Auswahl der wissenschaftlichen Literatur zum Thema „Transformer inrush current“

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Transformer inrush current" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Zeitschriftenartikel zum Thema "Transformer inrush current"

1

Wang, Xiao Fang. „Transformer Inrush Current Identification Based on EMD+TEO Methods“. Applied Mechanics and Materials 556-562 (Mai 2014): 3129–33. http://dx.doi.org/10.4028/www.scientific.net/amm.556-562.3129.

Der volle Inhalt der Quelle
Annotation:
Transformers is one of the most important power system components, its role is to carry power conversion and transmission, transformer manufacturing technology continues to develop, but there is a surge of its problems, factors that have caused the transformer inrush load switching, transformers string parallel operation and fault lines, etc, as a transformer inrush phenomenon often can lead to malfunction of its protection, the correct identification is particularly important means of this paper, the combination of EMD and TEO transformer inrush and fault operation effective identification, theory and simulation confirms the validity and reliability of the algorithm.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Desai, B. T., H. O. Gupta und M. K. Vasantha. „Current transformer performance for inrush current in power transformers“. Electric Power Systems Research 14, Nr. 3 (Juni 1988): 237–41. http://dx.doi.org/10.1016/0378-7796(88)90057-0.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Zhang, Bin Qiao, und Wei Wei Yao. „Recognition of the Transformer Sympathetic Inrush Current Based on Hilbert-Huang Transform“. Applied Mechanics and Materials 441 (Dezember 2013): 227–30. http://dx.doi.org/10.4028/www.scientific.net/amm.441.227.

Der volle Inhalt der Quelle
Annotation:
Analyze the characteristic quantity difference between the transformer sympathetic inrush current and the internal fault current inside it depending on the Hilbert-huang transform and extract the new type Hilbert-huang criterion for the recognition of the sympathetic inrush current according to the transformed wave form features. Set up the transformer simulating models through PACAD for the sympathetic inrush current and internal fault current to extract their IMF component; identify the sympathetic inrush current and the internal fault current based on HHT criterion; verify whether HHT criterion can identify the sympathetic inrush current wave form and the transformer internal fault current correctly. The criterion has targeted feature with self-adaption ability.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Wang, Hui, Kun Yan, Hou Lei Gao und Xue Wei Chen. „Simulation and Analysis of Transformer Inrush Current and its Impact on Current Differential Protection“. Advanced Materials Research 732-733 (August 2013): 712–16. http://dx.doi.org/10.4028/www.scientific.net/amr.732-733.712.

Der volle Inhalt der Quelle
Annotation:
A transformer model was built using PSCAD. The generation mechanism, waveform characteristics and influence factors of inrush current were simulated and analyzed. Combined with transformer differential protection, this paper discussed the conventional methods to identify inrush current and the operation logic to prevent mal-operation caused by inrush current. The typical transformer differential protection operating criteria were also simulated under different fault conditions. The results show that digital simulation can properly present inrush current waveform characteristics, different kinds of transformer fault status and inrush current influence on differential protection.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Xiang, Dong, und Fei Yu. „Characteristic Analysis of Ship Transformer Magnetizing Inrush Current and its Suppression Method“. Advanced Materials Research 1070-1072 (Dezember 2014): 1154–58. http://dx.doi.org/10.4028/www.scientific.net/amr.1070-1072.1154.

Der volle Inhalt der Quelle
Annotation:
Medium voltage in the electric power system of ship typically is powered by a large capacity transformer for low voltage electrical apparatus. When switching on, the primary side of transformer will produce very large current, which would endanger the safe operation of power for ships. The mechanism and characteristics of magnetizing inrush current is analyzed when the transformer switches with no load. We think that the reason caused magnetizing inrush current is transformers saturation. Pre-excitation is presented through a small volume transformer magnetizing method of suppressing the inrush current of transformer and validated by simulation and experiment.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Wojtasiewicz, G., G. Komarzyniec, T. Janowski, S. Kozak, J. Kozak, M. Majka und B. Kondratowicz-Kucewicz. „Inrush Current of Superconducting Transformer“. IEEE Transactions on Applied Superconductivity 23, Nr. 3 (Juni 2013): 5500304. http://dx.doi.org/10.1109/tasc.2012.2234498.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Jiale, Suo Nan, Li Qiang Xu, Zai Bin Jiao und Bin Du. „Discrimination of Three-Phase Three-Limb Transformer Inrush Current Based on Characteristics of Instantaneous Excitation Inductances“. Advanced Materials Research 433-440 (Januar 2012): 7267–74. http://dx.doi.org/10.4028/www.scientific.net/amr.433-440.7267.

Der volle Inhalt der Quelle
Annotation:
Existing methods utilizing excitation inductances to discriminate inrush current and internal fault of transformer are all derived from the singe-phase transformer circuit model, yet there are no discussions considering the widely used three-phase three-limb transformers. In view of this question, the mathematical model of three-phase three-limb transformer based on the characteristics of its magnetic equivalent circuit is established, through which the excitation inductances of the three-phase three-limb transformer can be calculated. The calculated excitation inductances have definite physical meanings and can reflect the saturation state of the transformer core under inrush condition. Analysis of the circuit model demonstrates that the delta circulating current is not the excitation current of three-phase three-limb transformer, so the proposed method can be used to the transformers with delta connection directly. The proposed method has been verified by electromagnetic transients program including direct current (EMTDC) simulations, simulation results show that the calculated excitation inductances have different characteristics under inrush and internal fault conditions, and can be applied to identify the inrush current of three-phase three-limb transformer.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Iqteit, Nassim A., und Khalid Yahya. „Simulink model of transformer differential protection using phase angle difference based algorithm“. International Journal of Power Electronics and Drive Systems (IJPEDS) 11, Nr. 2 (01.06.2020): 1088. http://dx.doi.org/10.11591/ijpeds.v11.i2.pp1088-1098.

Der volle Inhalt der Quelle
Annotation:
<p class="p1">An application of phase-angle-difference based algorithm with percentage differential relays is presented in this paper. In the situation where the transformer differential relay is under magnetizing inrush current, the algorithm will be utilized to block the process. In this study, the technique is modeled and implemented using Simulink integrated with MATLAB. The real circuit model of power transformer and current transformers are considered in the simulation model. The results confirmed the effectiveness of the technique in different operation modes; such as, magnetizing inrush currents, current transformers saturation and internal transformer faults.</p>
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Gunda, Sunil Kumar, und Venkata Samba Sesha Siva Sarma Dhanikonda. „Discrimination of Transformer Inrush Currents and Internal Fault Currents Using Extended Kalman Filter Algorithm (EKF)“. Energies 14, Nr. 19 (22.09.2021): 6020. http://dx.doi.org/10.3390/en14196020.

Der volle Inhalt der Quelle
Annotation:
The discrimination of inrush currents and internal fault currents in transformers is an important feature of a transformer protection scheme. The harmonic current restrained feature is used in conventional differential relay protection of transformers. A literature survey shows that the discrimination between the inrush currents and internal fault currents is still an area that is open to research. In this paper, the classification of internal fault currents and magnetic inrush currents in the transformer is performed by using an extended Kalman filter (EKF) algorithm. When a transformer is energized under normal conditions, the EKF estimates the primary side winding current and, hence, the absolute residual signal (ARS) value is zero. The ARS value will not be equal to zero for internal fault and inrush phenomena conditions; hence, the EKF algorithm will be used for discriminating the internal faults and inrush faults by keeping the threshold level to the ARS value. The simulation results are compared with the theoretical analysis under various conditions. It is also observed that the detection time of internal faults decreases with the severity of the fault. The results of various test cases using the EKF algorithm are presented. This scheme provides fast protection of the transformer for severe faults.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Alibašić, Emir, Predrag Marić und Srete N. Nikolovski. „Transient Phenomena during the Three-Phase 300MVA Transformer Energization on the Transmission Network“. International Journal of Electrical and Computer Engineering (IJECE) 6, Nr. 6 (01.12.2016): 2499. http://dx.doi.org/10.11591/ijece.v6i6.11406.

Der volle Inhalt der Quelle
Annotation:
<p>Connecting the transformer to the network may incur inrush current, which is significantly higher than the rated current of the transformer. The main cause of this phenomenon lies in the nonlinearity of the magnetic circuit. The value of the inrush current depends of the time moment of the energization and the residual magnetism in the transformer core. While connecting, the operating point of the magnetization characteristic can be found deep in the saturation region resulting in occurrence of large transformer currents that can trigger the transformer protection. Tripping of protection immediately after the transformer energization raises doubts about the transformer health. Inrush current can cause a number of other disadvantages such as the negative impact on other transformers connected on the same busbar; the increase of the transformer noise due to the large current value, the increase of the voltage drops in the network. The paper presents a simulation of the 300 MVA transformer energization using the MATLAB/Simulink software.</p><p> </p><p> </p>
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Dissertationen zum Thema "Transformer inrush current"

1

Solh, Joukhah Zahra. „Operation of HVDC converters for transformer inrush current reduction“. Doctoral thesis, Universitat Politècnica de Catalunya, 2017. http://hdl.handle.net/10803/461569.

Der volle Inhalt der Quelle
Annotation:
The present PhD thesis deals with transformer inrush current in offshore grids including offshore wind farms and High Voltage Direct Current (HVDC) transmission systems. The inrush phenomenon during transformers energization or recovery after the fault clearance is one of important concerns in offshore systems which can threaten the security and reliability of the HVDC grid operation as well as the wind farms function. Hence, the behaviour of wind turbines,Voltage Source Converters (VSC) and transformer under the normal operation and the inrush transient mode is analyzed. For inrush current reduction in the procedure of the offshore wind farms start-up and integration into the onshore AC grid, a technique based on Voltage Ramping Strategy (VRS) is proposed and its performance is compared with the operation of system without consideration of this approach. The new methodology which is simple, cost-effective ensures minimization of transformer inrush current in the offshore systems and the enhancement of power quality and the reliability of grid under the transformer energizing condition. The mentioned method can develop much lower inrush currents according to the slower voltage ramp slopes. Concerning the recovery inrush current, the operation of the offshore grid especially transformers is analyzed under the fault and the system restoration modes.The recovery inrush transient of transformers can cause tripping the HVDC and wind farms converters as well as disturbing the HVDC power transmission. A voltage control design based on VRS is proposed in HVDC converter to recover ali the transformers in offshore grid with lower inrush currents.The control system proposed can assure the correct performance of the converters in HVDC system and in wind farm and also the robust stability of the offshore grid.
Esta tesis doctoral estudia las corrientes de energización de transformadores de parques eólicos marinos con aerogeneradores con convertidores en fuente de tensión (VSC) de plena potencia conectados a través de una conexión de Alta Tensión en Corriente Continua (HVDC). Las corrientes de energización pueden disminuir la fiabilidad de la transmisión eléctrica debido a disparos intempestivos de las protecciones durante la puesta en marcha o recuperación de una falta. Para la mitigación de las corrientes de energización durante la puesta en marcha del parque esta tesis propone una nueva estrategia basada en incrementar la tensión aplicada por el convertidor del parque eólico en forma de rampa (VRS). Este método persigue energizar el parque eólico con el menor coste y máxima fiabilidad. La tesis analiza diferentes escenarios y diferentes rampas. Otro momento en que las corrientes de energización pueden dar lugar a un disparo intempestivo de las protecciones es durante la recuperación de una falta en la red de alterna del parque eólico marino. Esta tesis extiende la estrategia VRS, utilizada durante la puesta en marcha del convertidor del parque, para los escenarios de recuperación de una falta.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Vaheeshan, Jeganathan. „Transformer fault-recovery inrush currents in MMC-HVDC systems and mitigation strategies“. Thesis, University of Manchester, 2017. https://www.research.manchester.ac.uk/portal/en/theses/transformer-faultrecovery-inrush-currents-in-mmchvdc-systems-and-mitigation-strategies(05f7a9ad-5967-47aa-b72c-e55ad1d33eb7).html.

Der volle Inhalt der Quelle
Annotation:
The UK Government has set an ambitious target to achieve 15% of final energy consumption from renewable sources by 2020. High Voltage Direct Current (HVDC) technology is an attractive solution for integrating offshore wind power farms farther from the coast. In the near future, more windfarms are likely to be connected to the UK grid using HVDC links. With the onset of this fairly new technology, new challenges are inevitable. This research is undertaken to help assist with these challenges by looking at possibilities of problems with respect to faster AC/DC interaction modes, especially, on the impact of inrush currents which occur during fault-recovery transients. In addition to that, possible mitigation strategies are also investigated. Initially, the relative merits of different transformer models are analysed with respect to inrush current transient studies. The most appropriate transformer model is selected and further validated using field measurement data. A detailed electro-magnetic-transient (EMT) model of a grid-connected MMC-HVDC system is prepared in PSCAD/EMTDC to capture the key dynamics of fault-recovery transformer inrush currents. It is shown that the transformer in an MMC system can evoke inrush currents during fault recovery, and cause transient interactions with the converter and the rest of the system, which should not be neglected. It is shown for the first time through a detailed dynamic analysis that if the current sensors of the inner-current control loops are placed at the converter-side of the transformer instead of the grid-side, the inrush currents will mainly flow from the grid and decay faster. This is suggested as a basic remedial action to protect the converter from inrush currents. Afterwards, analytical calculations of peak flux-linkage magnitude in each phase, following a voltage-sag recovery transient, are derived and verified. The effects of zero-sequence currents and fault resistance on the peak flux linkage magnitude are systematically explained. A zero-sequence-current suppression controller is also proposed. A detailed study is carried out to assess the key factors that affect the maximum peak flux-linkage and magnetisation-current magnitudes, especially with regard to fault specific factors such as fault inception angle, duration and fault-current attenuation. Subsequently, the relative merits of a prior-art inrush current mitigation strategy and its implementation challenges in a grid-connected MMC converter are analysed. It is shown that the feedforward based auxiliary flux-offset compensation scheme, as incorporated in the particular strategy, need to be modified with a feedback control technique, to alleviate the major drawbacks identified. Following that, eight different feedback based control schemes are devised, and a detailed dynamic and transient analysis is carried out to find the best control scheme. The relative merits of the identified control scheme and its implementation challenges in a MMC converter are also analysed. Finally, a detailed EMT model of an islanded MMC-HVDC system is implemented in PSCAD/EMTDC and the impacts of fault-recovery inrush currents are analysed. For that, initially, a MMC control scheme is devised in the synchronous reference frame and its controllers are systematically tuned. To obtain an improved performance, an equivalent control scheme is derived in the stationary reference frame with Proportional-Resonant controllers, and incorporated in the EMT model. Following that, two novel inrush current mitigation strategies are proposed, with the support of analytical equations, and verified.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Bernardes, Alexandre Paciencia. „Um esquema completo de proteção diferencial de transformadores para testes em um relé digital“. Universidade de São Paulo, 2006. http://www.teses.usp.br/teses/disponiveis/18/18154/tde-16072006-122259/.

Der volle Inhalt der Quelle
Annotation:
Este trabalho apresenta um procedimento completo de simulação da proteção digital diferencial aplicada a transformadores de potência, visando o emprego deste à avaliação do comportamento de relés comercialmente disponíveis. Foi escolhido o software ATP (Alternative Transients Program) como ferramenta para a simulação de distintas situações sobre um sistema diferencial de proteção aplicado a um transformador de 25 MVA. Dentre as ocorrências evidenciadas, destacam-se: situações de faltas internas, faltas externas, situações de energização e energização com falta interna do transformador, condição de sobreexcitação e de saturação de TC (Transformador de Corrente). Cabe comentar que das simulações a real caracterização sobre o relé em teste, fez-se necessário todo um pré-processamento e análise da informação que será convenientemente abordada e justificada no trabalho apresentado, denotando-se um procedimento comum de teste a ser adotado a esta filosofia de proteção. A metodologia e esquema prático adotado trazem uma contribuição importante para a análise laboratorial de modelagens e simulações aplicadas a relés de proteção presentes no mercado e contribui de maneira substancial para os estudos teóricos de possíveis soluções para limitações eventualmente encontradas
This dissertation presents a complete procedure of simulation of digital differential protection applied to power transformers, focusing on its use to evaluate of the behavior of commercially available relays. Software ATP (Alternative Transients Program) was chosen as a tool for the simulation of distinct situations in a differential protection system applied to a 25 MVA three-phase transformer. Amongst the evidenced occurrences internal and external fault conditions, energization with or without internal fault of a three-phase transformer, overexcitation and CT (Current Transformer) saturation conditions were distinguished. It should be mentioned that from simulations to the characterization the real situations on the relay in test, a pre-processing and analysis of the information were necessary, and will be justified in the present study, denoting a common test procedure to be adopted to this philosophy of protection
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Jorge, David Calhau. „Transformadas wavelet aplicadas à proteção diferencial de transformadores de potência“. Universidade de São Paulo, 2003. http://www.teses.usp.br/teses/disponiveis/18/18133/tde-18022016-093145/.

Der volle Inhalt der Quelle
Annotation:
Transformadores de potência são dispositivos que requerem atenção especial devido a sua grande importância ao sistema elétrico de potência no qual ele está conectado. Geralmente relés diferenciais são utilizados como proteção primária em transformadores de potência. Nestes relés, a corrente diferencial é comparada com um nível de ajuste e caso ocorra uma falta interna, o transformador deverá ser desconectado do restante do sistema. Entretanto, a simples detecção da presença de uma corrente diferencial não é suficiente para distinguir faltas internas de outras situações que também podem produzir tal corrente. Tais situações surgem durante a energização dos transformadores, devido a saturação dos transformadores de corrente, entre outras, as quais podem resultar em uma incorreta atuação da proteção. Uma rápida e correta discriminação entre faltas internas e outras situações é um dos desafios da moderna proteção de transformadores de potência. A respeito da identificação de faltas internas ou situações de energização, além da mencionada lógica diferencial é acrescentado uma subrotina baseada na restrição de harmônicas. Neste método, a corrente de energização é reconhecida através da presença de uma segunda harmônica obtida por filtros de Fourier. No entanto, o método de filtragem pode algumas vezes retardar a operação da proteção. Além disto, uma componente de segunda harmônica pode também estar presente durante uma falta interna. Este trabalho propõe a utilização da transformada Wavelet - uma poderosa ferramenta matemática - empregada como um meio rápido e eficiente de analisar as formas de onda de transformadores de potência e como uma alternativa a tradicional transformada de Fourier. Os sinais das correntes diferenciais são processados pelas transformadas discretas Wavelet, visando obter uma discriminação entre ambas situações (energização e falta). Um nível de limiar é utilizado após a decomposição Wavelet do sinal para discriminar entre as situações descritas. A janela de dados utilizada para este propósito pode ser variada. Para testar o algoritmo proposto, as simulações de energização e falta foram implementadas, utilizando o programa ATP (\"Alternative Transient Program\"). Em situações onde a janela de dados é reduzida para 1/4 de ciclo o critério de discriminação pode ser otimizado utilizando a transformada discreta de Wavelet auxiliada com técnicas de reconhecimento de padrões. Este trabalho apresenta a utilização de redes neurais artificiais para tal finalidade como exemplo. Resultados encorajadores são apresentados sobre a capacidade de discriminação para as situações descritas assim como a rapidez de resposta quando comparados aos métodos tradicionais.
Power transformers are devices that require special maintenance and care due to their importance to the electrical system to which they are connected. Generally, differential relays are used for the primary protection of large transformers. In such relays, differential currents are compared to a threshold and in the case of an internal fault, the transformer should be disconnected from the rest of the system. However, a simple detection of a differential current is not sufficient to distinguish internal faults from other situations that also produce such a current. Some of these situations appear during transformer energization (inrush currents), CT (current transformer) saturation, among others, which can result in an incorrect trip. A correct and fast distinction of internal faults from the other situations mentioned is one of the challenges for modern protection of power transformers. Concerning the identification of internal faults as opposed to inrush currents, the approach tarditionally used is the aforementioned differential logic together with harmonic restraint. In this method, transformer inrush current due to energization is recognized on the basis of second harmonic components obtained by Fourier filters. However, the filtering method can sometimes delay the protection process. In addition to this, a second harmonic component can also be present during internal faults. This work proposes Wavelet transform - a powerful mathematical tool - employed as a fast and effective means of analyzing waveforms from power transformers, as an alternative to the traditional Fourier transform. The differential signals are processed by discrete Wavelet transform to obtain the discrimination between both situations (inrush and fault). A threshold level is utilized after the Wavelet decomposition to discriminate the situations describeb. The time window used for such purpose can be varied. In order to test proposed algorithm, simulations of fault and inrush currents in a power transformer were implemented using ATP ( \"Alternative Transient Program\") software. When the time window is reduced to only 1/4 of the cycle the discrimination criteria should be optimized using a pattern recognition technique to aid the Discrete Wavelet transform. This study shows as a sample for this purpose the use of artificial neural networks. Very encouraging results are presented concerning the capacity of discrimination of the described situations as well as the speed of response when compared to the traditional method.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Luedtke, Elin. „Minimizing Transformer No-Load Losses at Hydropower Plants : A Study of Effects from Transformer Switch-Off During Stand-by Operation“. Thesis, Uppsala universitet, Institutionen för fysik och astronomi, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-447635.

Der volle Inhalt der Quelle
Annotation:
Hydropower is the most important power balancing resource in the Swedish electrical power system, regulating the power supply to match the load. Consequently, several hydropower plants have periods of stand-by operation where the power production is absent but where several devices within a plant are still active. Such a device is the step-up power transformer, which during stand-by operation still generates no-load energy losses. These losses can accumulate to a considerable amount of energy and costs during the long technical lifetime of the apparatus. One option to minimize these no-load energy losses is by turning the transformer off when its generating unit is in stand-by operation. However, when this transformer operational change has been explained to experts in the field, the most common response has been that a more frequent reenergizing of a transformer leads to higher risks for errors or transformer breakdowns. This study aimed to analytically investigate three effects from this operational change. First, the potential of fatigue failure for the windings due to the increased sequences of inrush current. Secondly, the thermal cycling as a consequence of change in present losses. Lastly, the energy and economic saving potentials for hydropower plants where this operational adjustment is applied. The study used both established as well as analytical tools explicitly created for this study. These were then applied on currently active transformers in different plant categories in Fortum’s hydropower fleet.  The study primarily showed three things. Firstly, risk of fatigue failure due to the increased presence of inrush currents did not affect the transformer’s technical lifetime. Secondly, the thermal cycling changes were slightly larger with absent no-load losses during stand-by operation. The average temperature for the transformer decreased, which in general is seen as a positive indicator for a longer insulation lifetime and thus the transformer’s technical lifetime. Finally, the created frameworks showed the potential of saving energy and money for all plant categories, where the potential grew with the installed production capacity and the stand-by operation timeshare. Despite the simplifications made to describe the complex reality of a transformer operating in a hydropower plant, this thesis contributes to lay a foundation for future investigation of an easy adjustment to avoid unnecessary energy losses and costs for transformers in hydropower plants.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Zoufalý, Marek. „Snížení zapínacího proudu transformátoru“. Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2016. http://www.nusl.cz/ntk/nusl-220367.

Der volle Inhalt der Quelle
Annotation:
In this thesis is described the function and design of the transformer designed on ferromagnetic core, composed of transformer sheets. It is explained a transient inrush current of the transformer. In this work is inserted voltage and current waveforms, designed printed circuit board, serving to reduce the inrush current.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Sundberg, Gustav. „Resonant overvoltages caused by transformer energization and saturation : Two EMT case studies conducted using models of the grid in Stockholm and an off-shore wind farm“. Thesis, Uppsala universitet, Elektricitetslära, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-453406.

Der volle Inhalt der Quelle
Annotation:
This thesis investigates the impact of resonant overvoltages and their origin. Series and parallel resonances are present in any electrical grid. The frequency of which this resonance occurs is called resonance frequency. For parallel resonance, which is mainly being studied in this thesis, a high impedance peak can be found at the resonance frequency. This impedance peak in conjunction with a harmonic rich current cause a kind of temporary overvoltages called resonant overvoltages. The harmonic content of the current is high following a fault clearing in the grid, due to transformer saturation. The resonance frequency is heavily dependent on the amount of reactance present in the grid, which entail that a change in reactance causes a change in the resonance frequency. The electromagnetic transient tool PSCAD has been used to investigate resonant overvoltages following transformer energization caused by faults and switching in Stockholm. Secondly, a model was created of a grid connecting off-shore wind power to the mainland via long AC submarine transmission cables. These cables, having a high capacitance, lower the resonance frequency. Faults in this model were simulated to investigate the phenomenon of resonant overvoltages in such a grid. This was especially interesting due to Swedens planned expansion of wind power in the Baltic sea. While resonant overvoltages were found in Stockholm they were not deemed significant due to their low magnitude and longevity. However, severe resonant overvoltages were found in the off-shore wind farm model. The worst resonant overvoltages had a maximum amplitude of the 2nd order harmonic voltage of 130 kV which, while eventually damped, were significant for up to 50 periods. Lastly, the phenomenon of an increased resonance frequency during the saturation of a transformer was studied. The most severe resonant overvoltages occured in a model where the frequency scans showed a resonance frequency of 98 Hz. Indicating, caution needs to be had during EMT-studies of resonant overvoltages while choosing what resonance frequency to study.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Farzadfar, Iraj. „An inrush current model for core type transformers“. Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1997. http://www.collectionscanada.ca/obj/s4/f2/dsk3/ftp05/mq23298.pdf.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Cezar, Vinicius Oiring de Castro. „Contribution au renvoi de tension et à la reconstitution du réseau. Estimation des flux rémanents dans un transformateur“. Thesis, Université Grenoble Alpes (ComUE), 2015. http://www.theses.fr/2015GREAT046/document.

Der volle Inhalt der Quelle
Annotation:
Lors de la réalimentation des auxiliaires d'une tranche nucléaire ou hydraulique, l'étape la plus à risque est la remise sous tension brusque du transformateur à cause des surtensions et courants d'appels générés. Ces phénomènes transitoires engendrent des effets très indésirables autant pour le réseau comme pour le transformateur (efforts électrodynamiques sous les bobinages, vibration du circuit magnétique, bruit et vieillissement prématuré du transformateur.) Le but de ces travaux de thèse est de proposer de nouvelles méthodologies permettant d'évaluer les paramètres mal connus (les valeurs des flux rémanents présents dans le circuit magnétique du transformateur avant sa mise sous tension). Face aux problèmes actuelles pour l'estimer (méthode non directe, dérive, imprécision de la mesure de la tension, etc.), deux nouvelles méthodes basées sur la magnétisation préalable du circuit magnétique (méthode de prefluxing) et sur la mesure des flux de fuites du circuit magnétique (méthode de mesure directe de flux par mesure de l’induction magnétique) sont proposées
During the re-energization of the auxiliaries of a nuclear or hydraulic power plant, the most dangerous step is the re-energization of the power transformer, because of the temporary overvoltage and inrush currents. These transients phenomenon causes undesirable effects for both network and for the power transformer (electrodynamic forces over the windings, the magnetic circuit’s vibration, noise and the premature aging of the transformer). The goal of these thesis is to suggest new methodologies allowing us to evaluate unknown parameters (the residual flux’s values in the magnetic circuit before transformer’s energization). According to the latest problems in order to evaluate it (no direct method, derivation, voltage measurement error, etc) two new methods based on the previous magnetization of the magnetic circuit (prefluxing method) and on the leakage flux measurement of the magnetic circuit (direct measurement of the flux by measuring the magnetic induction method) are proposed
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Brunke, John H. „Elimination of transient inrush currents when energizing unloaded power transformers /“. [S.l.] : [s.n.], 1998. http://e-collection.ethbib.ethz.ch/show?type=diss&nr=12791.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Buchteile zum Thema "Transformer inrush current"

1

Wu, Li-Cheng, und Chih-Wen Liu. „The Inrush Current Eliminator of Transformer“. In Advances in Intelligent and Soft Computing, 411–19. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-28314-7_55.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Xu, Hang, Xu-hong Yang und Yu-jun Wu. „The Simulation of Applying Wavelet Transform to Identify Transformer Inrush Current“. In Advances in Computer Science, Environment, Ecoinformatics, and Education, 373–79. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-23324-1_60.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Zhao, Chunfang, Yundong Song, Dewei Kong, Yue Yang, Dan Luo, Yaling Jin und Rui Guo. „Elimination of Transformer Inrush Current by Three-Phase Linkage Circuit Breakers“. In Advances in Natural Computation, Fuzzy Systems and Knowledge Discovery, 903–8. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-32591-6_98.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Takehara, J., M. Kitagawa, Nakata und N. Takahashi. „Numerical Analysis of Inrush Currents in Transformers“. In Electromagnetic Fields in Electrical Engineering, 129–34. Boston, MA: Springer US, 1988. http://dx.doi.org/10.1007/978-1-4613-0721-1_24.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Bentarzi, Hamid, und Rachid Bouderballa. „Differential Protection Enhancement for Power Transformer“. In Advances in Computer and Electrical Engineering, 322–46. IGI Global, 2021. http://dx.doi.org/10.4018/978-1-7998-4027-5.ch014.

Der volle Inhalt der Quelle
Annotation:
A power transformer is protected against internal faults using a differential protection which is sensitive and a fast. However, during transformer magnetization (inrush current or over-excitation), the differential relay may operate unnecessarily. This phenomenon appears only when a transformer is first energized or after clearing external fault. During periodic magnetization condition due to over-excitation, the third and fifth harmonic components are largely noticed; however, during the normal apperiodic inrush conditions, the second harmonic is relatively high. In the conventional techniques, these harmonic components have been used to block differential protection to operate. However, in smart power transformer, these harmonic components are small even during the transformer magnetization; they cannot be used as block protection functions. The differential protection security has to be improved so that it can distinguish between differential current produced by magnetization and that produced by internal fault using the most advanced computer with most improved DSP algorithms.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Spoljaric, Zeljko, Vedrana Jerkovic und Marinko Stojkov. „Measurement System for Transformer Inrush Current Higher Harmonics Determination“. In Proceedings of the 23rd International DAAAM Symposium 2012, 0617–22. DAAAM International Vienna, 2012. http://dx.doi.org/10.2507/23rd.daaam.proceedings.145.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Nair, K. R. M. „Inrush Current in Transformers“. In Power and Distribution Transformers, 143–50. CRC Press, 2021. http://dx.doi.org/10.1201/9781003088578-10.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

KLOMJIT, JITTIPHONG, und ATTHAPOL NGAOPITAKKUL. „DISCRIMINATING AMONG INRUSH CURRENT, EXTERNAL SHORT CIRCUIT AND INTERNAL WINDING FAULT IN POWER TRANSFORMER USING COEFFICIENT OF DWT“. In IAENG Transactions on Electrical Engineering Volume 1, 30–43. WORLD SCIENTIFIC, 2013. http://dx.doi.org/10.1142/9789814439084_0003.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

„Magnetic Inrush Current in Distributed Photovoltaic Grid Power Transformers“. In Distributed Photovoltaic Grid Transformers, 143–49. CRC Press, 2017. http://dx.doi.org/10.1201/b16412-13.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

El-Naggar, M. F., A. Abu-Siada, A. M. Mahmoud und Khaled M. Gad El Mola. „A new current-based technique for discriminating between internal faults and inrush current within power transformers“. In Testing and Measurement: Techniques and Applications, 195–200. CRC Press, 2015. http://dx.doi.org/10.1201/b18470-43.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Konferenzberichte zum Thema "Transformer inrush current"

1

Burkard, J., und J. Biela. „Transformer inrush current mitigation concept for hybrid transformers“. In 2017 19th European Conference on Power Electronics and Applications (EPE'17 ECCE Europe). IEEE, 2017. http://dx.doi.org/10.23919/epe17ecceeurope.2017.8099283.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Alyounus, Yousif, Omar Ghazal und Enaam Albanna Albanna. „Damping the Inrush Current for Current Transformer“. In Proceedings of the 1st International Multi-Disciplinary Conference Theme: Sustainable Development and Smart Planning, IMDC-SDSP 2020, Cyperspace, 28-30 June 2020. EAI, 2020. http://dx.doi.org/10.4108/eai.28-6-2020.2298154.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Jiri, Bermann, und Prochazka Martin. „Transformer inrush - Harmonics in the current“. In 2018 19th International Scientific Conference on Electric Power Engineering (EPE). IEEE, 2018. http://dx.doi.org/10.1109/epe.2018.8396014.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Abapour, M., und M. Tarafdar haqh. „A Non-Control Transformer Inrush Current Limiter“. In 2006 IEEE International Conference on Industrial Technology. IEEE, 2006. http://dx.doi.org/10.1109/icit.2006.372648.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Kumar, Prashant, und S. Yogendra Reddy. „Optimization of inrush current in electrical transformer“. In 2014 International Conference on Smart Electric Grid (ISEG). IEEE, 2014. http://dx.doi.org/10.1109/iseg.2014.7005592.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Wu, Li-Cheng, Chih-Wen Liu, Shih-En Chien und Ching-Shan Chen. „The Effect of Inrush Current on Transformer Protection“. In 2006 38th North American Power Symposium. IEEE, 2006. http://dx.doi.org/10.1109/naps.2006.359611.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Bonislawski, Michal, Marcin Holub, Pawel Waszczuk und Wojeciech Lewanski. „Automated Test Stand for Transformer Inrush Current Measurement“. In 2018 14th Selected Issues of Electrical Engineering and Electronics (WZEE). IEEE, 2018. http://dx.doi.org/10.1109/wzee.2018.8749057.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Cheng, Chien-Lung, Jim-Chwen Yeh, Shyi-Ching Chern und Yi-Hung Lan. „Analysis of Transformer Inrush Current under Harmonic Source“. In 2007 7th International Conference on Power Electronics and Drive Systems. IEEE, 2007. http://dx.doi.org/10.1109/peds.2007.4487754.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Cheng, C., S. Chern, Q. Chen und F. Lin. „Estimation of Transformer Inrush Current under Harmonic Source“. In 2006 IEEE PES Power Systems Conference and Exposition. IEEE, 2006. http://dx.doi.org/10.1109/psce.2006.296460.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Basu, K. P., und Stella Morris. „Reduction of magnetizing inrush current in traction transformer“. In 2008 Third International Conference on Electric Utility Deregulation and Restructuring and Power Technologies. IEEE, 2008. http://dx.doi.org/10.1109/drpt.2008.4523795.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Wir bieten Rabatte auf alle Premium-Pläne für Autoren, deren Werke in thematische Literatursammlungen aufgenommen wurden. Kontaktieren Sie uns, um einen einzigartigen Promo-Code zu erhalten!

Zur Bibliographie