Auswahl der wissenschaftlichen Literatur zum Thema „Topology“

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Topology" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Zeitschriftenartikel zum Thema "Topology"

1

Widodo, Charles, Marchellius Yana und Halim Agung. „IMPLEMENTASI TOPOLOGI HYBRID UNTUK PENGOPTIMALAN APLIKASI EDMS PADA PROJECT OFFICE PT PHE ONWJ“. JURNAL TEKNIK INFORMATIKA 11, Nr. 1 (04.05.2018): 19–30. http://dx.doi.org/10.15408/jti.v11i1.6472.

Der volle Inhalt der Quelle
Annotation:
ABSTRAK Penggunaan aplikasi EDMS di project office PT PHE ONWJ dinilai masih belum optimal karena masih lambat dalam pengunaan aplikasi EDMS. Oleh karena itu dilakukanlah penelitian ini dengan tujuan untuk mengoptimalkan jaringan yang digunakan untuk mengakses aplikasi EDMS pada project office PT PHE ONWJ. Pengoptimalan jaringan yang dimaksud adalah dengan membangun topologi di project office PT PHE ONWJ dan menerapkan metro sebagai perantara topologi star di project office dan topologi star dikantor pusat sehingga menciptakan topologi hybrid. Topologi hybrid yang dimaksud adalah penggabungan antara topologi star yang ada di jaringan pusat, metro sebagai perantara kantor pusat dengan project office PT PHE ONWJ dan topologi star yang akan dibangun di project office PT ONWJ. Diharapkan setelah menerapkan topologi yang telah dirancang dapat mengoptimalkan penggunaan aplikasi EDMS. Topologi star di project office PT ONWJ dan metro sebagai perantara 2 topologi kantor pusat dan project office menghasilkan topologi hybrid. Kesimpulan dari penelitian ini adalah penerapan topologi dalam jaringan dapat memberikan optimalisasi dibandingkan dengan tanpa menerapkan topologi. Hasil rata-rata ping saat pengaksesan aplikasi EDMS sebelum menerapkan topologi hybrid mendapatkan hasil sebesar 392,98 ms dan setelah menerapkan topologi hybrid mendapatkan hasil sebesar 143,50 ms, sehingga disimpulkan bahwa penerapan topologi hybrid lebih baik dalam menjalankan aplikasi EDMS. ABSTRACT The use of EDMS application in PT PHE ONWJ project office is considered not optimal because it is still slow in the use of EDMS applications. Therefore this study was conducted with the aim to optimize the network used to access the EDMS application on the PT PHE ONWJ project office. Network optimization in question is to build a topology in the project office of PT PHE ONWJ and apply the metro as an intermediate star topology in the project office and star topology at the headquarters so as to create a hybrid topology. Hybrid topology in question is a merger between the star topology in the central network, metro as an intermediary head office with PT PHE ONWJ project office and star topology to be built at PT ONWJ project office. It is expected that after applying the topology that has been designed to optimize the use of EDMS applications. Star topology in PT ONWJ project office and metro as intermediary 2 topology headquarters and project office produce hybrid topology. The conclusion of this research is application of topology in network can give optimization compared with without applying topology. The average result of ping when accessing EDMS application before applying hybrid topology got 392.98 ms result and after applying hybrid topology get result of 143,50 ms, so it is concluded that application of hybrid topology is better in running EDMS application. How To Cite : Widodo, C. Yana, M. Agung, H. (2018). IMPLEMENTASI TOPOLOGI HYBRID UNTUK PENGOPTIMALAN APLIKASI EDMS PADA PROJECT OFFICE PT PHE ONWJ. Jurnal Teknik Informatika, 11(1), 19-30. doi 10.15408/jti.v11i1.6472 Permalink/DOI: http://dx.doi.org/10.15408/jti.v11i1.6472
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Sukriyah, Dewi. „MATRIKS KETERHUBUNGAN LANGSUNG TOPOLOGI HINGGA“. JEDMA Jurnal Edukasi Matematika 1, Nr. 1 (30.07.2020): 37–43. http://dx.doi.org/10.51836/jedma.v1i1.125.

Der volle Inhalt der Quelle
Annotation:
Abtrak: Topologi merupakan cabang ilmu matematika yang mempelajari suatu struktur yang terdapat pada himpunan. Seperti halnya himpunan hingga yang memiliki kardinalitas, maka topologi hingga juga memiliki kardinalitas. Jika himpunan memiliki kardinalitas dan topologi pada S, maka kardinalitas dari yang dinotasikan dengan menyetakan banyaknya elemen dari . Jika topologi pada S, maka matriks keterhubungan langsung topologi adalah matriks berukuran yang dinotasikan dengan . Matriks merupakan matriks yang elemennya 0 atau 1. Kata Kunci: Himpunan, Kardinalitas, Matriks Keterhubungan Langsung, Topologi. Abstract: Topology is a branch of mathematics which study structures on a set. As a finite set, a finite topology have a cardinality. Let be a finite set with cardinality and let be a topology on S, then the cardinality of which denotes is the number of elements . If topology on S, then the corresponding matrix to a topology is a matrix which denoted by . is the matrix have element 0 or 1. Keywords: Cardinality, Set, The Corresponding Matrix, Topology,
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Parinyataramas, Jamreonta, Sakuntam Sanorpim, Chanchana Thanachayanont, Hiroyaki Yaguchi und Misao Orihara. „TEM Analysis of Structural Phase Transition in MBE Grown Cubic InN on MgO (001) by MBE: Effect of Hexagonal Phase Inclusion in an C-Gan Nucleation Layer“. Applied Mechanics and Materials 229-231 (November 2012): 219–22. http://dx.doi.org/10.4028/www.scientific.net/amm.229-231.219.

Der volle Inhalt der Quelle
Annotation:
In this paper, we introduced dbcube topology for Network-on Chips(NoC). We predicted the dbcube topology has high power and low latency comparing to other topologies, and in particular mesh topology. By using xmulator simulator,we compared power and latency of this topologyto mesh topology. Finally, it is demonstrated that the network has higher power and lower latency than the mesh topology.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Mosafaie, Razieh, und Reza Sabbaghi-Nadooshan. „Using Dbcupe Topology for NoCs“. Applied Mechanics and Materials 229-231 (November 2012): 2741–44. http://dx.doi.org/10.4028/www.scientific.net/amm.229-231.2741.

Der volle Inhalt der Quelle
Annotation:
In this paper, we introduced dbcube topology for Network-on Chips(NoC). We predicted the dbcube topology has high power and low latency comparing to other topologies, and in particular mesh topology. By using xmulator simulator,we compared power and latency of this topologyto mesh topology. Finally, it is demonstrated that the network has higher power and lower latency than the mesh topology.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Ali, Iman Abbas, und Asmhan Flieh Hassan. „The Independent Incompatible Edges Topology on Di-graphs“. Journal of Physics: Conference Series 2322, Nr. 1 (01.08.2022): 012010. http://dx.doi.org/10.1088/1742-6596/2322/1/012010.

Der volle Inhalt der Quelle
Annotation:
Abstract This sheet offers a novel topology for di-graphs termed independent incompatible edges topology, which creates the topology from the edges set 𝕶 for whatever di-graph. On edges 𝕶, a family of sub-basis is used for build the independent incompatible edges topology. After that, we look at assorted properties; explore the Independent Incompatible Edge Topology on some types of di-graphs. In addition, this topology’s some initial results were studied. Our objective is to understand several aspects of any di-graph using it is corresponding independent incompatible edges topology, the topology that is discussed in this paper.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

EL-MONSEF, M. E. ABD, A. M. KOZAE und A. A. ABO KHADRA. „CO-RS-COMPACT TOPOLOGIES“. Tamkang Journal of Mathematics 24, Nr. 3 (01.09.1993): 323–32. http://dx.doi.org/10.5556/j.tkjm.24.1993.4504.

Der volle Inhalt der Quelle
Annotation:
A topology $R(\tau)$ is contructed from a given topolgy $\tau$ on a set $X$ . $R(\tau)$ is coarser than $\tau$, and the following are some results based on this topology: 1. Continuity and RS-continuity are equivalent if the codomain is re­ topologized by $R(\tau)$. 2. The class of semi-open sets with respect to $R(\tau)$ is a topology. 3. $T_2$ and semi-$T_2$ properties are equivalent on a space whose topology is $R(\tau)$. 4. Minimal $R_0$-spaces are RS-compact:
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Bendsoe, Martin P. „Multidisciplinary Topology Optimization“. Proceedings of The Computational Mechanics Conference 2006.19 (2006): 1. http://dx.doi.org/10.1299/jsmecmd.2006.19.1.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

SUSANA, RATNA, FEBRIAN HADIATNA und APRIANTI GUSMANTINI. „Sistem Multihop Jaringan Sensor Nirkabel pada Media Transmisi Wi-Fi“. ELKOMIKA: Jurnal Teknik Energi Elektrik, Teknik Telekomunikasi, & Teknik Elektronika 9, Nr. 1 (22.01.2021): 232. http://dx.doi.org/10.26760/elkomika.v9i1.232.

Der volle Inhalt der Quelle
Annotation:
ABSTRAKDengan menerapkan sistem multihop pada jaringan sensor nirkabel, pembacaan kondisi lingkungan dapat dilakukan pada lingkungan yang lebih luas. Pada penelitian ini, sistem multihop jaringan sensor nirkabel menggunakan platform IoT NodeMCU V3 yang memiliki modul Wi-Fi ESP8266. Jumlah sensor node yang digunakan merupakan batas maksimal client yang dapat terhubung kepada Wi-Fi ESP8266, yaitu 1 sink node dan 4 sensor node. Sensor node akan mengirimkan datanya kepada sink node, kemudian data tersebut akan dikirimkan kepada website untuk ditampilkan pada dashboard Adafruit.io. Pengiriman data diuji menggunakan 2 topologi yaitu bus dan tree. Berdasarkan hasil pengujian, jarak maksimal pengiriman data pada topologi bus tanpa penghalang adalah 72 meter dengan delay pengiriman 64 detik dan topologi tree adalah 108 meter dengan delay pengiriman 14 detik. Sistem multihop pada topologi bus dan tree dapat mengirim data dengan 2 penghalang yang memiliki ketebalan 15 cm dengan delay pengiriman 29 detik pada topologi bus dan 14 detik pada topologi tree.Kata kunci: jaringan sensor nirkabel, multihop, Wi-Fi, NodeMCU V3 ABSTRACTBy applying a multihop system on wireless sensor network, reading environment condition can be done in wider environment. In this study, multihop system in wireless sensor network uses IoT NodeMCU V3 platform which has a Wi-Fi ESP8266 module. The amount of node sensor is the maximum limit of client which can be linked to Wi-Fi access point in Wi-Fi ESP8266 module, i.e 1 sink node and 4 sink node. The node sensor will transfer the data to the sink node, then the data will be transfered to the website to be shown on Adafruit.io dashboard. The transmission data is tested using 2 topologies, i.e bus and tree. Based on the test, the maximum distance of data transmission in bus topology without barrier is 72 meters with delivery delay which takes 64 seconds and in tree topology is 108 seconds with delivery delay which takes 14 seconds. The multihop system in the bus topology and the tree topology can send the data with 2 barriers which has 15 cm width and delivery delay among the nodes which takes 29 seconds in bus topology and 14 seconds in tree topology.Keywords: wireless sensor network, multihop, Wi-Fi, NodeMCU V3
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

ARYANTA, DWI, ARSYAD RAMADHAN DARLIS und DIMAS PRIYAMBODHO. „Analisis Kinerja EIGRP dan OSPF pada Topologi Ring dan Mesh“. ELKOMIKA: Jurnal Teknik Energi Elektrik, Teknik Telekomunikasi, & Teknik Elektronika 2, Nr. 1 (01.01.2014): 53. http://dx.doi.org/10.26760/elkomika.v2i1.53.

Der volle Inhalt der Quelle
Annotation:
ABSTRAKEIGRP (Enhanced Interior Gateway Routing Protocol) dan OSPF (Open Shortest Path Fisrt) adalah routing protokol yang banyak digunakan pada suatu jaringan komputer. EIGRP hanya dapat digunakan pada perangkat Merk CISCO, sedangkan OSPF dapat digunakan pada semua merk jaringan. Pada penelitian ini dibandingkan delay dan rute dari kedua routing protokol yang diimplementasikan pada topologi Ring dan Mesh. Cisco Packet Tracer 5.3 digunakan untuk mensimulasikan kedua routing protokol ini. Skenario pertama adalah perancangan jaringan kemudian dilakukan pengujian waktu delay 100 kali dalam 5 kasus. Skenario kedua dilakukan pengujian trace route untuk mengetahui jalur yang dilewati paket data lalu memutus link utama. Pada skenario kedua juga dilakukan perbandingan nilai metric dan cost hasil simulasi dengan perhitungan rumus. Skenario ketiga dilakukan pengujian waktu konvergensi untuk setiap routing protokol pada setiap topologi. Hasilnya EIGRP lebih cepat 386 µs daripada OSPF untuk topologi Ring sedangkan OSPF lebih cepat 453 µs daripada EIGRP untuk topologi Mesh. Hasil trace route menunjukan rute yang dipilih oleh routing protokol yaitu nilai metric dan cost yang terkecil. Waktu konvergensi rata-rata topologi Ring pada EIGRP sebesar 12,75 detik dan 34,5 detik pada OSPF sedangkan topologi Mesh di EIGRP sebesar 13 detik dan 35,25 detik di OSPF.Kata Kunci: EIGRP, OSPF, Packet Tracer 5.3, Ring, Mesh, KonvergensiABSTRACTEIGRP (Enhanced Interior Gateway Routing Protocol) and OSPF (Open Shortest Path Fisrt) is the routing protocol that is widely used in a computer network. EIGRP can only be used on devices Brand CISCO, while OSPF can be used on all brands of network. In this study comparison of both the delay and the routing protocol implemented on Ring and Mesh topology. Cisco Packet Tracer 5.3 is used to simulate both the routing protocol. The first scenario is the design of the network and then do the test of time delay 100 times in 5 cases. The second scenario tested trace route to determine the path of the data packet and then disconnect the main link. In the second scenario also conducted a cost comparison of metrics and the simulation results with the calculation formula. The third scenario testing time for each routing protocol convergence on any topology. The result EIGRP faster than 386 microseconds for a ring topology while OSPF OSPF 453 microseconds faster than EIGRP for Mesh topology. The results showed trace route chosen by the routing protocol metric value and cost is the smallest. Average convergence time in the EIGRP topology Ring of 12.75 seconds and 34.5 seconds, while the Mesh topology in an OSPF EIGRP for 13 seconds and 35.25 seconds in OSPF.Keywords: EIGRP,OSPF, Packet Tracer 5.3, Ring, Mesh, Convergence
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

ROY, MARIO, HIROKI SUMI und MARIUSZ URBAŃSKI. „Lambda-topology versus pointwise topology“. Ergodic Theory and Dynamical Systems 29, Nr. 2 (April 2009): 685–713. http://dx.doi.org/10.1017/s0143385708080292.

Der volle Inhalt der Quelle
Annotation:
AbstractThis paper deals with families of conformal iterated function systems (CIFSs). The space CIFS(X,I) of all CIFSs, with common seed space X and alphabet I, is successively endowed with the topology of pointwise convergence and the so-calledλ-topology. We show just how bad the topology of pointwise convergence is: although the Hausdorff dimension function is continuous on a dense Gδ-set, it is also discontinuous on a dense subset of CIFS(X,I). Moreover, all of the different types of systems (irregular, critically regular, etc.), have empty interior, have the whole space as boundary, and thus are dense in CIFS(X,I), which goes against intuition and conception of a natural topology on CIFS(X,I). We then prove how good the λ-topology is: Roy and Urbański [Regularity properties of Hausdorff dimension in infinite conformal IFSs. Ergod. Th. & Dynam. Sys.25(6) (2005), 1961–1983] have previously pointed out that the Hausdorff dimension function is then continuous everywhere on CIFS(X,I). We go further in this paper. We show that (almost) all of the different types of systems have natural topological properties. We also show that, despite not being metrizable (as it does not satisfy the first axiom of countability), the λ-topology makes the space CIFS(X,I) normal. Moreover, this space has no isolated points. We further prove that the conformal Gibbs measures and invariant Gibbs measures depend continuously on Φ∈CIFS(X,I) and on the parameter t of the potential and pressure functions. However, we demonstrate that the coding map and the closure of the limit set are discontinuous on an important subset of CIFS(X,I).
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Dissertationen zum Thema "Topology"

1

Melin, Erik. „Digitization in Khalimsky spaces /“. Uppsala, 2004. http://www.math.uu.se/research/pub/Melin6.pdf.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Dutra, Aline Cristina Bertoncelo [UNESP]. „Grupo topológico“. Universidade Estadual Paulista (UNESP), 2011. http://hdl.handle.net/11449/94331.

Der volle Inhalt der Quelle
Annotation:
Made available in DSpace on 2014-06-11T19:27:09Z (GMT). No. of bitstreams: 0 Previous issue date: 2011-11-10Bitstream added on 2014-06-13T18:30:56Z : No. of bitstreams: 1 dutra_acb_me_rcla.pdf: 707752 bytes, checksum: 003487414f094d392a97a22a4efb885b (MD5)
Neste trabalho tratamos do objeto matemático Grupo Topológico. Para este desenvolvimento, abordamos elementos básicos de Grupo e Espaço Topológico
In this work we consider the mathematical object Topological Group. For this development, we discuss the basic elements of the Group and Topological Space
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Paul, Emmanuel. „Formes logarithmiques fermées à pôles sur un diviseur a croisements normaux et classification topologique des germes de formes logarithmiques génériques de C [exposant] n“. Toulouse 3, 1987. http://www.theses.fr/1987TOU30107.

Der volle Inhalt der Quelle
Annotation:
Dans ce travail, on donne une description du feuilletage défini par une 1-forme logarithmique fermée, à poles sur un diviseur à croisements normaux. Le long de chaque strate du diviseur, il est localement trivial, ce qui nous permet de définir une notion de voisinage tubulaire adapté à cette forme. En exigeant de plus des conditions d'incidences entre ces différents voisinages tubulaires, nous obtenons une construction analogue à celle introduite par C. H. Clemens dans le cas des fonctions. Nous prouvons l'existence d'une telle "structure de Clemens adaptée" à la forme considérée, puis nous l'utilisons pour décrire la classification topologique des germes de formes logarithmiques génériques de c**(n). Nous nous ramenons à la situation considérée ci-dessus à l'aide d'une désingularisation des séparatrices de la forme.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Dutra, Aline Cristina Bertoncelo. „Grupo topológico /“. Rio Claro : [s.n.], 2011. http://hdl.handle.net/11449/94331.

Der volle Inhalt der Quelle
Annotation:
Orientador: Elíris Cristina Rizziolli
Banca: Edivaldo Lopes da Silva
Banca: João Peres Vieira
Resumo: Neste trabalho tratamos do objeto matemático Grupo Topológico. Para este desenvolvimento, abordamos elementos básicos de Grupo e Espaço Topológico
Abstract: In this work we consider the mathematical object Topological Group. For this development, we discuss the basic elements of the Group and Topological Space
Mestre
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Liu, Zhiyong Michael. „Mapping physical topology with logical topology using genetic algorithm“. Thesis, National Library of Canada = Bibliothèque nationale du Canada, 2001. http://www.collectionscanada.ca/obj/s4/f2/dsk3/ftp04/MQ62245.pdf.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Jin, Xing. „Topology inference and tree construction for topology-aware overlay streaming /“. View abstract or full-text, 2007. http://library.ust.hk/cgi/db/thesis.pl?CSED%202007%20JIN.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Rajendra, Prasad Gunda, Kumar Thenmatam Ajay und Rao Kurapati Srinivasa. „Reconfigurable Backplane Topology“. Thesis, Halmstad University, School of Information Science, Computer and Electrical Engineering (IDE), 2006. http://urn.kb.se/resolve?urn=urn:nbn:se:hh:diva-289.

Der volle Inhalt der Quelle
Annotation:

In the field of embedded computer and communication systems, the demands for the

interconnection networks are increasing rapidly. To satisfy these demands much advancement has

been made at the chip level as well as at the system level and still the research works are going

on, to make the interconnection networks more flexible to satisfy the demands of the real-time

applications.

This thesis mainly focuses on the interconnection between the nodes in an embedded system via a

reconfigurable backplane. To satisfy the project goals, an algorithm is written for the

reconfigurable topology that changes according to the given traffic specification like throughput.

Initially the connections are established between pairs of nodes according to the given throughput

demands. By establishing all the connections, a topology is formed. Then a possible path is

chosen for traversing the data from source to destination nodes. Later the algorithm is

implemented by simulation and the results are shown in a tabular form. Through some application

examples, we both identify problems with the algorithm and propose an improvement to deal

with such problems.

APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Brekke, Birger. „Topology and Data“. Thesis, Norwegian University of Science and Technology, Department of Mathematical Sciences, 2010. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-10030.

Der volle Inhalt der Quelle
Annotation:

In the last years, there has been done research in using topology as a new tool for studying data sets, typically high dimensional data. These studies have brought new methods for qualitative analysis, simplification, and visualization of high dimensional data sets. One good example, where these methods are useful, is in the study of microarray data (DNA data). To be able to use these methods, one needs to acquire knowledge of different topics in topology. In this paper we introduce simplicial homology, persistent homology, Mapper, and some simplicial complex constructions.

APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Brekke, Øyvind. „Topology and Data“. Thesis, Norwegian University of Science and Technology, Department of Mathematical Sciences, 2010. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-10037.

Der volle Inhalt der Quelle
Annotation:

Today there is an immense production of data, and the need for better methods to analyze data is ever increasing. Topology has many features and good ideas which seem favourable in analyzing certain datasets where statistics is starting to have problems. For example, we see this in datasets originating from microarray experiments. However, topological methods cannot be directly applied on finite point sets coming from such data, or atleast it will not say anything interesting. So, we have to modify the data sets in some way such that we can work on them with the topological machinery. This way of applying topology may be viewed as a kind of discrete version of topology. In this thesis we present some ways to construct simplicial complexes from a finite point cloud, in an attempt to model the underlying space. Together with simplicial homology and persistent homology and barcodes, we obtain a tool to uncover topological features in finite point clouds. This theory is tested with a Java software package called JPlex, which is an implementation of these ideas. Lastly, a method called Mapper is covered. This is also a method for creating simplicial complexes from a finite point cloud. However, Mapper is mostly used to create low dimensional simplicial complexes that can be easily visualized, and structures are then detected this way. An implementation of the Mapper method is also tested on a self made data set.

APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Chalcraft, David Adam. „Low-dimensional topology“. Thesis, University of Cambridge, 1991. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.386938.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Bücher zum Thema "Topology"

1

Hocking, John G. Topology. New York: Dover Publications, 1988.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Kulpa, Władysław. Topologia a ekonomia: Topology and economics. Warszawa: Wydawnictwo Uniwersytetu Kardynała Stefana Wyszyńskiego, 2010.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Parthasarathy, K. Topology. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-16-9484-4.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Waldmann, Stefan. Topology. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-09680-3.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Shick, Paul L. Topology. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2007. http://dx.doi.org/10.1002/9781118031582.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Manetti, Marco. Topology. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-16958-3.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Munkres, James R. Topology. 2. Aufl. Upper Saddle River, NJ: Prentice Hall/Pearson, 2000.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Munkres, James R. Topology. 2. Aufl. New Delhi: Prentice-Hall of India, 2004.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Munkres, James R. Topology. 2. Aufl. Upper Saddle River, NJ: Prentice Hall, Inc., 2000.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Davis, Sheldon W. Topology. Boston: McGraw-Hill Higher Education, 2005.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Buchteile zum Thema "Topology"

1

Berberian, Sterling K. „Topology“. In Fundamentals of Real Analysis, 115–47. New York, NY: Springer New York, 1999. http://dx.doi.org/10.1007/978-1-4612-0549-4_3.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Browder, Andrew. „Topology“. In Mathematical Analysis, 123–54. New York, NY: Springer New York, 1996. http://dx.doi.org/10.1007/978-1-4612-0715-3_6.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Łojasiewicz, Stanisław. „Topology“. In Introduction to Complex Analytic Geometry, 72–97. Basel: Birkhäuser Basel, 1991. http://dx.doi.org/10.1007/978-3-0348-7617-9_2.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Pedersen, Steen. „Topology“. In From Calculus to Analysis, 281–95. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-13641-7_13.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Stillwell, John. „Topology“. In Undergraduate Texts in Mathematics, 283–96. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-55193-3_15.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Bongaarts, Peter. „Topology“. In Quantum Theory, 279–87. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-09561-5_18.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Harte, Robin. „Topology“. In SpringerBriefs in Mathematics, 27–38. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-05648-7_2.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Janßen, Martin. „Topology“. In Generated Dynamics of Markov and Quantum Processes, 127–45. Berlin, Heidelberg: Springer Berlin Heidelberg, 2016. http://dx.doi.org/10.1007/978-3-662-49696-1_7.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Smith, S. P. „Topology“. In Mathematical Tools for Physicists, 587–617. Weinheim, FRG: Wiley-VCH Verlag GmbH & Co. KGaA, 2006. http://dx.doi.org/10.1002/3527607773.ch17.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Marathe, Kishore. „Topology“. In Topics in Physical Mathematics, 33–71. London: Springer London, 2010. http://dx.doi.org/10.1007/978-1-84882-939-8_2.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Konferenzberichte zum Thema "Topology"

1

Misra, P. R., und M. Rajagopalan. „Tennessee Topology Conference“. In Tennessee Topology Conference. WORLD SCIENTIFIC, 1997. http://dx.doi.org/10.1142/9789814529167.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Dovermann, Karl Heinz. „Topology Hawaii“. In Proceedings of the Topology Conference. WORLD SCIENTIFIC, 1992. http://dx.doi.org/10.1142/9789814538831.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Firmo, S., D. L. Gonçalves und O. Saeki. „XI Brazilian Topology Meeting“. In XI Brazilian Topology Meeting. WORLD SCIENTIFIC, 2000. http://dx.doi.org/10.1142/9789814527255.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Lin, Tsau Young, Guilong Liu, Mihir K. Chakraborty und Dominik Slezak. „From topology to anti-reflexive topology“. In 2013 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE). IEEE, 2013. http://dx.doi.org/10.1109/fuzz-ieee.2013.6622580.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Dagci, Fikriye Ince, und Huseyin Cakalli. „A new topology via a topology“. In 10TH INTERNATIONAL CONFERENCE ON APPLIED SCIENCE AND TECHNOLOGY. AIP Publishing, 2022. http://dx.doi.org/10.1063/5.0115543.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Morita, Shigeyuki. „Structure of the mapping class groups of surfaces: a survey and a prospect“. In Low Dimensional Topology -- The Kirbyfest. Mathematical Sciences Publishers, 1999. http://dx.doi.org/10.2140/gtm.1999.2.349.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Cantwell, John, und Lawrence Conlon. „Foliation cones“. In Low Dimensional Topology -- The Kirbyfest. Mathematical Sciences Publishers, 1999. http://dx.doi.org/10.2140/gtm.1999.2.35.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Quinn, Frank. „Group categories and their field theories“. In Low Dimensional Topology -- The Kirbyfest. Mathematical Sciences Publishers, 1999. http://dx.doi.org/10.2140/gtm.1999.2.407.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Rourke, Colin, und Brian Sanderson. „Homology stratifications and intersection homology“. In Low Dimensional Topology -- The Kirbyfest. Mathematical Sciences Publishers, 1999. http://dx.doi.org/10.2140/gtm.1999.2.455.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Ruberman, Daniel. „A polynomial invariant of diffeomorphisms of 4–manifolds“. In Low Dimensional Topology -- The Kirbyfest. Mathematical Sciences Publishers, 1999. http://dx.doi.org/10.2140/gtm.1999.2.473.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Berichte der Organisationen zum Thema "Topology"

1

Bierman, A., und K. Jones. Physical Topology MIB. RFC Editor, September 2000. http://dx.doi.org/10.17487/rfc2922.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Kalb, Jeffrey L., und David S. Lee. Network topology analysis. Office of Scientific and Technical Information (OSTI), Januar 2008. http://dx.doi.org/10.2172/1028919.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Guillen, Donna Post, und Lisa E. Mitchell. Cold Cap Bubble Topology. Office of Scientific and Technical Information (OSTI), April 2016. http://dx.doi.org/10.2172/1490045.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Chen, H., R. Li, A. Retana, Y. Yang und Z. Liu. OSPF Topology-Transparent Zone. RFC Editor, Februar 2017. http://dx.doi.org/10.17487/rfc8099.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Manning, William. Topology Based Domain Search (TBDS). Fort Belvoir, VA: Defense Technical Information Center, Juni 2002. http://dx.doi.org/10.21236/ada407598.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Wallin, M., und D. A. Tortorelli. Topology optimization beyond linear elasticity. Office of Scientific and Technical Information (OSTI), August 2018. http://dx.doi.org/10.2172/1581880.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Zhao, Q., K. Raza, C. Zhou, L. Fang, L. Li und D. King. LDP Extensions for Multi-Topology. RFC Editor, Juli 2014. http://dx.doi.org/10.17487/rfc7307.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Varadarajan, Uday. Geometry, topology, and string theory. Office of Scientific and Technical Information (OSTI), Januar 2003. http://dx.doi.org/10.2172/813395.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Delan, Mehson. Summer Internship Project: Set Topology. Office of Scientific and Technical Information (OSTI), August 2021. http://dx.doi.org/10.2172/1818087.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Robbins, Joshua, Ryan Alberdi und Brett Clark. Concurrent Shape and Topology Optimization. Office of Scientific and Technical Information (OSTI), September 2021. http://dx.doi.org/10.2172/1822279.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Wir bieten Rabatte auf alle Premium-Pläne für Autoren, deren Werke in thematische Literatursammlungen aufgenommen wurden. Kontaktieren Sie uns, um einen einzigartigen Promo-Code zu erhalten!

Zur Bibliographie