Auswahl der wissenschaftlichen Literatur zum Thema „Topological Hypergroups“

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Topological Hypergroups" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Zeitschriftenartikel zum Thema "Topological Hypergroups"

1

VOIT, MICHAEL. „CONTINUOUS ASSOCIATION SCHEMES AND HYPERGROUPS“. Journal of the Australian Mathematical Society 106, Nr. 03 (27.07.2018): 361–426. http://dx.doi.org/10.1017/s1446788718000149.

Der volle Inhalt der Quelle
Annotation:
Classical finite association schemes lead to finite-dimensional algebras which are generated by finitely many stochastic matrices. Moreover, there exist associated finite hypergroups. The notion of classical discrete association schemes can be easily extended to the possibly infinite case. Moreover, this notion can be relaxed slightly by using suitably deformed families of stochastic matrices by skipping the integrality conditions. This leads to a larger class of examples which are again associated with discrete hypergroups. In this paper we propose a topological generalization of association schemes by using a locally compact basis space $X$ and a family of Markov-kernels on $X$ indexed by some locally compact space $D$ where the supports of the associated probability measures satisfy some partition property. These objects, called continuous association schemes, will be related to hypergroup structures on $D$ . We study some basic results for this notion and present several classes of examples. It turns out that, for a given commutative hypergroup, the existence of a related continuous association scheme implies that the hypergroup has many features of a double coset hypergroup. We, in particular, show that commutative hypergroups, which are associated with commutative continuous association schemes, carry dual positive product formulas for the characters. On the other hand, we prove some rigidity results in particular in the compact case which say that for given spaces $X,D$ there are only a few continuous association schemes.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Singha, Manoranjan, Kousik Das und Bijan Davvaz. „On topological complete hypergroups“. Filomat 31, Nr. 16 (2017): 5045–56. http://dx.doi.org/10.2298/fil1716045s.

Der volle Inhalt der Quelle
Annotation:
One of the main obstacles before the development of the theory of topological hypergroups is the fact that translation of open sets may not be open in this setting. In this paper, we get rid of such obstacle by introducing the concept of topological complete hypergroups and investigate some of their properties.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Abughazalah, Nabilah, Naveed Yaqoob und Kiran Shahzadi. „Topological Structures of Lower and Upper Rough Subsets in a Hyperring“. Journal of Mathematics 2021 (14.04.2021): 1–6. http://dx.doi.org/10.1155/2021/9963623.

Der volle Inhalt der Quelle
Annotation:
In this paper, we study the connection between topological spaces, hyperrings (semi-hypergroups), and rough sets. We concentrate here on the topological parts of the lower and upper approximations of hyperideals in hyperrings and semi-hypergroups. We provide the conditions for the boundary of hyp-ideals of a hyp-ring to become the hyp-ideals of hyp-ring.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Chen, Chung-Chuan, Seyyed Mohammad Tabatabaie und Ali Mohammadi. „Disjoint topological transitivity for weighted translations generated by group actions“. Mathematica Slovaca 71, Nr. 5 (01.10.2021): 1229–40. http://dx.doi.org/10.1515/ms-2021-0050.

Der volle Inhalt der Quelle
Annotation:
Abstract In this note, we give a sufficient and necessary condition for weighted translations, generated by group actions, to be disjoint topologically transitive in terms of the weights, the group element and the measure. The characterization of disjoint topological mixing is obtained as well. Moreover, we apply the results to the quotient spaces of locally compact groups and hypergroups.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Chen, Chung-Chuan, Seyyed Mohammad Tabatabaie und Ali Mohammadi. „Disjoint topological transitivity for weighted translations generated by group actions“. Mathematica Slovaca 71, Nr. 5 (01.10.2021): 1229–40. http://dx.doi.org/10.1515/ms-2021-0050.

Der volle Inhalt der Quelle
Annotation:
Abstract In this note, we give a sufficient and necessary condition for weighted translations, generated by group actions, to be disjoint topologically transitive in terms of the weights, the group element and the measure. The characterization of disjoint topological mixing is obtained as well. Moreover, we apply the results to the quotient spaces of locally compact groups and hypergroups.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Ghasemi, Khatereh, und Javad Jamalzadeh. „Hypernormed entropy on topological hypernormed hypergroups“. Soft Computing 26, Nr. 1 (19.11.2021): 99–104. http://dx.doi.org/10.1007/s00500-021-06434-5.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Heidari, D., B. Davvaz und S. M. S. Modarres. „Topological Hypergroups in the Sense of Marty“. Communications in Algebra 42, Nr. 11 (23.05.2014): 4712–21. http://dx.doi.org/10.1080/00927872.2013.821314.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Jamalzadeh, Javad. „Erratum to “Topological hypergroups in the sense of Marty”“. Communications in Algebra 45, Nr. 3 (07.10.2016): 1187–88. http://dx.doi.org/10.1080/00927872.2016.1172634.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Medghalchi, A. R. „Cohomology on hypergroup algebras“. Studia Scientiarum Mathematicarum Hungarica 39, Nr. 3-4 (01.11.2002): 297–307. http://dx.doi.org/10.1556/sscmath.39.2002.3-4.4.

Der volle Inhalt der Quelle
Annotation:
There are concepts which are related to or can be formulated by homological techniques, such as derivations, multipliers and lifting problems. Moreover, a Banach algebra A is said to be amenable if H1(A,X*)=0 for every A-dual module X*. Another concept related to the theory is the concept of amenability in the sense of Johnson. A topological group G is said to be amenable if there is an invariant mean on L 8(G). Johnson has shown that a topological group is amenable if and only if the group algebra L1(G) is amenable. The aim of this research is to define the cohomology on a hypergroup algebra L(K) and extend the results of L1(G) over to L(K). At first stage it is viewed that Johnson's theorem is not valid so more. If A is a Banach algebra and h is a multiplicative linear functional on A, then (A,h) is called left amenable if for any Banach two-sided A-module X with ax=h(a)x(a? A, x? X),H1(A,X*)=0. We prove that (L(K),h) is left amenable if and only if K is left amenable. Where, the latter means that there is a left invariant mean m on C(K), i. e., m(lf)=m(f)x, where lxf(µ)=f(dx*µ). In this case we briefly say that L(K) is left amenable. Johnson also showed that L1(G) is amenable if and only if the augmentation ideal I={f? L1(G)|∫Gf=0}0 has abounded right approximate identity. We extend this result to hypergroups.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Ardakani, Hamid, und Asieh Pourhaghani. „On geometric space and its applications in topological Hv-groups“. Filomat 35, Nr. 3 (2021): 855–70. http://dx.doi.org/10.2298/fil2103855a.

Der volle Inhalt der Quelle
Annotation:
We generalize the concept of topological hypergroup to topological Hv-group and define some topologies on Hv-groups by using the concept of geometric space, which was defined by Freni. By applying these topologies, we have always a topological Hv-group without need any more conditions. Moreover, we state some conditions on a topological Hv-group that make it complete. Our aim is to generalize the concept of topological hypergroup to topological Hv-group via considering the characteristics of the induced geometric space.
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Dissertationen zum Thema "Topological Hypergroups"

1

Das, Kousik. „Topological Hyperalgebra with special emphasis on Topological Hypergroups“. Thesis, University of North Bengal, 2022. http://ir.nbu.ac.in/handle/123456789/5087.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Kamyabi-Gol, Rajab Ali. „Topological center of dual branch algebras associated to hypergroups“. Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1997. http://www.collectionscanada.ca/obj/s4/f2/dsk3/ftp05/nq21584.pdf.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Buchteile zum Thema "Topological Hypergroups"

1

„Topological Hypergroups“. In Hypergroup Theory, 239–76. WORLD SCIENTIFIC, 2022. http://dx.doi.org/10.1142/9789811249396_0012.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Wir bieten Rabatte auf alle Premium-Pläne für Autoren, deren Werke in thematische Literatursammlungen aufgenommen wurden. Kontaktieren Sie uns, um einen einzigartigen Promo-Code zu erhalten!

Zur Bibliographie