para los escenarios de recuperación de una falta.
Vaheeshan, Jeganathan. „Transformer fault-recovery inrush currents in MMC-HVDC systems and mitigation strategies“. Thesis, University of Manchester, 2017. https://www.research.manchester.ac.uk/portal/en/theses/transformer-faultrecovery-inrush-currents-in-mmchvdc-systems-and-mitigation-strategies(05f7a9ad-5967-47aa-b72c-e55ad1d33eb7).html.
Der volle Inhalt der QuelleBernardes, Alexandre Paciencia. „Um esquema completo de proteção diferencial de transformadores para testes em um relé digital“. Universidade de São Paulo, 2006. http://www.teses.usp.br/teses/disponiveis/18/18154/tde-16072006-122259/.
Der volle Inhalt der QuelleThis dissertation presents a complete procedure of simulation of digital differential protection applied to power transformers, focusing on its use to evaluate of the behavior of commercially available relays. Software ATP (Alternative Transients Program) was chosen as a tool for the simulation of distinct situations in a differential protection system applied to a 25 MVA three-phase transformer. Amongst the evidenced occurrences internal and external fault conditions, energization with or without internal fault of a three-phase transformer, overexcitation and CT (Current Transformer) saturation conditions were distinguished. It should be mentioned that from simulations to the characterization the real situations on the relay in test, a pre-processing and analysis of the information were necessary, and will be justified in the present study, denoting a common test procedure to be adopted to this philosophy of protection
Jorge, David Calhau. „Transformadas wavelet aplicadas à proteção diferencial de transformadores de potência“. Universidade de São Paulo, 2003. http://www.teses.usp.br/teses/disponiveis/18/18133/tde-18022016-093145/.
Der volle Inhalt der QuellePower transformers are devices that require special maintenance and care due to their importance to the electrical system to which they are connected. Generally, differential relays are used for the primary protection of large transformers. In such relays, differential currents are compared to a threshold and in the case of an internal fault, the transformer should be disconnected from the rest of the system. However, a simple detection of a differential current is not sufficient to distinguish internal faults from other situations that also produce such a current. Some of these situations appear during transformer energization (inrush currents), CT (current transformer) saturation, among others, which can result in an incorrect trip. A correct and fast distinction of internal faults from the other situations mentioned is one of the challenges for modern protection of power transformers. Concerning the identification of internal faults as opposed to inrush currents, the approach tarditionally used is the aforementioned differential logic together with harmonic restraint. In this method, transformer inrush current due to energization is recognized on the basis of second harmonic components obtained by Fourier filters. However, the filtering method can sometimes delay the protection process. In addition to this, a second harmonic component can also be present during internal faults. This work proposes Wavelet transform - a powerful mathematical tool - employed as a fast and effective means of analyzing waveforms from power transformers, as an alternative to the traditional Fourier transform. The differential signals are processed by discrete Wavelet transform to obtain the discrimination between both situations (inrush and fault). A threshold level is utilized after the Wavelet decomposition to discriminate the situations describeb. The time window used for such purpose can be varied. In order to test proposed algorithm, simulations of fault and inrush currents in a power transformer were implemented using ATP ( \"Alternative Transient Program\") software. When the time window is reduced to only 1/4 of the cycle the discrimination criteria should be optimized using a pattern recognition technique to aid the Discrete Wavelet transform. This study shows as a sample for this purpose the use of artificial neural networks. Very encouraging results are presented concerning the capacity of discrimination of the described situations as well as the speed of response when compared to the traditional method.
Luedtke, Elin. „Minimizing Transformer No-Load Losses at Hydropower Plants : A Study of Effects from Transformer Switch-Off During Stand-by Operation“. Thesis, Uppsala universitet, Institutionen för fysik och astronomi, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-447635.
Der volle Inhalt der QuelleZoufalý, Marek. „Snížení zapínacího proudu transformátoru“. Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2016. http://www.nusl.cz/ntk/nusl-220367.
Der volle Inhalt der QuelleSundberg, Gustav. „Resonant overvoltages caused by transformer energization and saturation : Two EMT case studies conducted using models of the grid in Stockholm and an off-shore wind farm“. Thesis, Uppsala universitet, Elektricitetslära, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-453406.
Der volle Inhalt der QuelleFarzadfar, Iraj. „An inrush current model for core type transformers“. Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1997. http://www.collectionscanada.ca/obj/s4/f2/dsk3/ftp05/mq23298.pdf.
Der volle Inhalt der QuelleCezar, Vinicius Oiring de Castro. „Contribution au renvoi de tension et à la reconstitution du réseau. Estimation des flux rémanents dans un transformateur“. Thesis, Université Grenoble Alpes (ComUE), 2015. http://www.theses.fr/2015GREAT046/document.
Der volle Inhalt der QuelleDuring the re-energization of the auxiliaries of a nuclear or hydraulic power plant, the most dangerous step is the re-energization of the power transformer, because of the temporary overvoltage and inrush currents. These transients phenomenon causes undesirable effects for both network and for the power transformer (electrodynamic forces over the windings, the magnetic circuit’s vibration, noise and the premature aging of the transformer). The goal of these thesis is to suggest new methodologies allowing us to evaluate unknown parameters (the residual flux’s values in the magnetic circuit before transformer’s energization). According to the latest problems in order to evaluate it (no direct method, derivation, voltage measurement error, etc) two new methods based on the previous magnetization of the magnetic circuit (prefluxing method) and on the leakage flux measurement of the magnetic circuit (direct measurement of the flux by measuring the magnetic induction method) are proposed
Brunke, John H. „Elimination of transient inrush currents when energizing unloaded power transformers /“. [S.l.] : [s.n.], 1998. http://e-collection.ethbib.ethz.ch/show?type=diss&nr=12791.
Der volle Inhalt der QuelleBuchteile zum Thema "Transformer inrush current"
Wu, Li-Cheng, und Chih-Wen Liu. „The Inrush Current Eliminator of Transformer“. In Advances in Intelligent and Soft Computing, 411–19. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-28314-7_55.
Der volle Inhalt der QuelleXu, Hang, Xu-hong Yang und Yu-jun Wu. „The Simulation of Applying Wavelet Transform to Identify Transformer Inrush Current“. In Advances in Computer Science, Environment, Ecoinformatics, and Education, 373–79. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-23324-1_60.
Der volle Inhalt der QuelleZhao, Chunfang, Yundong Song, Dewei Kong, Yue Yang, Dan Luo, Yaling Jin und Rui Guo. „Elimination of Transformer Inrush Current by Three-Phase Linkage Circuit Breakers“. In Advances in Natural Computation, Fuzzy Systems and Knowledge Discovery, 903–8. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-32591-6_98.
Der volle Inhalt der QuelleTakehara, J., M. Kitagawa, Nakata und N. Takahashi. „Numerical Analysis of Inrush Currents in Transformers“. In Electromagnetic Fields in Electrical Engineering, 129–34. Boston, MA: Springer US, 1988. http://dx.doi.org/10.1007/978-1-4613-0721-1_24.
Der volle Inhalt der QuelleBentarzi, Hamid, und Rachid Bouderballa. „Differential Protection Enhancement for Power Transformer“. In Advances in Computer and Electrical Engineering, 322–46. IGI Global, 2021. http://dx.doi.org/10.4018/978-1-7998-4027-5.ch014.
Der volle Inhalt der QuelleSpoljaric, Zeljko, Vedrana Jerkovic und Marinko Stojkov. „Measurement System for Transformer Inrush Current Higher Harmonics Determination“. In Proceedings of the 23rd International DAAAM Symposium 2012, 0617–22. DAAAM International Vienna, 2012. http://dx.doi.org/10.2507/23rd.daaam.proceedings.145.
Der volle Inhalt der QuelleNair, K. R. M. „Inrush Current in Transformers“. In Power and Distribution Transformers, 143–50. CRC Press, 2021. http://dx.doi.org/10.1201/9781003088578-10.
Der volle Inhalt der QuelleKLOMJIT, JITTIPHONG, und ATTHAPOL NGAOPITAKKUL. „DISCRIMINATING AMONG INRUSH CURRENT, EXTERNAL SHORT CIRCUIT AND INTERNAL WINDING FAULT IN POWER TRANSFORMER USING COEFFICIENT OF DWT“. In IAENG Transactions on Electrical Engineering Volume 1, 30–43. WORLD SCIENTIFIC, 2013. http://dx.doi.org/10.1142/9789814439084_0003.
Der volle Inhalt der Quelle„Magnetic Inrush Current in Distributed Photovoltaic Grid Power Transformers“. In Distributed Photovoltaic Grid Transformers, 143–49. CRC Press, 2017. http://dx.doi.org/10.1201/b16412-13.
Der volle Inhalt der QuelleEl-Naggar, M. F., A. Abu-Siada, A. M. Mahmoud und Khaled M. Gad El Mola. „A new current-based technique for discriminating between internal faults and inrush current within power transformers“. In Testing and Measurement: Techniques and Applications, 195–200. CRC Press, 2015. http://dx.doi.org/10.1201/b18470-43.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Transformer inrush current"
Burkard, J., und J. Biela. „Transformer inrush current mitigation concept for hybrid transformers“. In 2017 19th European Conference on Power Electronics and Applications (EPE'17 ECCE Europe). IEEE, 2017. http://dx.doi.org/10.23919/epe17ecceeurope.2017.8099283.
Der volle Inhalt der QuelleAlyounus, Yousif, Omar Ghazal und Enaam Albanna Albanna. „Damping the Inrush Current for Current Transformer“. In Proceedings of the 1st International Multi-Disciplinary Conference Theme: Sustainable Development and Smart Planning, IMDC-SDSP 2020, Cyperspace, 28-30 June 2020. EAI, 2020. http://dx.doi.org/10.4108/eai.28-6-2020.2298154.
Der volle Inhalt der QuelleJiri, Bermann, und Prochazka Martin. „Transformer inrush - Harmonics in the current“. In 2018 19th International Scientific Conference on Electric Power Engineering (EPE). IEEE, 2018. http://dx.doi.org/10.1109/epe.2018.8396014.
Der volle Inhalt der QuelleAbapour, M., und M. Tarafdar haqh. „A Non-Control Transformer Inrush Current Limiter“. In 2006 IEEE International Conference on Industrial Technology. IEEE, 2006. http://dx.doi.org/10.1109/icit.2006.372648.
Der volle Inhalt der QuelleKumar, Prashant, und S. Yogendra Reddy. „Optimization of inrush current in electrical transformer“. In 2014 International Conference on Smart Electric Grid (ISEG). IEEE, 2014. http://dx.doi.org/10.1109/iseg.2014.7005592.
Der volle Inhalt der QuelleWu, Li-Cheng, Chih-Wen Liu, Shih-En Chien und Ching-Shan Chen. „The Effect of Inrush Current on Transformer Protection“. In 2006 38th North American Power Symposium. IEEE, 2006. http://dx.doi.org/10.1109/naps.2006.359611.
Der volle Inhalt der QuelleBonislawski, Michal, Marcin Holub, Pawel Waszczuk und Wojeciech Lewanski. „Automated Test Stand for Transformer Inrush Current Measurement“. In 2018 14th Selected Issues of Electrical Engineering and Electronics (WZEE). IEEE, 2018. http://dx.doi.org/10.1109/wzee.2018.8749057.
Der volle Inhalt der QuelleCheng, Chien-Lung, Jim-Chwen Yeh, Shyi-Ching Chern und Yi-Hung Lan. „Analysis of Transformer Inrush Current under Harmonic Source“. In 2007 7th International Conference on Power Electronics and Drive Systems. IEEE, 2007. http://dx.doi.org/10.1109/peds.2007.4487754.
Der volle Inhalt der QuelleCheng, C., S. Chern, Q. Chen und F. Lin. „Estimation of Transformer Inrush Current under Harmonic Source“. In 2006 IEEE PES Power Systems Conference and Exposition. IEEE, 2006. http://dx.doi.org/10.1109/psce.2006.296460.
Der volle Inhalt der QuelleBasu, K. P., und Stella Morris. „Reduction of magnetizing inrush current in traction transformer“. In 2008 Third International Conference on Electric Utility Deregulation and Restructuring and Power Technologies. IEEE, 2008. http://dx.doi.org/10.1109/drpt.2008.4523795.
Der volle Inhalt der Quelle