Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Transformation de phase austénite-Ferrite“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Transformation de phase austénite-Ferrite" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Transformation de phase austénite-Ferrite"
Kanter, Daniel, Yves Bolender, Christophe Rapin und Marie-Pierryle Filleul. „L’effet mémoire de forme est-il une réalité clinique pour le 35° Copper Ni-Ti® ? Étude par calorimétrie différentielle à balayage“. L'Orthodontie Française 84, Nr. 3 (September 2013): 259–69. http://dx.doi.org/10.1051/orthodfr/2013057.
Der volle Inhalt der QuellePadilha, Angelo Fernando, D. J. M. Aguiar und R. L. Plaut. „Duplex Stainless Steels: A Dozen of Significant Phase Transformations“. Defect and Diffusion Forum 322 (März 2012): 163–74. http://dx.doi.org/10.4028/www.scientific.net/ddf.322.163.
Der volle Inhalt der QuelleLi, Li Zhang, He Wei, Lin Lin Liao, Yin Li Chen, Hai Feng Yan, Guang Hua Liu und Zhi Wei Sun. „Continuous Cooling Phase Transformation Rule of 20CrMnTi Low-Carbon Alloy Steel“. Materials Science Forum 944 (Januar 2019): 303–12. http://dx.doi.org/10.4028/www.scientific.net/msf.944.303.
Der volle Inhalt der QuelleCheng, Wei Chun, Kun Hsien Lee, Shu Mao Lin und Shao Yu Chien. „The Observation of Austenite to Ferrite Martensitic Transformation in an Fe-Mn-Al Austenitic Steel after Cooling from High Temperature“. Materials Science Forum 879 (November 2016): 335–38. http://dx.doi.org/10.4028/www.scientific.net/msf.879.335.
Der volle Inhalt der QuelleSpiridonova, K. V., I. Yu Litovchenko, N. A. Polekhina, V. V. Linnik, T. A. Borisenko, V. M. Chernov und M. V. Leont’eva-Smirnova. „Structural-phase transformations of 12% chromium ferritic-martensitic steel EP-823“. Izvestiya. Ferrous Metallurgy 66, Nr. 6 (29.12.2023): 725–32. http://dx.doi.org/10.17073/0368-0797-2023-6-725-732.
Der volle Inhalt der QuelleXia, Pei Pei, Liu Qing Yang, Xiao Jiang Guo und Ye Zheng Li. „Continuous Cooling Phase Transformation Rules of High Nb X80 Pipeline Steel“. Materials Science Forum 850 (März 2016): 916–21. http://dx.doi.org/10.4028/www.scientific.net/msf.850.916.
Der volle Inhalt der QuelleWang, Qihui, Kun Chen, Kejia Liu, Lianbo Wang, Yu Chu und Bichen Xie. „Study on Characterization of Phase Transition in Continuous Cooling of Carbon Steel Using In Situ Thermovoltage Measurement“. Coatings 14, Nr. 8 (03.08.2024): 980. http://dx.doi.org/10.3390/coatings14080980.
Der volle Inhalt der QuelleVillalobos Vera, Doris Ivette, und Ivan Mendoza Bravo. „Effect of annealing temperature on the microstructure of hyperduplex stainless steels“. Ingeniería Investigación y Tecnología 20, Nr. 2 (01.03.2019): 1–6. http://dx.doi.org/10.22201/fi.25940732e.2019.20n2.024.
Der volle Inhalt der QuelleBilovol, V., und R. Martínez-García. „Phase transformation of strontium hexagonal ferrite“. Journal of Physics and Chemistry of Solids 86 (November 2015): 131–37. http://dx.doi.org/10.1016/j.jpcs.2015.07.006.
Der volle Inhalt der QuelleHug-Amalric, Aurélie, Xavier Kleber, Jacques Merlin, Hélène Petitgand und Philip Meilland. „Characterization of Metallurgical Transformations in Multi-Phase High Strength Steels by Barkhausen Noise Measurement“. Materials Science Forum 539-543 (März 2007): 4283–88. http://dx.doi.org/10.4028/www.scientific.net/msf.539-543.4283.
Der volle Inhalt der QuelleDissertationen zum Thema "Transformation de phase austénite-Ferrite"
Borges, Gomes Lima Yuri. „Μοdélisatiοn atοmistique de la transfοrmatiοn de phase austénite-ferrite dans les aciers“. Electronic Thesis or Diss., Normandie, 2024. http://www.theses.fr/2024NORMR086.
Der volle Inhalt der QuelleThis thesis applies the Quasiparticle Approach (QA) to investigate the atomic scale mechanisms driving the phase transformation from FCC to BCC structures in iron. Initially, the study focuses on pure iron, providing detailed results into the nature and role of dislocations, at the FCC-BCC interface. It was shown that the FCC-BCC interface is semi-coherent and stepped, with two sets of transformations dislocations at the interface. The QA framework reveals how each orientation relationship (OR) influences the interface characteristics. Although the ORs displayed different interface structures, all were ultimately found to follow the same atomic transformation path, driven by the glide of transformation dislocations at the interface. It was concluded that the complete FCC to BCC phase transformation involves the action of the Kurdjumov-Sachs (KS) transformation mechanism in two variants along the two sets of dislocations, with the Kurdjumov-Sachs-Nishiyama (KSN) mechanism emerging as the average of the two KS mechanisms. This detailed description served as a basis for the study of Fe-C systems, where carbon segregation at the interface was observed. Moreover, it was shown that the carbon concentration profiles were consistent with local equilibrium conditions at the interface
Perevoshchikova, Nataliya. „Modeling of austenite to ferrite transformation in steels“. Thesis, Université de Lorraine, 2012. http://www.theses.fr/2012LORR0342/document.
Der volle Inhalt der QuelleTransformation in steels focusing on the thermodynamic and kinetics conditions at the alpha/gamma interfaces during the ferrite growth. The first chapter deals with the determination of thermodynamic equilibria between alpha and gamma with CalPhad thermodynamic description. We have developed a new hybrid algorithm combining the construction of a convex hull to the more classical Newton-Raphson method to compute two phase equilibria in multicomponent alloys with two sublattices. Its capabilities are demonstrated on ternary Fe-C-Cr and quaternary Fe-C-Cr-Mo steels. In the second chapter, we present a thick interface model aiming to predict the whole spectrum of conditions at an alpha/gamma interface during ferrite growth, from full equilibrium to paraequilibrium with intermediate cases as the most interesting feature. The model, despite its numerous simplifying assumptions to facilitate its numerical implementation, allows to predict some peculiar kinetics in Fe-C-X systems with a minimum of fitting parameters, mainly the ratio between the diffusivities of the substitutional element inside the thick interface and in bulk austenite. The third chapter deals with the phase field model of austenite to ferrite transformation in steels. A thorough analysis on the conditions at the interface has been performed using the technique of matched asymptotic expansions. Special attention is given to clarify the role of the interface mobility on the growth regimes both in simple Fe-C alloys and in more complex Fe-C-Mn alloys
Thuillier, Olivier. „Transformation austénite-ferrite dans un alliage modèle Fe-C-Mn : modélisation et étude expérimentale à l'échelle nanométrique“. Rouen, 2007. http://www.theses.fr/2007ROUES082.
Der volle Inhalt der QuelleLiebaut, Christophe. „Rhéologie de la déformation plastique d'un acier Fe-C durant sa transformation de phase "austenite-->ferrite + perlite"“. Vandoeuvre-les-Nancy, INPL, 1988. http://www.theses.fr/1988NAN10451.
Der volle Inhalt der QuelleSchmidt, Marek Wojciech, und Marek Schmidt@rl ac uk. „Phase formation and structural transformation of strontium ferrite SrFeOx“. The Australian National University. Research School of Physical Sciences and Engineering, 2001. http://thesis.anu.edu.au./public/adt-ANU20020708.190055.
Der volle Inhalt der QuellePariser, Gerhard Carolus. „Modeling the austenite to ferrite phase transformation for steel development /“. Aachen : Shaker, 2006. http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&doc_number=014913109&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA.
Der volle Inhalt der QuelleGuiheux, Romain. „Comportement d’aciers à transformation de phase austénite-martensite pour la simulation du grenaillage de précontrainte“. Thesis, Paris, ENSAM, 2016. http://www.theses.fr/2016ENAM0055/document.
Der volle Inhalt der QuelleShot-peening is commonly used in mechanical industries to increase life duration of mechanical and structural parts: residual compressive stresses are developed at the sub-surface of the material by plastic stretching of the surface. In the case of TRIP-effect steels (TRansformation Induced Plasticity), the metastable austenite can transform into martensite during shot-peening. The final distribution of stress is then more complex than for “standard steels” as it results from the mechanical strain imposed by the process and the martensitic transformation leading to a stress redistribution between austenite, martensite and the other phases. This work aims to characterize experimentally the mechanical state, at phase scale, of different TRIP steels (AISI 301LN, TRIP 780 and 23MnCrMo5) as well as the fraction of each phase after shot-peening and to propose a numerical model by finite elements which could be used in the future by engineering offices. An elastoplastic model with phase transformation was developed in this thesis which permits to predict the evolution of mechanical variables, macroscopically and at the phase scale, as well as the evolution of austenite volume fraction
Pariser, Gerhard C. [Verfasser]. „Modeling the Austenite to Ferrite Phase Transformation for Steel Development / Gerhard C Pariser“. Aachen : Shaker, 2006. http://d-nb.info/1170529216/34.
Der volle Inhalt der QuelleRampelberg, Cécile. „Characterization and modeling of Carbide-Free Bainite transformations along isothermal and anisothermal heat treatments“. Electronic Thesis or Diss., Université de Lorraine, 2022. http://www.theses.fr/2022LORR0202.
Der volle Inhalt der QuelleCarbide-Free Bainites are multiphase microstructures obtained from austenite decomposition at low temperatures (typically between 450 °C and 200 °C) in alloyed steels. These microstructures are very attractive owing to their high mechanical properties and good toughness especially for forged parts dedicated to the automotive market. They are made of a fine ferritic matrix without carbide thanks to a judicious chemical composition, retained austenite stabilized by carbon partitioning during the transformation and martensite. The high fraction of retained austenite may transform in martensite during further mechanical solicitations at room temperature (strain induced transformation). These microstructures have been studied since many years, but their formation mechanisms are still a subject that continues to divide the metallurgy community, between diffuse and diffusionless approaches. The incomplete transformation phenomenon encountered in this process is one of the bones of contention. One of the great novelties of this work was to elucidate the mechanisms of formation of these microstructures in continuous cooling conditions.In this work, we have investigated the evolution of microstructures along different thermal treatments (isothermal holdings, multistep and continuous cooling treatments) by in situ High Energy X-Ray Diffraction (HEXRD) on synchrotron beamlines. Such experiments make possible the simultaneous measurement of phase transformation kinetics, of the lattice parameters of the different phases and the detection of possible carbide precipitation processes. On this basis, very precise carbon mass balances between the constituting phases have been established for the first time leading to the conclusions that the ferritic bainite is even more supersaturated in carbon that expected. The multistep and continuous cooling experiments have also proved that the bainitic transformation doesn’t respect the additivity rule of purely diffusive transformations and is highly sensitive to the transformation sequences. The microstructures after thermal treatments have been systematically studied post mortem by Scanning Electron microscopy (SEM) coupled with Electron Back Scattered Diffraction (EBSD). It has served to explain the observed microstructures after continuous cooling which show large distributions of size, morphology and microtexture as they are formed progressively at different temperatures.A phase transformation model based on the diffusionless-type approach of Van Bohemen (2019) was finally developed and calibrated on available experimental data. This model is not only able to simulate bainite kinetics along isothermal holding and continuous cooling but also the respective compositions of the phases. The capabilities and limits of the new approach are analyzed and discussed
Liebaut, Christophe. „Rhéologie de la déformation plastique d'un acier Fe-C durant sa transformation de phase "austénite-ferrite + perlite"“. Grenoble 2 : ANRT, 1988. http://catalogue.bnf.fr/ark:/12148/cb376152470.
Der volle Inhalt der QuelleBuchteile zum Thema "Transformation de phase austénite-Ferrite"
An, Dong, Shiyan Pan, Qing Yu, Chen Lin, Ting Dai, Bruce Krakauer und Mingfang Zhu. „Modeling of Ferrite-Austenite Phase Transformation“. In TMS2015 Supplemental Proceedings, 791–98. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2015. http://dx.doi.org/10.1002/9781119093466.ch96.
Der volle Inhalt der QuelleAn, Dong, Shiyan Pan, Qing Yu, Chen Lin, Ting Dai, Bruce Krakauer und Mingfang Zhu. „Modeling of Ferrite-Austenite Phase Transformation“. In TMS 2015 144th Annual Meeting & Exhibition, 791–98. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-48127-2_96.
Der volle Inhalt der QuelleLópez-Baltazar, Alejandro, Armando Salinas-Rodríguez und Enrique Nava-Vázquez. „Austenite-Ferrite Transformation in Hot Rolled Mn-Cr-Mo Dual Phase Steels“. In Advanced Structural Materials III, 79–84. Stafa: Trans Tech Publications Ltd., 2007. http://dx.doi.org/10.4028/0-87849-446-4.79.
Der volle Inhalt der QuelleGamsjäger, Ernst. „Kinetics of the Austenite-to-Ferrite Phase Transformation - From the Intrinsic to an Effective Interface Mobility“. In THERMEC 2006, 2570–75. Stafa: Trans Tech Publications Ltd., 2007. http://dx.doi.org/10.4028/0-87849-428-6.2570.
Der volle Inhalt der QuelleNeidel, A., B. Fischer, S. Riesenbeck, E. Cagliyan und E. Engert. „Transformation of Delta Ferrite Into Sigma Phase in Metastable Austenitic Stainless Steels After Long-Term High-Temperature Service Exposure“. In Schadensfallanalysen metallischer Bauteile, 267–89. München, Germany: Carl Hanser Verlag GmbH & Co. KG, 2015. http://dx.doi.org/10.1007/978-3-446-44609-0_21.
Der volle Inhalt der QuelleNeidel, A., B. Fischer, S. Riesenbeck, E. Cagliyan und E. Engert. „Transformation of Delta Ferrite Into Sigma Phase in Metastable Austenitic Stainless Steels After Long-Term High-Temperature Service ExposureUmwandlung von Deltaferrit in Sigma-Phase in metastabilen rostfreien austenitischen Stählen nach Langzeitbeanspruchung durch Hochtemperaturen“. In Schadensfallanalysen metallischer Bauteile, 267–89. München: Carl Hanser Verlag GmbH & Co. KG, 2015. http://dx.doi.org/10.3139/9783446446090.021.
Der volle Inhalt der QuelleJaber, Hassanen, und Tunde Kovacs. „Dissimilar Resistance Spot Welding of Ferrite-Martensite Dual Phase Steel/Low Carbon Steel: Phase Transformations and Mechanical Properties“. In Lecture Notes in Mechanical Engineering, 709–18. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-75677-6_60.
Der volle Inhalt der QuelleChoi, Sangwoo, Il-Heon Son, Joong-Ki Hwang, Young Soo Chun, Nam-Suk Lim Lim, Hyun-Ho Kim und Jang-Yong Yoo. „A New Method to Compute the Behavior of Phase Transformations and Depth of the Decarburized Ferrite Layer, Scale Thickness of Steel from Measured Temperatures“. In HSLA Steels 2015, Microalloying 2015 & Offshore Engineering Steels 2015, 427–32. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2015. http://dx.doi.org/10.1002/9781119223399.ch49.
Der volle Inhalt der QuelleChoi, Sangwoo, Il-Heon Son, Joong-Ki Hwang, Young Soo Chun, Nam-Suk Lim, Hyun-Ho Kim und Jang-Yong Yoo. „A New Method to Compute the Behavior of Phase Transformations and Depth of the Decarburized Ferrite Layer, Scale Thickness of Steel from Measured Temperatures“. In HSLA Steels 2015, Microalloying 2015 & Offshore Engineering Steels 2015, 427–32. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-48767-0_49.
Der volle Inhalt der QuelleRÉGLÉ, Hélène, und Brigitte BACROIX. „Anisotropie et propriétés mécaniques“. In Le développement des aciers à très haute résistance, 53–78. ISTE Group, 2022. http://dx.doi.org/10.51926/iste.9122.ch2.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Transformation de phase austénite-Ferrite"
Hatakeyama, Tomotaka, Kota Sawada, Masaru Suzuki und Makoto Watanabe. „Microstructure of Modified 9Cr-1Mo Steel Manufactured via Laser Powder Bed Fusion“. In AM-EPRI 2024, 365–72. ASM International, 2024. http://dx.doi.org/10.31399/asm.cp.am-epri-2024p0365.
Der volle Inhalt der QuelleLi, Zhichao (Charlie), B. Lynn Ferguson, Edward Lee, Stefan Habean und Jason Meyer. „Sources of Heat Treatment Distortion and Approaches for Distortion Reduction during Quench Hardening Process“. In IFHTSE 2024, 132–38. ASM International, 2024. http://dx.doi.org/10.31399/asm.cp.ifhtse2024p0132.
Der volle Inhalt der QuelleP., Sumangala T., Mahender C., Venkataramani N. und Shiva Prasad. „Temperature dependent phase transformation in nano sized magnesium ferrite“. In NANOFORUM 2014. AIP Publishing LLC, 2015. http://dx.doi.org/10.1063/1.4917771.
Der volle Inhalt der QuelleMochizuki, Masahito, und Yoshiki Mikami. „Heterogeneous Microstructure Effect on Residual Stress and Fatigue Crack Resistance in Dual-Phase Materials“. In ASME 2009 Pressure Vessels and Piping Conference. ASMEDC, 2009. http://dx.doi.org/10.1115/pvp2009-77446.
Der volle Inhalt der QuelleStritch, Kyle, und Boian T. Alexandrov. „Microstructural Evolution and Mechanical Properties in Simulated Heat Affected Zone Regions of Grade 91 Welds“. In AM-EPRI 2016, herausgegeben von J. Parker, J. Shingledecker und J. Siefert. ASM International, 2016. http://dx.doi.org/10.31399/asm.cp.am-epri-2016p1160.
Der volle Inhalt der QuelleCabo Rios, Alberto, Eduard Hryha, Eugene Olevsky und Mats Persson. „Modelling Of Delta-ferrite Transformation Effect On The Sintering Behavior Of 316L Binder Jetting Components“. In World Powder Metallurgy 2022 Congress & Exhibition. EPMA, 2022. http://dx.doi.org/10.59499/wp225371818.
Der volle Inhalt der QuelleToloui, Morteza, und Matthias Militzer. „Phase Field Modelling of Microstructure Evolution in the HAZ of X80 Linepipe Steel“. In 2012 9th International Pipeline Conference. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/ipc2012-90378.
Der volle Inhalt der QuelleYuan, Zhetao, Satoru Kobayashi und Masao Takeyama. „Microstructure Control Using the Formation of Laves Phase through Interphase Precipitation in Ferritic Heat Resistant Steels“. In AM-EPRI 2019, herausgegeben von J. Shingledecker und M. Takeyama. ASM International, 2019. http://dx.doi.org/10.31399/asm.cp.am-epri-2019p0090.
Der volle Inhalt der QuelleLiu, Dehao, Gang Wang, Zhenguo Nie und Yiming (Kevin) Rong. „Numerical Simulation of the Austenitizing Process in Hypoeutectoid Fe-C Steels“. In ASME 2014 International Manufacturing Science and Engineering Conference collocated with the JSME 2014 International Conference on Materials and Processing and the 42nd North American Manufacturing Research Conference. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/msec2014-3948.
Der volle Inhalt der QuelleSilva, Edgard, ANA SILVA SOUZA ANDRADE, Francildo de Oliveira, Michelline Nery Azevedo Lima, Josinaldo Leite, João Leite und Mickael Messias Rodrigues da Silva. „Detection of ferrite phase transformation by induced magnetic field on a duplex stainless steel“. In 24th ABCM International Congress of Mechanical Engineering. ABCM, 2017. http://dx.doi.org/10.26678/abcm.cobem2017.cob17-1035.
Der volle Inhalt der Quelle