Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Tool-life testing“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Tool-life testing" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Tool-life testing"
Janásek, Adam, Robert Čep, Lenka Čepová, Jiří Kratochvíl, Vladimír Vrba und Lenka Petřkovská. „Tool Life Reliability of Indexable Cutting Inserts“. Technological Engineering 9, Nr. 2 (01.12.2012): 30–34. http://dx.doi.org/10.2478/teen-2012-0008.
Der volle Inhalt der QuelleKarandikar, Jaydeep M., Tony L. Schmitz und Ali E. Abbas. „Spindle speed selection for tool life testing using Bayesian inference“. Journal of Manufacturing Systems 31, Nr. 4 (Oktober 2012): 403–11. http://dx.doi.org/10.1016/j.jmsy.2012.07.013.
Der volle Inhalt der QuelleFohn, Sara Lorene, Carol Mulvenon und Susan F. McElroy. „Development and Testing of the End-of-Life Transfer Tool“. Journal of Hospice & Palliative Nursing 19, Nr. 4 (August 2017): 363–67. http://dx.doi.org/10.1097/njh.0000000000000357.
Der volle Inhalt der QuelleAlauddin, M., M. A. El Baradie und M. S. J. Hashmi. „Tool-life testing in the end milling of Inconel 718“. Journal of Materials Processing Technology 55, Nr. 3-4 (Dezember 1995): 321–30. http://dx.doi.org/10.1016/0924-0136(95)02035-7.
Der volle Inhalt der QuelleSchwarzwalder, Alison, Zephania Chilangwa, Ilesh Patel, Andrew Burke und Matthew Lynch. „Testing a Tool to Scale Quality of Life Indicators in Tanzania“. Field Methods 20, Nr. 2 (10.03.2008): 179–90. http://dx.doi.org/10.1177/1525822x07313812.
Der volle Inhalt der QuelleTokarev, Denis Ivanovich, Andrey Alexandrovich Drozdov, Lyudmila Dmitrievna Sirotenko, Elena Vyacheslavovna Matygullina und Timur Rizovich Ablyaz. „Comparative testing tool life in turning of composite plastic F-4К20“. Metalloobrabotka, Nr. 2 (2019): 14–18. http://dx.doi.org/10.25960/mo.2019.2.14.
Der volle Inhalt der QuelleMenyhart, Otília, Boglárka Weltz und Balázs Győrffy. „MultipleTesting.com: A tool for life science researchers for multiple hypothesis testing correction“. PLOS ONE 16, Nr. 6 (09.06.2021): e0245824. http://dx.doi.org/10.1371/journal.pone.0245824.
Der volle Inhalt der QuelleHan, Zhen Yu, Guang Нu Liu und Hong Нa Fu. „A Review of Residual Life Prediction for Remanufacturing of Machine Tool“. Applied Mechanics and Materials 552 (Juni 2014): 133–38. http://dx.doi.org/10.4028/www.scientific.net/amm.552.133.
Der volle Inhalt der QuelleEl Baradie, M. A. „The effect of varying the workpiece diameter on the cutting tool clearance angle in tool-life testing“. Wear 195, Nr. 1-2 (Juli 1996): 201–5. http://dx.doi.org/10.1016/0043-1648(95)06858-9.
Der volle Inhalt der QuelleKlocke, Fritz, Christof Gorgels, Arne Stuckenberg und Emmanouil Bouzakis. „Qualification of Coatings to Predict Wear Behavior of Micro Blasted Cutting Tools“. Key Engineering Materials 438 (Mai 2010): 23–29. http://dx.doi.org/10.4028/www.scientific.net/kem.438.23.
Der volle Inhalt der QuelleDissertationen zum Thema "Tool-life testing"
Niu, Caotan, und 牛草坛. „A study of tool life and machinability parameters in high speed milling of hardened die steels“. Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2007. http://hub.hku.hk/bib/B39557170.
Der volle Inhalt der QuelleKazymyrovych, Vitaliy. „Very high cycle fatigue of high performance steels“. Licentiate thesis, Karlstad University, Faculty of Technology and Science, 2008. http://urn.kb.se/resolve?urn=urn:nbn:se:kau:diva-3066.
Der volle Inhalt der QuelleMany engineering components reach a finite fatigue life well above 109 load cycles. Some examples of such components are found in airplanes, automobiles or high speed trains. For some materials the fatigue failures have lately been found to occur well after 107 load cycles, namely in the Very High Cycle Fatigue (VHCF) range. This finding contradicted the established concept of fatigue limit for these materials, which postulates that having sustained 107 load cycles the material is capable of enduring an infinite number of cycles provided that the service conditions are unchanged. With the development of modern ultrasonic fatigue testing equipment it became possible to experimentally establish VHCF behaviour of various materials. For most of them the existence of the fatigue limit at 107 load cycles has been proved wrong and their fatigue strength continues to decrease with increasing number of load cycles.
One important group of materials used for the production of high performance components subjected to the VHCF is tool steels. This study explores the VHCF phenomenon using experimental data of ultrasonic fatigue testing of some tool steel grades. The causes and mechanisms of VHCF failures are investigated by means of high resolution scanning electron microscopy, and in relation to the existing theories of fatigue crack initiation and growth. The main type of VHCF origins in steels are slag inclusions.
However, other microstructural defects may also initiate fatigue failure. A particular attention is paid to the fatigue crack initiation, as it has been shown that in the VHCF range crack formation consumes the majority of the total fatigue life. Understanding the driving forces for the fatigue crack initiation is a key to improve properties of components used for very long service lives. Finite element modelling of VHCF testing was added as an additional perspective to the study by enabling calculation of local stresses at the fatigue initiating defects.
Prno, Peter. „Obrábění kobaltové slitiny UmCo50“. Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2021. http://www.nusl.cz/ntk/nusl-444280.
Der volle Inhalt der QuelleKarlsson, Daniel. „Life and fracture in very high cycle fatigue of a high strength steel“. Thesis, Karlstads universitet, Institutionen för ingenjörsvetenskap och fysik (from 2013), 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:kau:diva-86135.
Der volle Inhalt der QuelleKlassiska utmattningsmodeller lär ut att det finns en utmattningsgräns för stål, vilket representerar en spänningsnivå som är för låg för regelbunden sprickväxt där varje cyklisk belastning sprider en utmattningsspricka genom materialet. Moderna applikation med extrema livstider har visat att utmattning fortfarande äger rum i stål med spänningsnivåer långt under den förväntade utmattningsgränsen. Detta relativt nya studieområde har fått namnet Very High Cycle Fatigue, eller VHCF, och beskriver utmattningsfall med ett antal belastningscykler som överstiger 107. Fraktografi av stål som har drabbats av VHCF tenderar att ha en särskilt gropig sprickyta som ligger intill där utmattningssprickan har sitt ursprung, vilket typiskt är någon form av defekt i stålets bulk. Detta område tros vara kritiskt för VHCF och har hänvisats till på ett antal sätt av olika studier, men kommer här att kallas Fine Granular Area eller FGA. Syftet med denna studie är att försöka få en bättre förståelse för VHCF. Detta gjordes genom fraktografianalys av testprover av verktygsstål med hög hållfasthet som drabbades av utmattningsbrott vid livstider från cirka 106 cykler till 1,9x109 cykler. De lägre livslängderna uppnåddes med hjälp av hydraulisk testutrustning, medan proverna i VHCF-området drabbades av utmattningsbrott i ultraljudstestutrustning som klarar att applicera en cyklisk stress med en frekvens på 20 kHz. De resulterande sprickytorna undersöktes sedan med hjälp av ett svepelektronmikroskop, eller SEM, med särskild fokus på utmattningsinitierande defekter och, i fallet med VHCF, det grova området som hittades intill det, FGA. I kombination med SEM utfördes en elementanalys av utmattningsinitierande defekter liksom huvuddelen av materialet med energidispersiv röntgenspektroskopi, eller EDS. Detta gjordes för att ta reda på vad inneslutningarna bestod av för att bekräfta att de var slagg samt kontrollera att sammansättningen av materialet i huvuddelen av provet matchar det som förväntades. Med användning av optisk ljusmikroskopi i kombination med syraetsning av ytan på prover som skars ut ur testproverna undersöktes stålets struktur. Beräkning av de lokala spänningarna på platsen för den utmattningsinitierande defekten gjordes med hjälp av FEM i kombination med förskjutningsamplituden som samlats från ultraljudsutrustningen. De insamlade uppgifterna mättes sedan och jämfördes med tidigare studier genom att använda diverse modeller och se hur de matchar de experimentella resultaten. Resultaten antyder att stressintensitetsfaktorn vid inneslutningarna är kritisk för VHCF och att man med lägre stressintensitetsfaktorer kan förvänta sig längre livstid. En annan observation är en relativt konsekvent stressintensitetsfaktor vid kanten av FGA, vilket sannolikt markerar övergången från skapandet eller utbredning av FGA till traditionell sprickutbredning. Det verkar också finnas en koppling mellan storleken på FGA och antalet cykler till fel, med större FGA med ökande livslängd. Den mest uppenbara bristen i denna studie är mängden tillfredsställande tester som genomförts. Därmed är mängden datapunkter mycket låg, detta på grund av att majoriteten av proverna misslyckades vid gängningen som användes för att ansluta dem till ultraljudstestutrustningen vid livstider alltför låga för att vara relevanta.
Bücher zum Thema "Tool-life testing"
Grabe, Magnus, und Björn Wullt. Urinary tract infection. Herausgegeben von Rob Pickard. Oxford University Press, 2017. http://dx.doi.org/10.1093/med/9780199659579.003.0004.
Der volle Inhalt der QuelleBuchteile zum Thema "Tool-life testing"
Commare, U. La, und G. Passannanti. „Relevance of Tool Life Testing for Tool Replacement Strategies“. In Proceedings of the Twenty-Sixth International Machine Tool Design and Research Conference, 367–72. London: Macmillan Education UK, 1986. http://dx.doi.org/10.1007/978-1-349-08114-1_48.
Der volle Inhalt der QuelleFernandez, Luis, Pedro J. Lara und Juan José Cuadrado. „Efficient Software Quality Assurance Approaches Oriented to UML Models in Real Life“. In Verification, Validation and Testing in Software Engineering, 385–426. IGI Global, 2007. http://dx.doi.org/10.4018/978-1-59140-851-2.ch013.
Der volle Inhalt der QuelleBurstein, Leonid. „Simulation Tool for Cable Design“. In Handbook of Research on Advancements in Manufacturing, Materials, and Mechanical Engineering, 54–74. IGI Global, 2021. http://dx.doi.org/10.4018/978-1-7998-4939-1.ch003.
Der volle Inhalt der QuelleSewagegn, Abatihun Alehegn, und Boitumelo Molebogeng Diale. „Authentic Assessment as a Tool to Enhance Student Learning in a Higher Education Institution“. In Assessment, Testing, and Measurement Strategies in Global Higher Education, 256–71. IGI Global, 2020. http://dx.doi.org/10.4018/978-1-7998-2314-8.ch013.
Der volle Inhalt der QuelleRoss, William, und Ross Slovensky. „Using the Internet to Attract and Evaluate Job Candidates“. In Encyclopedia of Cyber Behavior, 537–49. IGI Global, 2012. http://dx.doi.org/10.4018/978-1-4666-0315-8.ch046.
Der volle Inhalt der QuelleEguchi, Amy. „Educational Robotics as a Learning Tool for Promoting Rich Environments for Active Learning (REALs)“. In Handbook of Research on Educational Technology Integration and Active Learning, 19–47. IGI Global, 2015. http://dx.doi.org/10.4018/978-1-4666-8363-1.ch002.
Der volle Inhalt der QuelleHai-Jew, Shalin. „Connecting Related Online Elements with Maltego Carbon 3.5.3™“. In Developing Successful Strategies for Global Policies and Cyber Transparency in E-Learning, 168–89. IGI Global, 2016. http://dx.doi.org/10.4018/978-1-4666-8844-5.ch011.
Der volle Inhalt der QuelleBehera, Rajat Kumar, Abhaya Kumar Sahoo und Ajay Jena. „A Resourceful Approach in Security Testing to Protect Electronic Payment System Against Unforeseen Attack“. In Research Anthology on Artificial Intelligence Applications in Security, 1279–302. IGI Global, 2021. http://dx.doi.org/10.4018/978-1-7998-7705-9.ch057.
Der volle Inhalt der QuelleBehera, Rajat Kumar, Abhaya Kumar Sahoo und Ajay Jena. „A Resourceful Approach in Security Testing to Protect Electronic Payment System Against Unforeseen Attack“. In Research Anthology on Artificial Intelligence Applications in Security, 1279–302. IGI Global, 2021. http://dx.doi.org/10.4018/978-1-7998-7705-9.ch057.
Der volle Inhalt der QuelleCorigliano, Stephanie. „Theologizing for the Yoga Community?“ In How to Do Comparative Theology. Fordham University Press, 2017. http://dx.doi.org/10.5422/fordham/9780823278404.003.0016.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Tool-life testing"
Bakhtyar, Fahad, und S. Kenny. „Development of a Fatigue Life Assessment Tool for Pipelines With Local Wrinkling Through Physical Testing and Numerical Modelling“. In ASME 2014 33rd International Conference on Ocean, Offshore and Arctic Engineering. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/omae2014-24082.
Der volle Inhalt der QuelleChatterley, James J., Andrew J. Boone, Thomas L. Lago¨, Jonathan Blotter, Scott D. Sommerfeldt und Craig C. Smith. „Sound Quality Testing and Analysis of Multiple Brands of Sewing Machines“. In ASME 2005 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2005. http://dx.doi.org/10.1115/detc2005-85636.
Der volle Inhalt der QuelleWang, Yinyan, Chuntao Zhang, Xiaohua Wu, Guoshu Song und Zhengfang Qian. „Integrated Reliability Solutions: A Software Tool for Mechanical Reliability of Electronic Components“. In ASME 2006 International Mechanical Engineering Congress and Exposition. ASMEDC, 2006. http://dx.doi.org/10.1115/imece2006-15542.
Der volle Inhalt der QuelleCinar, Ali, und Kader Senocak. „Fatigue Life Improvement of Antiroll Bar Bracket Used in Heavy Truck Suspension“. In ASME 2010 10th Biennial Conference on Engineering Systems Design and Analysis. ASMEDC, 2010. http://dx.doi.org/10.1115/esda2010-24202.
Der volle Inhalt der QuelleDaleo, Joseph A., Keith A. Ellison und David A. Woodford. „Application of Stress Relaxation Testing in Metallurgical Life Assessment Evaluations of GTD111 Alloy Turbine Buckets“. In ASME 1998 International Gas Turbine and Aeroengine Congress and Exhibition. American Society of Mechanical Engineers, 1998. http://dx.doi.org/10.1115/98-gt-370.
Der volle Inhalt der QuelleLingwall, B. A., C. H. Cooley und T. N. Sexton. „Polycrystalline Diamond Thrust Bearing Testing and Qualification for Application in Marine Hydrokinetic Machines“. In ASME/STLE 2012 International Joint Tribology Conference. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/ijtc2012-61061.
Der volle Inhalt der QuelleKushnir, E. „Effect of Machine Tool Structure Dynamic on Machine Cutting Performances“. In ASME 2005 International Mechanical Engineering Congress and Exposition. ASMEDC, 2005. http://dx.doi.org/10.1115/imece2005-79769.
Der volle Inhalt der QuellePark, Young-Bin, und Jonathan S. Colton. „Die Life Prediction in Rapid Prototype Dies“. In ASME 2002 International Mechanical Engineering Congress and Exposition. ASMEDC, 2002. http://dx.doi.org/10.1115/imece2002-39362.
Der volle Inhalt der QuelleGomatam, Rajesh R., und Erol Sancaktar. „Fatigue Behavior of Electronically Conductive Adhesive Joints“. In ASME 2003 International Mechanical Engineering Congress and Exposition. ASMEDC, 2003. http://dx.doi.org/10.1115/imece2003-41659.
Der volle Inhalt der QuelleDogan, Bilal, und Thomas Hyde. „Industrial Application of Small Punch Testing for In-Service Component Condition Assessment: An Overview“. In ASME 2012 Pressure Vessels and Piping Conference. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/pvp2012-78691.
Der volle Inhalt der Quelle