Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Topologically-ordered phases“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Topologically-ordered phases" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Topologically-ordered phases"
Lee, In-Hwan, Hoang-Anh Le und S. R. Eric Yang. „Mutual Information and Correlations across Topological Phase Transitions in Topologically Ordered Graphene Zigzag Nanoribbons“. Entropy 25, Nr. 10 (15.10.2023): 1449. http://dx.doi.org/10.3390/e25101449.
Der volle Inhalt der QuelleHussien, Musa A. M., und Aniekan Magnus Ukpong. „Electrodynamics of Topologically Ordered Quantum Phases in Dirac Materials“. Nanomaterials 11, Nr. 11 (30.10.2021): 2914. http://dx.doi.org/10.3390/nano11112914.
Der volle Inhalt der QuelleGROVER, TARUN. „ENTANGLEMENT ENTROPY AND STRONGLY CORRELATED TOPOLOGICAL MATTER“. Modern Physics Letters A 28, Nr. 05 (06.02.2013): 1330001. http://dx.doi.org/10.1142/s0217732313300012.
Der volle Inhalt der QuelleSpanton, Eric M., Alexander A. Zibrov, Haoxin Zhou, Takashi Taniguchi, Kenji Watanabe, Michael P. Zaletel und Andrea F. Young. „Observation of fractional Chern insulators in a van der Waals heterostructure“. Science 360, Nr. 6384 (01.03.2018): 62–66. http://dx.doi.org/10.1126/science.aan8458.
Der volle Inhalt der QuelleDaniel, Austin K., Rafael N. Alexander und Akimasa Miyake. „Computational universality of symmetry-protected topologically ordered cluster phases on 2D Archimedean lattices“. Quantum 4 (10.02.2020): 228. http://dx.doi.org/10.22331/q-2020-02-10-228.
Der volle Inhalt der QuelleJacobsen, Brad, Karl Saunders, Leo Radzihovsky und John Toner. „Two New Topologically Ordered Glass Phases of Smectics Confined in Anisotropic Random Media“. Physical Review Letters 83, Nr. 7 (16.08.1999): 1363–66. http://dx.doi.org/10.1103/physrevlett.83.1363.
Der volle Inhalt der QuelleSaunders, Karl, Brad Jacobsen, Leo Radzihovsky und John Toner. „Topologically ordered phases of smectics confined in anisotropic random media: smectic Bragg glasses“. Journal of Physics: Condensed Matter 12, Nr. 8A (17.02.2000): A215—A220. http://dx.doi.org/10.1088/0953-8984/12/8a/326.
Der volle Inhalt der QuelleOreg, Yuval, und Felix von Oppen. „Majorana Zero Modes in Networks of Cooper-Pair Boxes: Topologically Ordered States and Topological Quantum Computation“. Annual Review of Condensed Matter Physics 11, Nr. 1 (10.03.2020): 397–420. http://dx.doi.org/10.1146/annurev-conmatphys-031218-013618.
Der volle Inhalt der QuelleWen, Xiao-Gang. „A theory of 2+1D bosonic topological orders“. National Science Review 3, Nr. 1 (24.11.2015): 68–106. http://dx.doi.org/10.1093/nsr/nwv077.
Der volle Inhalt der QuelleWen, Xiao-Gang. „Topological Order: From Long-Range Entangled Quantum Matter to a Unified Origin of Light and Electrons“. ISRN Condensed Matter Physics 2013 (27.03.2013): 1–20. http://dx.doi.org/10.1155/2013/198710.
Der volle Inhalt der QuelleDissertationen zum Thema "Topologically-ordered phases"
Karlsson, Eilind. „Kitaev models for topologically ordered phases of matter“. Thesis, Karlstads universitet, Institutionen för ingenjörsvetenskap och fysik, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:kau:diva-62814.
Der volle Inhalt der QuelleRitz-Zwilling, Anna. „Topological order at finite temperature in string-net and quantum double models“. Electronic Thesis or Diss., Sorbonne université, 2024. http://www.theses.fr/2024SORUS268.
Der volle Inhalt der QuelleTopological order is a special kind of quantum order which appears in strongly interacting gappedquantum systems and does not admit a description by a local order parameter and spontaneous symmetry breaking. In two dimensions and at zero temperature, it is instead characterized by a ground-state degeneracy dependent on the manifold topology, long-range entanglement, and the presence of quasiparticles with fractional quantum numbers and exchange statistics (also called anyons). This thesis investigates topological order at finite temperature by means of two exactly-solvable toy models: the string-net model of Levin and Wen and the Kitaev quantum double model. The main focus is on the string-net model, which realizes all achiral doubled topological orders, i.e., all topological orders described by Drinfeld centers. This model takes a unitary fusion category as aninput, and produces the corresponding Drinfeld center as an output. First, we derive a formula forthe spectral degeneracies that depend on both the topology, and the topological order considered. In particular, the degeneracies depend not only on the Drinfeld center but also on theinput category. Next, we compute the partition function, from which we obtain the entropy, specific heat, and show that there is no finite-temperature phase transition. We identify a particular set of objects of the Drinfeld center, called pure fluxons, which drive the partition function in the thermodynamic limit, and study their properties. We also obtain the thermal averages of closed string operators, and study the mutual information. Finally, we carry over our approach to the quantum double models, where we also derive a general formula for the spectral degeneracies, partition function and entanglement entropy, allowing for a more general and detailed study of finite-temperature properties compared to previous studies
Buchteile zum Thema "Topologically-ordered phases"
„Geometric Berry Phase and Chern Number“. In Topologically Ordered Zigzag Nanoribbon, 21–50. WORLD SCIENTIFIC, 2023. http://dx.doi.org/10.1142/9789811261909_0002.
Der volle Inhalt der Quelle„Matrix Product States and Disordered Anyon Phase“. In Topologically Ordered Zigzag Nanoribbon, 487–511. WORLD SCIENTIFIC, 2023. http://dx.doi.org/10.1142/9789811261909_0021.
Der volle Inhalt der Quelle„Anomalous Velocity, Polarization, Zak Phase, and Chern Number“. In Topologically Ordered Zigzag Nanoribbon, 109–31. WORLD SCIENTIFIC, 2023. http://dx.doi.org/10.1142/9789811261909_0005.
Der volle Inhalt der QuelleSimon, Steven H. „Robustness of Topologically Ordered Matter“. In Topological Quantum, 407–18. Oxford University PressOxford, 2023. http://dx.doi.org/10.1093/oso/9780198886723.003.0029.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Topologically-ordered phases"
Seepersad, Carolyn Conner, Janet K. Allen, David L. McDowell und Farrokh Mistree. „Robust Design of Cellular Materials With Topological and Dimensional Imperfections“. In ASME 2005 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2005. http://dx.doi.org/10.1115/detc2005-85061.
Der volle Inhalt der Quelle