Auswahl der wissenschaftlichen Literatur zum Thema „Transcription factors“

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Transcription factors" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Zeitschriftenartikel zum Thema "Transcription factors"

1

Wilson, Nicola K., Fernando J. Calero-Nieto, Rita Ferreira und Berthold Göttgens. „Transcriptional regulation of haematopoietic transcription factors“. Stem Cell Research & Therapy 2, Nr. 1 (2011): 6. http://dx.doi.org/10.1186/scrt47.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

BARNES, P. J., und I. M. ADCOCK. „Transcription factors“. Clinical Experimental Allergy 25, s2 (November 1995): 46–49. http://dx.doi.org/10.1111/j.1365-2222.1995.tb00421.x.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Hawkins, R. „Transcription Factors“. Journal of Medical Genetics 33, Nr. 12 (01.12.1996): 1054. http://dx.doi.org/10.1136/jmg.33.12.1054-a.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Papavassiliou, Athanasios G. „Transcription Factors“. New England Journal of Medicine 332, Nr. 1 (05.01.1995): 45–47. http://dx.doi.org/10.1056/nejm199501053320108.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Locker, J. „Transcription Factors“. Biomedicine & Pharmacotherapy 52, Nr. 1 (Januar 1998): 47. http://dx.doi.org/10.1016/s0753-3322(97)86247-6.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Locker., J. „Transcription Factors“. Journal of Steroid Biochemistry and Molecular Biology 64, Nr. 5-6 (März 1998): 316. http://dx.doi.org/10.1016/s0960-0760(96)00245-2.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Handel, Malcolm L., und Laila Girgis. „Transcription factors“. Best Practice & Research Clinical Rheumatology 15, Nr. 5 (Dezember 2001): 657–75. http://dx.doi.org/10.1053/berh.2001.0186.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Parker, C. S. „Transcription factors“. Current Opinion in Cell Biology 1, Nr. 3 (Juni 1989): 512–18. http://dx.doi.org/10.1016/0955-0674(89)90013-6.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Geng, Yanbiao, Peter Laslo, Kevin Barton und Chyung-Ru Wang. „Transcriptional Regulation ofCD1D1by Ets Family Transcription Factors“. Journal of Immunology 175, Nr. 2 (07.07.2005): 1022–29. http://dx.doi.org/10.4049/jimmunol.175.2.1022.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Senecal, Adrien, Brian Munsky, Florence Proux, Nathalie Ly, Floriane E. Braye, Christophe Zimmer, Florian Mueller und Xavier Darzacq. „Transcription Factors Modulate c-Fos Transcriptional Bursts“. Cell Reports 8, Nr. 1 (Juli 2014): 75–83. http://dx.doi.org/10.1016/j.celrep.2014.05.053.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Dissertationen zum Thema "Transcription factors"

1

Yao, Ya-Li. „Regulation of yy1, a multifunctional transciption [sic] factor /“. [Tampa, Fla.] : University of South Florida, 2001. http://purl.fcla.edu/fcla/etd/SFE0000626.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Zandvakili, Arya. „The Role of Affinity and Arrangement of Transcription Factor Binding Sites in Determining Hox-regulated Gene Expression Patterns“. University of Cincinnati / OhioLINK, 2018. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1535708748728472.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Elzi, David John. „Transcriptional properties of the Kaiso class of transcription factors /“. Thesis, Connect to this title online; UW restricted, 2007. http://hdl.handle.net/1773/5027.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Bidon, Baptiste. „Mediator and NER factors in transcription initiation“. Thesis, Strasbourg, 2017. http://www.theses.fr/2017STRAJ093/document.

Der volle Inhalt der Quelle
Annotation:
La synthèse d’ARN messagers résulte d’une cascade d’évènements temporellement et spatialement orchestrée. Au moment de l’initiation de la transcription, divers facteurs tels que les facteurs généraux de transcription, le complexe Médiateur, des co-activateurs, des facteurs de remodelage de la chromatine ainsi que l’ARN polymérase II sont recrutés au niveau de la région promotrice du gène. Certains facteurs de la voie NER de réparation de l’ADN sont également recrutés. En utilisant des cellules de patients porteurs de mutations dans les gènes MED12 (sous-unité du Médiateur) ou XPC (facteur initiant la voie NER), nous avons pu étudier le rôle de ces protéines dans la transcription. Les patients MED12 sont notamment caractérisés par une lourde déficience intellectuelle et des malformations congénitales. Nous avons montré que MED12 est impliqué dans le contrôle de certains gènes de réponse immédiate comme JUN, qui contribue notamment au développent et à la plasticité cérébrale. L’expression de ce dernier est affectée par les mutations de MED12, mais différemment en fonction de la position de la mutation, apportant une possible indication sur l’origine des variations phénotypiques observées chez les patients. En parallèle, les patients XPC se caractérisent par une forte photosensibilité. Nous avons montré que la protéine XPC, en collaboration avec le facteur E2F1, est impliquée dans le recrutement de l’histone acetyl-transférase GCN5 au niveau du promoteur d’un certain nombre de gènes. Cette dernière permet notamment l’a modification de l’environnement chromatinien, en coopération avec le facteur général de transcription TFIIH et participe ainsi à l’initiation de la transcription. En plus d’approfondir la compréhension des mécanismes régissant la transcription, ces résultats ont permis de mieux comprendre l’étiologie des maladies associées aux mutations
The synthesis of messenger RNA is a highly regulated process. During transcription initiation, a large number of proteins are recruited to gene promoter, including the RNA polymerase II, general transcription factors, co-activators, chromatin remodellers and the Mediator complex. Some DNA repair factors from the NER pathway are also recruited. Using cells derived from patients bearing mutations in either MED12 gene or XPC gene, we studied the roles of such proteins in transcription. MED12 patients are mostly characterised by intellectual disability and developmental delay. We showed that MED12 is implicated in the transcription regulation of immediate early genes like JUN, known for its role in neurological development and neuronal plasticity. JUN expression is markedly altered by MED12 mutations. We also showed that the position of the mutation influences this alteration, bringing possible explanation for inter-patients symptom variability. Meanwhile, XPC patients are mostly characterized by photosensitivity. We showed that XPC protein, which engages one of the NER pathways, is implicated in chromatin post-translational modification. Together with E2F1, it helps the recruitment of GCN5 acetyl-transferase to promoter of a certain set of genes. On the promoter, GCN5 notably cooperates with TFIIH to modify the chromatin environment during transcription initiation. In addition to help the comprehension of the transcription mechanisms, these results bring knew insight into the aetiology of mutations associated diseases
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Brunkhorst, Adrian. „A study on the TFIID subunit TAF4 /“. Stockholm, 2005. http://diss.kib.ki.se/2005/91-7140-206-3/.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Dennis, Jonathan Hancock. „Transcriptional regulation by Brn 3 POU domain containing transcription factors“. Thesis, University College London (University of London), 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.249684.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Greberg, Maria Hellqvist. „Cloning and characterization of FREACs, human forkhead transcription factors“. Göteborg : Dept. of Cell and Molecular Biology, Göteborg University, 1997. http://catalog.hathitrust.org/api/volumes/oclc/39751934.html.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Chanapai, Seni. „Photocontrol of artificial transcription factors“. Thesis, Cardiff University, 2013. http://orca.cf.ac.uk/58014/.

Der volle Inhalt der Quelle
Annotation:
The design of a photoswitchable homeodomain artificial transcription factor (PATF), modelled on an engrailed homeodomain, for the purpose of controlling DNA binding affinity and controlling the transcription process in cells using light has been investigated. This study was conducted using a 3,3’-bis(sulfo)- 4,4’bis(chloroacetamino)azobenzene crosslinker, alkylated between two cysteine residues with different spacings (i, i+4, i, i+7 and i, i+11) and either a rigid or flexible linker domain. In previous studies, basic leucine zipper transcription activators have been photocontrolled in living cells by incorporating a photoswitchable azobenzene crosslinker. Circular dichroism spectroscopy showed the conformation of crosslinked PATF (XLPATF) peptides (i, i+11 spacing) containing rigid and flexible linkers could be controlled reversibly by light. Fluorescence anisotropy experiments using labelled DNA confirmed the in vitro DNA binding affinity of PATF was considerably higher with the crosslinker in the trans (ground state) configuration than in the cis (photoexcited state) configuration. Further studies of peptides with i, i+4 and i, i+7 spacings with a semirigid and rigid linker domains showed increased binding affinity with the crosslinker in the cis configuration. Initiation of transcription was investigated by an in vitro transcription assay to measure the ability of PATF molecules to moderate the production of RNA by irradiation with UV light. PATF molecules with i, i+11 spacings showed increased transcriptional activation with the crosslinker in the ground state configuration and i, i+4 and i, i+7 spacings resulted in increased transcription activation with the crosslinker in the excited state conformation. Control of 50% of transcriptional activity was achieved for i, i+11 v spacings, and PATFs with a rigid linker domain were more effective switches than those with flexible linkers. Using i, i+4 and i, i+7 spacings in PATFs resulted in a lower degree of control but, as anticipated, transcriptional activation was increased after irradiation.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Mekala, Vijaya Krishna Wysocka-Diller Joanna. „Isolation and characterization of Scarecrow suppressor mutants in Arabidopsis thaliana“. Auburn, Ala, 2008. http://repo.lib.auburn.edu/EtdRoot/2008/FALL/Biological_Sciences/Thesis/Mekala_Vijaya_18.pdf.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Ching, Chi-yun Johannes, und 程子忻. „Transcriptional regulation of p16INK4a expression by the forkhead box transcription factor FOXM1“. Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2003. http://hub.hku.hk/bib/B29466192.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Bücher zum Thema "Transcription factors"

1

Ravid, Katya, und Jonathan D. Licht, Hrsg. Transcription Factors. New York, USA: John Wiley & Sons, Inc., 2000. http://dx.doi.org/10.1002/0471223883.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Gossen, Manfred, Jörg Kaufmann und Steven J. Triezenberg, Hrsg. Transcription Factors. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-642-18932-6.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Higgins, Paul J., Hrsg. Transcription Factors. Totowa, NJ: Humana Press, 2010. http://dx.doi.org/10.1007/978-1-60761-738-9.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

1947-, Locker Joseph, Hrsg. Transcription factors. Oxford: BIOS, 2001.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Yamaguchi, Nobutoshi, Hrsg. Plant Transcription Factors. New York, NY: Springer New York, 2018. http://dx.doi.org/10.1007/978-1-4939-8657-6.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Link, Wolfgang, Hrsg. FOXO Transcription Factors. New York, NY: Springer New York, 2019. http://dx.doi.org/10.1007/978-1-4939-8900-3.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Yuan, Ling, und Sharyn E. Perry, Hrsg. Plant Transcription Factors. Totowa, NJ: Humana Press, 2011. http://dx.doi.org/10.1007/978-1-61779-154-3.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Maiese, Kenneth, Hrsg. Forkhead Transcription Factors. New York, NY: Springer New York, 2010. http://dx.doi.org/10.1007/978-1-4419-1599-3.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Latchman, David S. Eukaryotic transcription factors. 5. Aufl. Great Britain: Academic Press, 2008.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Latchman, David S. Eukaryotic transcription factors. 5. Aufl. Amsterdam: Elsevier/Academic Press, 2008.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Buchteile zum Thema "Transcription factors"

1

Herrera, F. J., D. D. Shooltz und S. J. Triezenberg. „Mechanisms of Transcriptional Activation in Eukaryotes“. In Transcription Factors, 3–31. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-642-18932-6_1.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Sheen, J. H., und R. B. Dickson. „c-Myc in Cellular Transformation and Cancer“. In Transcription Factors, 309–23. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-642-18932-6_10.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Lasar, A., R. Marienfeld, T. Wirth und B. Baumann. „NF-κB: Critical Regulator of Inflammation and the Immune Response“. In Transcription Factors, 325–76. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-642-18932-6_11.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Kumar, V., und D. P. Sarkar. „Hepatitis B Virus X Protein: Structure-Function Relationships and Role in Viral Pathogenesis“. In Transcription Factors, 377–407. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-642-18932-6_12.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Pascussi, J. M., Z. Dvorák, S. Gerbal-Chaloin, E. Assenat, L. Drocourt, P. Maurel und M. J. Vilarem. „Regulation of Xenobiotic Detoxification by PXR, CAR, GR, VDR and SHP Receptors: Consequences in Physiology“. In Transcription Factors, 409–35. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-642-18932-6_13.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Morishita, R., N. Tomita, Y. Kaneda und T. Ogihara. „Potential of Transcription Factor Decoy Oligonucleotides as Therapeutic Approach“. In Transcription Factors, 439–53. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-642-18932-6_14.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Klinge, C. M. „Selective Estrogen Receptor Modulators as Therapeutic Agents in Breast Cancer Treatment“. In Transcription Factors, 455–90. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-642-18932-6_15.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Corbi, N., V. Libri und C. Passananti. „Artificial Zinc Finger Peptides: A Promising Tool in Biotechnology and Medicine“. In Transcription Factors, 491–507. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-642-18932-6_16.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Bohl, D., und J. M. Heard. „Tetracycline-Controlled Transactivators and Their Potential Use in Gene Therapy Applications“. In Transcription Factors, 509–33. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-642-18932-6_17.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Mapp, A. K., A. Z. Ansari, Z. Wu und Z. Lu. „Modulating Transcription with Artificial Regulators“. In Transcription Factors, 535–71. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-642-18932-6_18.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Konferenzberichte zum Thema "Transcription factors"

1

Tsai, Zing Tsung-Yeh, Grace Tzu-Wei Huang und Huai-Kuang Tsai. „Simultaneous Identification for Synergistic Transcription Factors and their Transcription Factor Binding Sites“. In 2011 International Conference on Complex, Intelligent and Software Intensive Systems (CISIS). IEEE, 2011. http://dx.doi.org/10.1109/cisis.2011.90.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

„Neuronal transcription factors in lifespan control“. In Bioinformatics of Genome Regulation and Structure/ Systems Biology. institute of cytology and genetics siberian branch of the russian academy of science, Novosibirsk State University, 2020. http://dx.doi.org/10.18699/bgrs/sb-2020-405.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Shetty, Shruthi, Hartmut Helmke, Matthias Kleinert und Oliver Ohneiser. „Early Callsign Highlighting using Automatic Speech Recognition to Reduce Air Traffic Controller Workload“. In 13th International Conference on Applied Human Factors and Ergonomics (AHFE 2022). AHFE International, 2022. http://dx.doi.org/10.54941/ahfe1002493.

Der volle Inhalt der Quelle
Annotation:
The primary task of an air traffic controller (ATCo) is to issue instructions to pi-lots. However, the first verbal communication contact is often initiated by the pi-lot. Hence, the ATCo needs to search for the aircraft radar label that corresponds to the callsign uttered by the pilot. Therefore, it would be useful to have a control-ler assistance system, which recognizes and highlights the spoken callsign in the ATCo display as early as possible, directly from the speech data. Therefore, we propose to use an automatic speech recognition (ASR) system to first obtain the speech-to-text transcription, followed by extracting the spoken callsign from the transcription. As a high performance in callsign recognition is required, we use surveillance data, which significantly reduces callsign recognition error rates. When using ASR transcriptions for ATCo utterances of Isavia data (HAAWAII project ), we initially obtain a callsign recognition error rate of 6.2%, which im-proves to 2.8% when surveillance data information is used.For the ATC operational speech data obtained from NATS air navigation service provider for London approach area, currently we obtain a callsign recognition rate of 93.8% for both ATCo and pilot utterances on automatic transcriptions which are generated by an ASR system with a word error rate of 5.1%. However, when surveillance data is not used, the callsign recognition rate drops significantly to 82.7%, indicating the importance of using surveillance data while recognizing callsigns. Once the callsign is spoken, we are able to recognize it within a second, which would be of great value to ATCos especially in situations of high traffic constituting high workload.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Verdine, Gregory L. „Abstract IA1-2: Drugging oncogenic transcription factors“. In Abstracts: AACR International Conference on Translational Cancer Medicine-- Jul 11-14, 2010; San Francisco, CA. American Association for Cancer Research, 2010. http://dx.doi.org/10.1158/1078-0432.tcmusa10-ia1-2.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Wang, Lei, Yao Sun und Yao Li. „Research Advances of AP2/ERF Transcription Factors“. In 2017 2nd International Conference on Biological Sciences and Technology (BST 2017). Paris, France: Atlantis Press, 2018. http://dx.doi.org/10.2991/bst-17.2018.4.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Chen, Tianlai, und Zihong Chen. „The Inhibition of ZN Finger Transcription Factors“. In BIC 2021: 2021 International Conference on Bioinformatics and Intelligent Computing. New York, NY, USA: ACM, 2021. http://dx.doi.org/10.1145/3448748.3448770.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Chen, Kok Siong, Linda J. Richards und Jens Bunt. „Abstract 3536: The role of Nuclear factor I transcription factors in glioma“. In Proceedings: AACR Annual Meeting 2017; April 1-5, 2017; Washington, DC. American Association for Cancer Research, 2017. http://dx.doi.org/10.1158/1538-7445.am2017-3536.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Hussain, T., und O. Kayser. „Identification of transcription factors from Radula marginata TAYLOR“. In 67th International Congress and Annual Meeting of the Society for Medicinal Plant and Natural Product Research (GA) in cooperation with the French Society of Pharmacognosy AFERP. © Georg Thieme Verlag KG, 2019. http://dx.doi.org/10.1055/s-0039-3399661.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Yang, Wei-Hsiung, Chiung-Min Wang und William Yang. „Abstract 310A: Transcription factors FOXP3 regulate ATF3 expression“. In Proceedings: AACR Annual Meeting 2020; April 27-28, 2020 and June 22-24, 2020; Philadelphia, PA. American Association for Cancer Research, 2020. http://dx.doi.org/10.1158/1538-7445.am2020-310a.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Wu, Xu. „Abstract IA12: Targeting autopalmitoylation of TEAD transcription factors“. In Abstracts: AACR Special Conference on the Hippo Pathway: Signaling, Cancer, and Beyond; May 8-11, 2019; San Diego, CA. American Association for Cancer Research, 2020. http://dx.doi.org/10.1158/1557-3125.hippo19-ia12.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Berichte der Organisationen zum Thema "Transcription factors"

1

Michelotti, Julia M. Identification of Mammary Specific Transcription Factors. Fort Belvoir, VA: Defense Technical Information Center, Oktober 1995. http://dx.doi.org/10.21236/ada303179.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Sederoff, Ronald, Ross Whetten, David O'Malley und Malcolm Campbell. Transcription Factors in Xylem Development. Final report. Office of Scientific and Technical Information (OSTI), Juli 1999. http://dx.doi.org/10.2172/760586.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Pichersky, Eran, Alexander Vainstein und Natalia Dudareva. Scent biosynthesis in petunia flowers under normal and adverse environmental conditions. United States Department of Agriculture, Januar 2014. http://dx.doi.org/10.32747/2014.7699859.bard.

Der volle Inhalt der Quelle
Annotation:
The ability of flowering plants to prosper throughout evolution, and for many crop plants to set fruit, is strongly dependent on their ability to attract pollinators. To that end many plants synthesize a spectrum of volatile compounds in their flowers. Scent is a highly dynamic trait that is strongly influenced by the environment. However, with high temperature conditions becoming more common, the molecular interplay between this type of stress and scent biosynthesis need to be investigated. Using petunia as a model system, our project had three objectives: (1) Determine the expression patterns of genes encoding biosynthetic scent genes (BSGs) and of several genes previously identified as encoding transcription factors involved in scent regulation under normal and elevated temperature conditions. (2) Examine the function of petunia transcription factors and a heterologous transcription factor, PAPl, in regulating genes of the phenylpropanoid/benzenoid scent pathway. (3) Study the mechanism of transcriptional regulation by several petunia transcription factors and PAPl of scent genes under normal and elevated temperature conditions by examining the interactions between these transcription factors and the promoters of target genes. Our work accomplished the first two goals but was unable to complete the third goal because of lack of time and resources. Our general finding was that when plants grew at higher temperatures (28C day/22C night, vs. 22C/16C), their scent emission decreased in general, with the exception of a few volatiles such as vanillin. To understand why, we looked at gene transcription levels, and saw that generally there was a good correlation between levels of transcriptions of gene specifying enzymes for specific scent compounds and levels of emission of the corresponding scent compounds. Enzyme activity levels, however, showed little difference between plants growing at different temperature regimes. Plants expressing the heterologous gene PAPl showed general increase in scent emission in control temperature conditions but emission decreased at the higher temperature conditions, as seen for control plants. Finally, expression of several transcription factor genes decreased at high temperature, but expression of new transcription factor, EOB-V, increased, implicating it in the decrease of transcription of BSGs. The major conclusion of this work is that high temperature conditions negatively affect scent emission from plants, but that some genetic engineering approaches could ameliorate this problem.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Arazi, Tzahi, Vivian Irish und Asaph Aharoni. Micro RNA Targeted Transcription Factors for Fruit Quality Improvement. United States Department of Agriculture, Juli 2008. http://dx.doi.org/10.32747/2008.7592651.bard.

Der volle Inhalt der Quelle
Annotation:
Fruits are unique to flowering plants and represent an important component of human and animal diets. Development and maturation of tomato fruit is a well-programmed process, and yet, only a limited number of factors involved in its regulation have been characterized. Micro-RNAs (miRNAs) are small, endogenous RNAs that regulate gene expression in animals and plants. Plant miRNAs have a vital role in the generation of plant forms through post-transcriptional regulation of the accumulation of developmental regulators, especially transcription factors. Recently, we and others have demonstrated that miRNAs and other type of small RNAs are expressed in tomato fruit, and target putative transcription factors during its development and maturation. The original objectives of the approved proposal were: 1. To identify fruit miRNA transcription factor target genes through a bioinformatic approach. 2. To identify fruit miRNA transcription factor target genes up-regulated in tomato Dicer-like 1 silenced fruit. 3. To establish the biological functions of selected transcription factors and examine their utility for improving fleshy fruit quality trait. This project was approved by BARD as a feasibility study to allow initial experiments to peruse objective 2 as described above in order to provide initial evidence that miRNAs do play a role in fruit development. The approach planned to achieve objective 2, namely to identify miRNA transcription factor targets was to clone and silence the expression of a tomato DCL1 homolog in different stages of fruit development and examine alterations to gene expression in such a fruit in order to identify pathways and target genes that are regulated by miRNA via DCL1. In parallel, we characterized two transcription factors that are regulated by miRNAs in the fruit. We report here on the cloning of tomato DCL1 homolog, characterization of its expression in fruit flesh and peel of wild type and ripening mutants and generation of transgenic plants that silence SlDCL1 specifically in the fruit. Our results suggest that the tomato homolog of DCL1, which is the major plant enzyme involved in miRNA biogenesis, is present in fruit flesh and peel and differentially expressed during various stages of fruit development. In addition, its expression is altered in ripening mutants. We also report on the cloning and expression analysis of Sl_SBP and Sl_ARF transcription factors, which serve as targets of miR157 and miR160, respectively. Our data suggest that Sl_SBP levels are highest during fruit ripening supporting a role for this gene in that process. On the other hand Sl_ARF is strongly expressed in green fruit up to breaker indicating a role for that gene at preripening stage which is consistent with preliminary in_situ analyses that suggest expression in ovules of immature green fruit. The results of this feasibility study together with our previous results that miRNAs are expressed in the fruit indeed provide initial evidence that these regulators and their targets play roles in fruit development and ripening. These genes are expected to provide novel means for genetic improvement of tomato fleshy fruit.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Iyer, Vishwanath R. Genome-Wide Chromosomal Targets of Oncogenic Transcription Factors. Fort Belvoir, VA: Defense Technical Information Center, April 2005. http://dx.doi.org/10.21236/ada436905.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Iyer, Vishwanath R. Genome-Wide Chromosomal Targets of Oncogenic Transcription Factors. Fort Belvoir, VA: Defense Technical Information Center, April 2008. http://dx.doi.org/10.21236/ada485280.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Lyer, Vishwanath R. Genome-Wide Chromosomal Targets of Oncogenic Transcription Factors. Fort Belvoir, VA: Defense Technical Information Center, April 2006. http://dx.doi.org/10.21236/ada455791.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Lyer, Vishwanath R. Genome-Wide Chromosomal Targets of Oncogenic Transcription Factors. Fort Belvoir, VA: Defense Technical Information Center, April 2007. http://dx.doi.org/10.21236/ada470576.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Grotewold, Erich. Engineering phenolics metabolism in the grasses using transcription factors. Office of Scientific and Technical Information (OSTI), Juli 2013. http://dx.doi.org/10.2172/1088660.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Sessa, Guido, und Gregory Martin. Role of GRAS Transcription Factors in Tomato Disease Resistance and Basal Defense. United States Department of Agriculture, 2005. http://dx.doi.org/10.32747/2005.7696520.bard.

Der volle Inhalt der Quelle
Annotation:
The research problem: Bacterial spot and bacterial speck diseases of tomato are causedby strains of Xanthomonas campestris pv. vesicatoria (Xcv) and Pseudomonas syringae pv.tomato (Pst), respectively. These bacteria colonize aerial parts of the plant and causesignificant losses in tomato production worldwide. Protection against Xcv and Pst bycultural practices or chemical control has been unsuccessful and there are only limitedsources of genetic resistance to these pathogens. In previous research supported in part byBARD IS-3237-01, we extensively characterized changes in tomato gene expression uponthe onset of spot and speck disease resistance. A remarkable finding of these studies wasthe inducibility in tomato leaves by both Xcv and Pst strains of genes encodingtranscriptional activator of the GRAS family, which has not been previously linked todisease resistance. Goals: Central goals of this research were to investigate the role of GRAS genes in tomatoinnate immunity and to assess their potential use for disease control.Specific objectives were to: 1. Identify GRAS genes that are induced in tomato during thedefense response and analyze their role in disease resistance by loss-of-function experiments.2. Overexpress GRAS genes in tomato and characterize plants for possible broad-spectrumresistance. 3. Identify genes whose transcription is regulated by GRAS family. Our main achievements during this research program are in three major areas:1. Identification of tomato GRAS family members induced in defense responses andanalysis of their role in disease resistance. Genes encoding tomato GRAS family memberswere retrieved from databases and analyzed for their inducibility by Pst avirulent bacteria.Real-time RT-PCR analysis revealed that six SlGRAS transcripts are induced during theonset of disease resistance to Pst. Further expression analysis of two selected GRAS genesshowed that they accumulate in tomato plants in response to different avirulent bacteria orto the fungal elicitor EIX. In addition, eight SlGRAS genes, including the Pst-induciblefamily members, were induced by mechanical stress in part in a jasmonic acid-dependentmanner. Remarkably, SlGRAS6 gene was found to be required for tomato resistance to Pstin virus-induced gene silencing (VIGS) experiments.2. Molecular analysis of pathogen-induced GRAS transcriptional activators. In aheterologous yeast system, Pst-inducible GRAS genes were shown to have the ability toactivate transcription in agreement with their putative function of transcription factors. Inaddition, deletion analysis demonstrated that short sequences at the amino-terminus ofSlGRAS2, SlGRAS4 and SlGRAS6 are sufficient for transcriptional activation. Finally,defense-related SlGRAS proteins were found to localize to the cell nucleus. 3. Disease resistance and expression profiles of transgenic plants overexpressing SlGRASgenes. Transgenic plants overexpressing SlGRAS3 or SlGRAS6 were generated. Diseasesusceptibility tests revealed that these plants are not more resistant to Pst than wild-typeplants. Gene expression profiles of the overexpressing plants identified putative direct orindirect target genes regulated by SlGRAS3 and SlGRAS6. Scientific and agricultural significance: Our research activities established a novel linkbetween the GRAS family of transcription factors, plant disease resistance and mechanicalstress response. SlGRAS6 was found to be required for disease resistance to Pstsuggesting that this and possibly other GRAS family members are involved in thetranscriptional reprogramming that takes place during the onset of disease resistance.Their nuclear localization and transcriptional activation ability support their proposed roleas transcription factors or co-activators. However, the potential of utilizing GRAS familymembers for the improvement of plant disease resistance in agriculture has yet to bedemonstrated.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Wir bieten Rabatte auf alle Premium-Pläne für Autoren, deren Werke in thematische Literatursammlungen aufgenommen wurden. Kontaktieren Sie uns, um einen einzigartigen Promo-Code zu erhalten!

Zur Bibliographie