Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Topology“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Topology" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Topology"
Widodo, Charles, Marchellius Yana und Halim Agung. „IMPLEMENTASI TOPOLOGI HYBRID UNTUK PENGOPTIMALAN APLIKASI EDMS PADA PROJECT OFFICE PT PHE ONWJ“. JURNAL TEKNIK INFORMATIKA 11, Nr. 1 (04.05.2018): 19–30. http://dx.doi.org/10.15408/jti.v11i1.6472.
Der volle Inhalt der QuelleSukriyah, Dewi. „MATRIKS KETERHUBUNGAN LANGSUNG TOPOLOGI HINGGA“. JEDMA Jurnal Edukasi Matematika 1, Nr. 1 (30.07.2020): 37–43. http://dx.doi.org/10.51836/jedma.v1i1.125.
Der volle Inhalt der QuelleParinyataramas, Jamreonta, Sakuntam Sanorpim, Chanchana Thanachayanont, Hiroyaki Yaguchi und Misao Orihara. „TEM Analysis of Structural Phase Transition in MBE Grown Cubic InN on MgO (001) by MBE: Effect of Hexagonal Phase Inclusion in an C-Gan Nucleation Layer“. Applied Mechanics and Materials 229-231 (November 2012): 219–22. http://dx.doi.org/10.4028/www.scientific.net/amm.229-231.219.
Der volle Inhalt der QuelleMosafaie, Razieh, und Reza Sabbaghi-Nadooshan. „Using Dbcupe Topology for NoCs“. Applied Mechanics and Materials 229-231 (November 2012): 2741–44. http://dx.doi.org/10.4028/www.scientific.net/amm.229-231.2741.
Der volle Inhalt der QuelleAli, Iman Abbas, und Asmhan Flieh Hassan. „The Independent Incompatible Edges Topology on Di-graphs“. Journal of Physics: Conference Series 2322, Nr. 1 (01.08.2022): 012010. http://dx.doi.org/10.1088/1742-6596/2322/1/012010.
Der volle Inhalt der QuelleEL-MONSEF, M. E. ABD, A. M. KOZAE und A. A. ABO KHADRA. „CO-RS-COMPACT TOPOLOGIES“. Tamkang Journal of Mathematics 24, Nr. 3 (01.09.1993): 323–32. http://dx.doi.org/10.5556/j.tkjm.24.1993.4504.
Der volle Inhalt der QuelleBendsoe, Martin P. „Multidisciplinary Topology Optimization“. Proceedings of The Computational Mechanics Conference 2006.19 (2006): 1. http://dx.doi.org/10.1299/jsmecmd.2006.19.1.
Der volle Inhalt der QuelleSUSANA, RATNA, FEBRIAN HADIATNA und APRIANTI GUSMANTINI. „Sistem Multihop Jaringan Sensor Nirkabel pada Media Transmisi Wi-Fi“. ELKOMIKA: Jurnal Teknik Energi Elektrik, Teknik Telekomunikasi, & Teknik Elektronika 9, Nr. 1 (22.01.2021): 232. http://dx.doi.org/10.26760/elkomika.v9i1.232.
Der volle Inhalt der QuelleARYANTA, DWI, ARSYAD RAMADHAN DARLIS und DIMAS PRIYAMBODHO. „Analisis Kinerja EIGRP dan OSPF pada Topologi Ring dan Mesh“. ELKOMIKA: Jurnal Teknik Energi Elektrik, Teknik Telekomunikasi, & Teknik Elektronika 2, Nr. 1 (01.01.2014): 53. http://dx.doi.org/10.26760/elkomika.v2i1.53.
Der volle Inhalt der QuelleROY, MARIO, HIROKI SUMI und MARIUSZ URBAŃSKI. „Lambda-topology versus pointwise topology“. Ergodic Theory and Dynamical Systems 29, Nr. 2 (April 2009): 685–713. http://dx.doi.org/10.1017/s0143385708080292.
Der volle Inhalt der QuelleDissertationen zum Thema "Topology"
Melin, Erik. „Digitization in Khalimsky spaces /“. Uppsala, 2004. http://www.math.uu.se/research/pub/Melin6.pdf.
Der volle Inhalt der QuelleDutra, Aline Cristina Bertoncelo [UNESP]. „Grupo topológico“. Universidade Estadual Paulista (UNESP), 2011. http://hdl.handle.net/11449/94331.
Der volle Inhalt der QuelleNeste trabalho tratamos do objeto matemático Grupo Topológico. Para este desenvolvimento, abordamos elementos básicos de Grupo e Espaço Topológico
In this work we consider the mathematical object Topological Group. For this development, we discuss the basic elements of the Group and Topological Space
Paul, Emmanuel. „Formes logarithmiques fermées à pôles sur un diviseur a croisements normaux et classification topologique des germes de formes logarithmiques génériques de C [exposant] n“. Toulouse 3, 1987. http://www.theses.fr/1987TOU30107.
Der volle Inhalt der QuelleDutra, Aline Cristina Bertoncelo. „Grupo topológico /“. Rio Claro : [s.n.], 2011. http://hdl.handle.net/11449/94331.
Der volle Inhalt der QuelleBanca: Edivaldo Lopes da Silva
Banca: João Peres Vieira
Resumo: Neste trabalho tratamos do objeto matemático Grupo Topológico. Para este desenvolvimento, abordamos elementos básicos de Grupo e Espaço Topológico
Abstract: In this work we consider the mathematical object Topological Group. For this development, we discuss the basic elements of the Group and Topological Space
Mestre
Liu, Zhiyong Michael. „Mapping physical topology with logical topology using genetic algorithm“. Thesis, National Library of Canada = Bibliothèque nationale du Canada, 2001. http://www.collectionscanada.ca/obj/s4/f2/dsk3/ftp04/MQ62245.pdf.
Der volle Inhalt der QuelleJin, Xing. „Topology inference and tree construction for topology-aware overlay streaming /“. View abstract or full-text, 2007. http://library.ust.hk/cgi/db/thesis.pl?CSED%202007%20JIN.
Der volle Inhalt der QuelleRajendra, Prasad Gunda, Kumar Thenmatam Ajay und Rao Kurapati Srinivasa. „Reconfigurable Backplane Topology“. Thesis, Halmstad University, School of Information Science, Computer and Electrical Engineering (IDE), 2006. http://urn.kb.se/resolve?urn=urn:nbn:se:hh:diva-289.
Der volle Inhalt der QuelleIn the field of embedded computer and communication systems, the demands for the
interconnection networks are increasing rapidly. To satisfy these demands much advancement has
been made at the chip level as well as at the system level and still the research works are going
on, to make the interconnection networks more flexible to satisfy the demands of the real-time
applications.
This thesis mainly focuses on the interconnection between the nodes in an embedded system via a
reconfigurable backplane. To satisfy the project goals, an algorithm is written for the
reconfigurable topology that changes according to the given traffic specification like throughput.
Initially the connections are established between pairs of nodes according to the given throughput
demands. By establishing all the connections, a topology is formed. Then a possible path is
chosen for traversing the data from source to destination nodes. Later the algorithm is
implemented by simulation and the results are shown in a tabular form. Through some application
examples, we both identify problems with the algorithm and propose an improvement to deal
with such problems.
Brekke, Birger. „Topology and Data“. Thesis, Norwegian University of Science and Technology, Department of Mathematical Sciences, 2010. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-10030.
Der volle Inhalt der QuelleIn the last years, there has been done research in using topology as a new tool for studying data sets, typically high dimensional data. These studies have brought new methods for qualitative analysis, simplification, and visualization of high dimensional data sets. One good example, where these methods are useful, is in the study of microarray data (DNA data). To be able to use these methods, one needs to acquire knowledge of different topics in topology. In this paper we introduce simplicial homology, persistent homology, Mapper, and some simplicial complex constructions.
Brekke, Øyvind. „Topology and Data“. Thesis, Norwegian University of Science and Technology, Department of Mathematical Sciences, 2010. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-10037.
Der volle Inhalt der QuelleToday there is an immense production of data, and the need for better methods to analyze data is ever increasing. Topology has many features and good ideas which seem favourable in analyzing certain datasets where statistics is starting to have problems. For example, we see this in datasets originating from microarray experiments. However, topological methods cannot be directly applied on finite point sets coming from such data, or atleast it will not say anything interesting. So, we have to modify the data sets in some way such that we can work on them with the topological machinery. This way of applying topology may be viewed as a kind of discrete version of topology. In this thesis we present some ways to construct simplicial complexes from a finite point cloud, in an attempt to model the underlying space. Together with simplicial homology and persistent homology and barcodes, we obtain a tool to uncover topological features in finite point clouds. This theory is tested with a Java software package called JPlex, which is an implementation of these ideas. Lastly, a method called Mapper is covered. This is also a method for creating simplicial complexes from a finite point cloud. However, Mapper is mostly used to create low dimensional simplicial complexes that can be easily visualized, and structures are then detected this way. An implementation of the Mapper method is also tested on a self made data set.
Chalcraft, David Adam. „Low-dimensional topology“. Thesis, University of Cambridge, 1991. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.386938.
Der volle Inhalt der QuelleBücher zum Thema "Topology"
Hocking, John G. Topology. New York: Dover Publications, 1988.
Den vollen Inhalt der Quelle findenKulpa, Władysław. Topologia a ekonomia: Topology and economics. Warszawa: Wydawnictwo Uniwersytetu Kardynała Stefana Wyszyńskiego, 2010.
Den vollen Inhalt der Quelle findenParthasarathy, K. Topology. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-16-9484-4.
Der volle Inhalt der QuelleWaldmann, Stefan. Topology. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-09680-3.
Der volle Inhalt der QuelleShick, Paul L. Topology. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2007. http://dx.doi.org/10.1002/9781118031582.
Der volle Inhalt der QuelleManetti, Marco. Topology. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-16958-3.
Der volle Inhalt der QuelleMunkres, James R. Topology. 2. Aufl. Upper Saddle River, NJ: Prentice Hall/Pearson, 2000.
Den vollen Inhalt der Quelle findenMunkres, James R. Topology. 2. Aufl. New Delhi: Prentice-Hall of India, 2004.
Den vollen Inhalt der Quelle findenMunkres, James R. Topology. 2. Aufl. Upper Saddle River, NJ: Prentice Hall, Inc., 2000.
Den vollen Inhalt der Quelle findenDavis, Sheldon W. Topology. Boston: McGraw-Hill Higher Education, 2005.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Topology"
Berberian, Sterling K. „Topology“. In Fundamentals of Real Analysis, 115–47. New York, NY: Springer New York, 1999. http://dx.doi.org/10.1007/978-1-4612-0549-4_3.
Der volle Inhalt der QuelleBrowder, Andrew. „Topology“. In Mathematical Analysis, 123–54. New York, NY: Springer New York, 1996. http://dx.doi.org/10.1007/978-1-4612-0715-3_6.
Der volle Inhalt der QuelleŁojasiewicz, Stanisław. „Topology“. In Introduction to Complex Analytic Geometry, 72–97. Basel: Birkhäuser Basel, 1991. http://dx.doi.org/10.1007/978-3-0348-7617-9_2.
Der volle Inhalt der QuellePedersen, Steen. „Topology“. In From Calculus to Analysis, 281–95. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-13641-7_13.
Der volle Inhalt der QuelleStillwell, John. „Topology“. In Undergraduate Texts in Mathematics, 283–96. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-55193-3_15.
Der volle Inhalt der QuelleBongaarts, Peter. „Topology“. In Quantum Theory, 279–87. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-09561-5_18.
Der volle Inhalt der QuelleHarte, Robin. „Topology“. In SpringerBriefs in Mathematics, 27–38. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-05648-7_2.
Der volle Inhalt der QuelleJanßen, Martin. „Topology“. In Generated Dynamics of Markov and Quantum Processes, 127–45. Berlin, Heidelberg: Springer Berlin Heidelberg, 2016. http://dx.doi.org/10.1007/978-3-662-49696-1_7.
Der volle Inhalt der QuelleSmith, S. P. „Topology“. In Mathematical Tools for Physicists, 587–617. Weinheim, FRG: Wiley-VCH Verlag GmbH & Co. KGaA, 2006. http://dx.doi.org/10.1002/3527607773.ch17.
Der volle Inhalt der QuelleMarathe, Kishore. „Topology“. In Topics in Physical Mathematics, 33–71. London: Springer London, 2010. http://dx.doi.org/10.1007/978-1-84882-939-8_2.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Topology"
Misra, P. R., und M. Rajagopalan. „Tennessee Topology Conference“. In Tennessee Topology Conference. WORLD SCIENTIFIC, 1997. http://dx.doi.org/10.1142/9789814529167.
Der volle Inhalt der QuelleDovermann, Karl Heinz. „Topology Hawaii“. In Proceedings of the Topology Conference. WORLD SCIENTIFIC, 1992. http://dx.doi.org/10.1142/9789814538831.
Der volle Inhalt der QuelleFirmo, S., D. L. Gonçalves und O. Saeki. „XI Brazilian Topology Meeting“. In XI Brazilian Topology Meeting. WORLD SCIENTIFIC, 2000. http://dx.doi.org/10.1142/9789814527255.
Der volle Inhalt der QuelleLin, Tsau Young, Guilong Liu, Mihir K. Chakraborty und Dominik Slezak. „From topology to anti-reflexive topology“. In 2013 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE). IEEE, 2013. http://dx.doi.org/10.1109/fuzz-ieee.2013.6622580.
Der volle Inhalt der QuelleDagci, Fikriye Ince, und Huseyin Cakalli. „A new topology via a topology“. In 10TH INTERNATIONAL CONFERENCE ON APPLIED SCIENCE AND TECHNOLOGY. AIP Publishing, 2022. http://dx.doi.org/10.1063/5.0115543.
Der volle Inhalt der QuelleMorita, Shigeyuki. „Structure of the mapping class groups of surfaces: a survey and a prospect“. In Low Dimensional Topology -- The Kirbyfest. Mathematical Sciences Publishers, 1999. http://dx.doi.org/10.2140/gtm.1999.2.349.
Der volle Inhalt der QuelleCantwell, John, und Lawrence Conlon. „Foliation cones“. In Low Dimensional Topology -- The Kirbyfest. Mathematical Sciences Publishers, 1999. http://dx.doi.org/10.2140/gtm.1999.2.35.
Der volle Inhalt der QuelleQuinn, Frank. „Group categories and their field theories“. In Low Dimensional Topology -- The Kirbyfest. Mathematical Sciences Publishers, 1999. http://dx.doi.org/10.2140/gtm.1999.2.407.
Der volle Inhalt der QuelleRourke, Colin, und Brian Sanderson. „Homology stratifications and intersection homology“. In Low Dimensional Topology -- The Kirbyfest. Mathematical Sciences Publishers, 1999. http://dx.doi.org/10.2140/gtm.1999.2.455.
Der volle Inhalt der QuelleRuberman, Daniel. „A polynomial invariant of diffeomorphisms of 4–manifolds“. In Low Dimensional Topology -- The Kirbyfest. Mathematical Sciences Publishers, 1999. http://dx.doi.org/10.2140/gtm.1999.2.473.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Topology"
Bierman, A., und K. Jones. Physical Topology MIB. RFC Editor, September 2000. http://dx.doi.org/10.17487/rfc2922.
Der volle Inhalt der QuelleKalb, Jeffrey L., und David S. Lee. Network topology analysis. Office of Scientific and Technical Information (OSTI), Januar 2008. http://dx.doi.org/10.2172/1028919.
Der volle Inhalt der QuelleGuillen, Donna Post, und Lisa E. Mitchell. Cold Cap Bubble Topology. Office of Scientific and Technical Information (OSTI), April 2016. http://dx.doi.org/10.2172/1490045.
Der volle Inhalt der QuelleChen, H., R. Li, A. Retana, Y. Yang und Z. Liu. OSPF Topology-Transparent Zone. RFC Editor, Februar 2017. http://dx.doi.org/10.17487/rfc8099.
Der volle Inhalt der QuelleManning, William. Topology Based Domain Search (TBDS). Fort Belvoir, VA: Defense Technical Information Center, Juni 2002. http://dx.doi.org/10.21236/ada407598.
Der volle Inhalt der QuelleWallin, M., und D. A. Tortorelli. Topology optimization beyond linear elasticity. Office of Scientific and Technical Information (OSTI), August 2018. http://dx.doi.org/10.2172/1581880.
Der volle Inhalt der QuelleZhao, Q., K. Raza, C. Zhou, L. Fang, L. Li und D. King. LDP Extensions for Multi-Topology. RFC Editor, Juli 2014. http://dx.doi.org/10.17487/rfc7307.
Der volle Inhalt der QuelleVaradarajan, Uday. Geometry, topology, and string theory. Office of Scientific and Technical Information (OSTI), Januar 2003. http://dx.doi.org/10.2172/813395.
Der volle Inhalt der QuelleDelan, Mehson. Summer Internship Project: Set Topology. Office of Scientific and Technical Information (OSTI), August 2021. http://dx.doi.org/10.2172/1818087.
Der volle Inhalt der QuelleRobbins, Joshua, Ryan Alberdi und Brett Clark. Concurrent Shape and Topology Optimization. Office of Scientific and Technical Information (OSTI), September 2021. http://dx.doi.org/10.2172/1822279.
Der volle Inhalt der Quelle