Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Tomographic scanner“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Tomographic scanner" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Tomographic scanner"
Dao, Viet, Ekaterina Mikhaylova, Max L. Ahnen, Jannis Fischer, Kris Thielemans und Charalampos Tsoumpas. „Evaluation of STIR Library Adapted for PET Scanners with Non-Cylindrical Geometry“. Journal of Imaging 8, Nr. 6 (18.06.2022): 172. http://dx.doi.org/10.3390/jimaging8060172.
Der volle Inhalt der QuelleKarp, Joel S., Margaret E. Daube-Witherspoon und Gerd Muehllehner. „Factors Affecting Accuracy and Precision in PET Volume Imaging“. Journal of Cerebral Blood Flow & Metabolism 11, Nr. 1_suppl (März 1991): A38—A44. http://dx.doi.org/10.1038/jcbfm.1991.35.
Der volle Inhalt der QuelleMangiorou, Eleni. „A Critical Assessment of the Four Basic Methods of Tomographic Imaging“. Key Engineering Materials 605 (April 2014): 657–60. http://dx.doi.org/10.4028/www.scientific.net/kem.605.657.
Der volle Inhalt der QuelleMichail, Christos, George Karpetas, Nektarios Kalyvas, Ioannis Valais, Ioannis Kandarakis, Kyriakos Agavanakis, George Panayiotakis und George Fountos. „Information Capacity of Positron Emission Tomography Scanners“. Crystals 8, Nr. 12 (09.12.2018): 459. http://dx.doi.org/10.3390/cryst8120459.
Der volle Inhalt der QuelleIzevbekhai, O. S., P. F. I. Irabor, S. U. Eluehike, B. Oriaifo und O. Otaigbe. „A Tally of Computed Tomographic Scan Findings in the Immediate Post-Installation Period in a Rural Based Hospital in Sub-Saharan Africa“. Journal of Advances in Medicine and Medical Research 35, Nr. 20 (29.08.2023): 197–204. http://dx.doi.org/10.9734/jammr/2023/v35i205190.
Der volle Inhalt der QuelleShampo, Marc A., und Robert A. Kyle. „Allan Cormack—Codeveloper of Computed Tomographic Scanner“. Mayo Clinic Proceedings 71, Nr. 3 (März 1996): 288. http://dx.doi.org/10.4065/71.3.288.
Der volle Inhalt der QuelleTAGUCHI, Isamu. „Computerized tomographic scanner for iron and steel.“ Analytical Sciences 1, Nr. 1 (1985): 93–94. http://dx.doi.org/10.2116/analsci.1.93.
Der volle Inhalt der QuelleJofre, L., M. S. Hawley, A. Broquetas, E. de los Reyes, M. Ferrando und A. R. Elias-Fuste. „Medical imaging with a microwave tomographic scanner“. IEEE Transactions on Biomedical Engineering 37, Nr. 3 (März 1990): 303–12. http://dx.doi.org/10.1109/10.52331.
Der volle Inhalt der QuelleAbdelkarim, Ayman, Sion K. Roy, April Kinninger, Azadeh Salek, Olivia Baranski, Daniele Andreini, Gianluca Pontone et al. „Evaluation of Image Quality for High Heart Rates for Coronary Computed Tomographic Angiography with Advancement in CT Technology: The CONVERGE Registry“. Journal of Cardiovascular Development and Disease 10, Nr. 9 (19.09.2023): 404. http://dx.doi.org/10.3390/jcdd10090404.
Der volle Inhalt der QuelleChindasombatjaroen, Jira, Naoya Kakimoto, Hiroaki Shimamoto, Shumei Murakami und Souhei Furukawa. „Correlation Between Pixel Values in a Cone-Beam Computed Tomographic Scanner and the Computed Tomographic Values in a Multidetector Row Computed Tomographic Scanner“. Journal of Computer Assisted Tomography 35, Nr. 5 (September 2011): 662–65. http://dx.doi.org/10.1097/rct.0b013e31822d9725.
Der volle Inhalt der QuelleDissertationen zum Thema "Tomographic scanner"
Laurendeau, Matthieu. „Tomographic incompleteness maps and application to image reconstruction and stationary scanner design“. Electronic Thesis or Diss., Lyon, INSA, 2024. http://www.theses.fr/2024ISAL0130.
Der volle Inhalt der QuelleComputed tomography (CT) is one of the most commonly used modality for three-dimensional (3D) imaging in the medical and industrial fields. In the past few years, new X-ray sources have been developed based on carbon nanotube (CNT) cathodes. Their compact size enables the design of a new generation of multi-source CT scanners. In contrast to traditional systems with a single moving source, these scanners often adopt stationary architectures where multiple sources are static. It would benefit both industry with cheaper and motionless systems and medical applications with light-weight and mobile scanners which could be brought to emergency sites. However, this type of scanner uses a fewer number of measurements, known as projections, and may acquire data with a limited range of angles, leading to well-known image reconstruction challenges. This thesis focuses on the design of such stationary CT scanners. Three axes of study were investigated. The first contribution is the development of an object-independent metric to assess the reconstruction capability of a given scanning geometry. Based on Tuy's condition, the metric evaluates local tomographic incompleteness and is visualized through 3D vector field maps. It is further extended to handle truncated projections, improving its applicability to real-world configurations. The metric enables ranking different geometries, predicting image quality reconstruction, and identifying the origin of geometric artifacts. It is applied to a variety of geometries, including existing scanners. The second is a novel local regularization method to address limited-angle reconstruction challenges. The method employs a directional total variation (DTV) regularizer whose strength and directional weights are adaptively selected at each voxel. The weights are determined based on the previously introduced metric. Two approaches for directional weights were explored: ratio-based weighting relative to image axes and ellipse-based weighting. The reconstruction algorithm is evaluated in both 2D and 3D simulations, considering noiseless and noisy data, as well as real data. The third is a tool for optimizing the geometry of CT scanners. Given a fixed number of sources and the surface area available for their positions, the tool optimizes the placement of sources based on the proposed metric. Several state-of-the-art optimization algorithms were implemented and tested on simple 2D and 3D scenarios
Heathcote, Alan D. „The dual development of an optical tomographic scanner and three dimensional gel dosimeter for complex radiotherapy verification“. Thesis, University of Hull, 2008. http://hydra.hull.ac.uk/resources/hull:764.
Der volle Inhalt der QuelleBARUFFALDI, FILIPPO. „Development of a Proton Tomography scanner“. Doctoral thesis, Università degli studi di Padova, 2022. http://hdl.handle.net/11577/3455159.
Der volle Inhalt der QuelleiMPACT, innovative Medical Proton Achromatic Calorimeter and Tracker, is a University of Padova and INFN research project, funded by the European Research Council. The project aims to design, develop and prototype a fast and accurate proton Computed Tomography (pCT) Scanner, with the ultimate goal of demonstrating the technology necessary to realize a clinically viable pCT system. The overall development, current state, and projected performances of the scanner will be illustrated and discussed. Monte Carlo simulation, a selection of data collected with cosmic rays, and tests with a proton beam will be reviewed as well to quantitatively assess the performance of the apparatus. Preliminary studies on proton track reconstruction, based on a Maximum Likelihood path formalism, will be also presented, together with a supporting object shape identification algorithm. The iMPACT scanner is essentially made by a multi-layer silicon pixels sensors tracker stage using the ALPIDE sensors, and a scintillators-based range calorimeter. There will be an in-depth review of the innovative, highly segmented structure of the calorimeter, based on multiple, orthogonal scintillating elements, and of its read-out architecture, which exploits massive FPGAs parallelism and distributed memory to achieve the triggering and data collection performance necessary to cope with the extremely high event-rate requested by pCT applications. On the tracker side, an overview of the ALPIDE sensor, developed within the ALICE Collaboration for its Inner Tracking System (ITS), and currently adopted for the prototyping phase of the iMPACT tracker, will be illustrated as well, together with the general tracker layout and operations. In parallel, in order improve upon the techniques and methods used in particle physics for tracking purposes, specific studies have been performed to optimize the ALICE ITS alignment, which results will be also presented. Finally, a brief mention will be given to the INFN project ARCADIA, focused on the development of innovative Monolithic Active Pixel Sensors characterized by fully depleted substrate to improve the charge collection efficiency and timing characteristics over a wide range of operational and environmental conditions. The iMPACT project in fact plans to employ the ARCADIA technology to build a pixel detector more suited for the pCT application respect to the ALPIDE sensor.
Yao, Yongjia. „Wearable sensor scanner using electrical impedance tomography“. Thesis, University of Bath, 2012. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.600214.
Der volle Inhalt der QuelleBARUFFALDI, FILIPPO. „Development of a proton computed tomography scanner“. Doctoral thesis, Università degli studi di Padova, 2022. http://hdl.handle.net/11577/3453783.
Der volle Inhalt der QuelleBergeron, Mélanie. „Construction et expérimentation d'un scanner bimodal TEP/TDM combiné de résolution spatiale submillimétrique pour petits animaux“. Thèse, Université de Sherbrooke, 2015. http://hdl.handle.net/11143/6755.
Der volle Inhalt der QuelleKemgue, Alain Trésor. „Modélisation des formes volumiques complexes par des volumes quadriques. Application à la représentation de l'espace poral du sol à partir des images tomographiques 3D“. Electronic Thesis or Diss., Sorbonne université, 2019. https://accesdistant.sorbonne-universite.fr/login?url=https://theses-intra.sorbonne-universite.fr/2019SORUS158.pdf.
Der volle Inhalt der QuelleMost of the natural shapes have complex volume forms that are usually difficult to model using simple analytical equations. The complexity of the representation is due to the heterogeneity of the physical environment and the variety of phenomena involved. In our study, we are interested by the complex volume shapes structures representation from computed tomographic images. Thanks to the technological advances in Computed Tomography scanners, the image acquisition of complex shapes becomes possible. However, these image data are not directly usable for simulation or modeling purposes. In this thesis, we investigate an approach of modeling of such shapes which consists in making a piecewise approximation of the image data by quadric volumes. We propose to use a split-merge strategy and a region growing algorithm to optimize a function that includes both an approximation error term and a scale factor term that is opposed to it. The input of our algorithms is voxel-based shape description and the result is a set of tangent or disjoint quadric volumes representing the shape in an intrinsic way. We apply our method to represent 3D soil pore space obtained from the Computed Tomography scanners. Within this specific context, we validate our geometrical modeling by performing simulations of water draining and microbial decomposition activities on real data soil sample. This study involves several ecological, agricultural and industrial issues
Louis, Nicolas Desgranges Pascal. „Étude au scanner multibarrettes des dissections aigues de type A opérées“. Créteil : Université de Paris-Val-de-Marne, 2006. http://doxa.scd.univ-paris12.fr:80/theses/th0247917.pdf.
Der volle Inhalt der QuelleQuatrehomme, Auréline. „Caractérisation des lésions hépatiques focales sur des acquisitions scanner multiphasiques“. Thesis, Montpellier 2, 2013. http://www.theses.fr/2013MON20207/document.
Der volle Inhalt der QuelleMedical imaging acquisition has taken benefits from recent advances and is becoming more and more important in the patient care process. New needs raise, which are related to image processing. Hepatic lesion recognition is a hot topic, especially because liver cancer is wide-spread and leads to death, most of the time because of the diagnosis which is made too late. In this context is born this manuscrit research project, a collaboration between IMAIOS company and the Laboratory of Informatics, Robotics and Micro-electronics ofMontpellier (LIRMM).This thesis presents a complete and automated system that extracts visual features from lesion images in the medical format DICOM, then differenciate them on these features.The various described contributions are: intensity normalization using healthy liver values, analysis and experimentations around new visual features, which use temporal information or tissue density, different kind of caracterisation of the lesions. This work has been done on multi-phase Computed Tomography acquisitions
McFarland, Sheila J. „Development of a prototype scanner for pulsed ultrasound computed tomography“. Thesis, National Library of Canada = Bibliothèque nationale du Canada, 2001. http://www.collectionscanada.ca/obj/s4/f2/dsk3/ftp04/NQ61142.pdf.
Der volle Inhalt der QuelleBücher zum Thema "Tomographic scanner"
L, Arrivé, Hrsg. Guide d'interprétation en scanner. Paris: Masson, 2001.
Den vollen Inhalt der Quelle findenLionel, Arrivé, Hrsg. Guide d'interprétation en scanner. 3. Aufl. Paris: Masson, 2005.
Den vollen Inhalt der Quelle findenOlivier, Vigneaux, Hrsg. Imagerie cardiaque: Scanner et IRM. Issy-les-Moulineaux: Masson, 2005.
Den vollen Inhalt der Quelle findenCanadian Coordinating Office for Health Technology Assessment. A comparison of fixed and mobile CT and MRI scanners. Ottawa, Ont: The Office, 1995.
Den vollen Inhalt der Quelle findenTrajtenberg, Manuel. Economic analysis of product innovation: The case of CT scanners. Cambridge, Mass: Harvard University Press, 1990.
Den vollen Inhalt der Quelle findenJacqueline, Vignaud, Jardin Caroline und Rosen Lawrence, Hrsg. The ear, diagnostic imaging: CT scanner, tomography, and magnetic resonance. New York: Masson Pub., U.S.A., 1986.
Den vollen Inhalt der Quelle findenCaroline, Jardin, Rosen Lawrence und Vignaud Jacqueline, Hrsg. The ear, diagnostic imaging: CT scanners, tomography and magnetic resonance. New York: Masson Pub., 1986.
Den vollen Inhalt der Quelle findenK, Fishman Elliot, und Jeffrey R. Brooke, Hrsg. Multidetector CT: Principles, techniques, and clinical applications. Philadelphia: Lippincott Williams & Wilkins, 2004.
Den vollen Inhalt der Quelle findenHsieh, Jiang. Computed tomography: Principles, design, artifacts, and recent advances. Bellingham, Washington: SPIE, 2015.
Den vollen Inhalt der Quelle finden1930-, Stanford William, und Rumberger John A, Hrsg. Ultrafast computed tomography in cardiac imaging: Principles and practice. Mount Kisco, NY: Futura Pub. Co., 1992.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Tomographic scanner"
Williams, Mark B., Patricia G. Judy, Mitali J. More, Jennifer A. Harvey, Stan Majewski, James Proffitt, John McKisson et al. „Tomographic Dual Modality Breast Scanner“. In Digital Mammography, 99–107. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008. http://dx.doi.org/10.1007/978-3-540-70538-3_15.
Der volle Inhalt der QuelleMeerhoff, Walter, und Guillermo Meerhoff. „Variability of topographic measurements after trabeculectomy in primary angle closure glaucoma with the laser tomographic scanner“. In Laser Scanning: Update 1, 29–35. Dordrecht: Springer Netherlands, 2001. http://dx.doi.org/10.1007/978-94-010-0322-3_6.
Der volle Inhalt der QuelleKnisely, J. P. S., L. Liu, M. J. Maryanski, M. Ranade, R. J. Schulz und J. C. Gore. „Three-Dimensional Dosimetry for Complex Stereotactic Radiosurgery Using a Tomographic Optical Density Scanner and BANGTMPolymer Gels“. In Radiosurgery 1997, 251–60. Basel: KARGER, 1997. http://dx.doi.org/10.1159/000062284.
Der volle Inhalt der QuelleRaja, Aamir Y., Steven P. Gieseg, Sikiru A. Adebileje, Steven D. Alexander, Maya R. Amma, Fatemeh Asghariomabad, Ali Atharifard et al. „Spectral CT Imaging Using MARS Scanners“. In Spectral, Photon Counting Computed Tomography, 117–38. First edition. | Boca Raton : CRC Press, 2020. | Series: Devices, circuits, & systems: CRC Press, 2020. http://dx.doi.org/10.1201/9780429486111-7.
Der volle Inhalt der QuelleBarzas, Konstantinos, Shereen Fouad, Gainer Jasa und Gabriel Landini. „An Explainable Deep Learning Framework for Mandibular Canal Segmentation from Cone Beam Computed Tomography Volumes“. In Lecture Notes in Computer Science, 1–13. Cham: Springer Nature Switzerland, 2025. https://doi.org/10.1007/978-3-031-82768-6_1.
Der volle Inhalt der QuelleMiroshnychenko, Oleksandra, Sergii Miroshnychenko, Boris Goldberg, Sergey Guzeev, Andrii Nevgasymyi und Yurii Khobta. „Veterinary Self-protected Cone-Beam Computed Tomography Scanner“. In Lecture Notes in Networks and Systems, 237–47. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-03877-8_21.
Der volle Inhalt der QuelleRusso, P., G. Mettivier, A. Lauria und M. C. Montesi. „A Laboratory Scanner for Cone Beam Breast Computed Tomography“. In IFMBE Proceedings, 563–65. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-03879-2_157.
Der volle Inhalt der QuelleKritikos, Michaela, Jan Urminsky und Ivan Buransky. „Comparison of Optical Scanner and Computed Tomography Scan Accuracy“. In Lecture Notes in Mechanical Engineering, 521–30. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-90421-0_44.
Der volle Inhalt der QuelleCierniak, Robert. „Technical Concepts of X-ray Computed Tomography Scanners“. In X-Ray Computed Tomography in Biomedical Engineering, 21–62. London: Springer London, 2011. http://dx.doi.org/10.1007/978-0-85729-027-4_3.
Der volle Inhalt der QuelleYamada, F., A. Tamaki und Y. Obara. „Assessment of Time-Space Evolutions of Intertidal Flat Geo-Environments Using an Industrial X-Ray CT Scanner“. In Advances in Computed Tomography for Geomaterials, 343–51. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2013. http://dx.doi.org/10.1002/9781118557723.ch41.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Tomographic scanner"
Vidal, Franck, Shaghayegh Afshari, Sharif Ahmed, Carolyn Atkins, Eric Béchet, Alberto Corbi Bellot, Stefan Bosse et al. „X-ray simulations with gVXR as a useful tool for education, data analysis, set-up of CT scans, and scanner development“. In Developments in X-Ray Tomography XV, herausgegeben von Bert Müller und Ge Wang, 30. SPIE, 2024. http://dx.doi.org/10.1117/12.3025315.
Der volle Inhalt der QuelleKoo, Kyoungmo, Lucia Lee, Morgan McCloud und Mark Draelos. „Reducing cost but not quality with digital scanner interfaces for optical coherence tomography“. In Optical Coherence Tomography and Coherence Domain Optical Methods in Biomedicine XXIX, herausgegeben von Rainer A. Leitgeb und Yoshiaki Yasuno, 77. SPIE, 2025. https://doi.org/10.1117/12.3044047.
Der volle Inhalt der QuelleZhang, Jingyue, Hu Zhang, Ting Hu, Zhe Li, Zhonghua Sun, Kebin Jia und Jinchao Feng. „Rotational Cherenkov-excited luminescence scanned tomography reconstruction with symmetry vision mamba“. In Seventeenth International Conference on Photonics and Imaging in Biology and Medicine (PIBM 2024), herausgegeben von Valery V. Tuchin, Qingming Luo und Lihong V. Wang, 36. SPIE, 2025. https://doi.org/10.1117/12.3057819.
Der volle Inhalt der QuelleQuanhu, Zhang, Li Sufen, Hou Suxia, Zhang Lin und Zuo Wenming. „A Prototype of Tomographic Gamma Scanner“. In 2017 25th International Conference on Nuclear Engineering. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/icone25-67372.
Der volle Inhalt der QuelleWeiss Cohen, Miri, John A. Kennedy, Archil Pirmisashvili und Gleb Orlikov. „An Automatic System for Analyzing Phantom Images to Determine the Reliability of PET/SPECT Cameras“. In ASME 2015 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/detc2015-46254.
Der volle Inhalt der QuelleMason, J. A., A. C. Tolchard, A. C. N. Towner, K. Burke, R. A. Price, S. Dittrich, F. Zurey und D. Walraven. „A Tomographic Segmented Gamma Scanner for the Measurement of Decommissioning Wastes“. In ASME 2003 9th International Conference on Radioactive Waste Management and Environmental Remediation. ASMEDC, 2003. http://dx.doi.org/10.1115/icem2003-4658.
Der volle Inhalt der QuelleRavindranath, B., S. S. Junnarkar, M. L. Purschke, S. H. Maramraju, S. S. Southekal, S. P. Stoll, J. F. Pratte, P. Vaska, C. L. Woody und D. J. Schlyer. „3D tomographic wrist scanner for non-invasive determination of input function“. In 2009 IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC 2009). IEEE, 2009. http://dx.doi.org/10.1109/nssmic.2009.5401613.
Der volle Inhalt der QuelleQiao, H., T. G. Murthy und C. Saldana. „Structure and Deformation of Gradient Metal Foams Produced by Machining“. In ASME 2019 14th International Manufacturing Science and Engineering Conference. American Society of Mechanical Engineers, 2019. http://dx.doi.org/10.1115/msec2019-2980.
Der volle Inhalt der QuelleBille, J. F., und S. I. Brown. „3D Imaging Of The Human Eye Using The Laser Tomographic Scanner Lts“. In 14th Congress of the International Commission for Optics, herausgegeben von Henri H. Arsenault. SPIE, 1987. http://dx.doi.org/10.1117/12.967146.
Der volle Inhalt der QuelleTroiani, Francesco, Nadia Cherubini, Alessandro Dodaro, Franco Vittorio Frazzoli und Romolo Remetti. „L/ILW Waste Characterisation by the ENEA Multi-Technique Gamma System SRWGA“. In ASME 2003 9th International Conference on Radioactive Waste Management and Environmental Remediation. ASMEDC, 2003. http://dx.doi.org/10.1115/icem2003-4730.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Tomographic scanner"
Mercer, David J. Tomographic Gamma Scanner Experience: Three Cases. Office of Scientific and Technical Information (OSTI), Juni 2014. http://dx.doi.org/10.2172/1136107.
Der volle Inhalt der QuelleEstep, R. J., D. Miko, S. Melton und M. W. Rawool-Sullivan. A demonstration of the gross count tomographic gamma scanner (GC-TGS) method for the nondestructive assay of transuranic waste. Office of Scientific and Technical Information (OSTI), Dezember 1998. http://dx.doi.org/10.2172/335195.
Der volle Inhalt der QuelleKarimi, S., und H. Martz. Dose Measurement on Microfocus Computed Tomography Scanner. Office of Scientific and Technical Information (OSTI), April 2024. http://dx.doi.org/10.2172/2375414.
Der volle Inhalt der QuelleRoberson, G. P., und C. M. Logan. Estimate of external background radiation interference on a tomography scanner. Office of Scientific and Technical Information (OSTI), Juli 2000. http://dx.doi.org/10.2172/15003405.
Der volle Inhalt der QuelleLin, Pei-Jan Paul, Thomas J. Beck, Caridad Borras, Gerald Cohen, Robert A. Jucius, Robert J. Kriz, Edward L. Nickoloff et al. Specification and Acceptance Testing of Computed Tomography Scanners. AAPM, 1993. http://dx.doi.org/10.37206/38.
Der volle Inhalt der QuelleKaplan, Daniel, Kenneth Gibbs, Abdullah Mamun und Brian Powell. Non-Destructive Imaging of a Liquid Moving Through Porous Media Using a Computer Tomography Scanner. Office of Scientific and Technical Information (OSTI), August 2020. http://dx.doi.org/10.2172/1647017.
Der volle Inhalt der QuelleAtherosclerosis Biomarkers by Computed Tomography Angiography (CTA). Chair Andrew Buckler, Luca Saba und Uwe Joseph Schoepf. Radiological Society of North America (RSNA) / Quantitative Imaging Biomarkers Alliance (QIBA), März 2023. http://dx.doi.org/10.1148/qiba/20230328.
Der volle Inhalt der QuelleSaba, Luca, und Uwe Joseph Schoepf. Atherosclerosis Biomarkers by Computed Tomography Angiography (CTA) - Maintenance version June 2024. Chair Andrew Buckler. Radiological Society of North America (RSNA) / Quantitative Imaging Biomarkers Alliance (QIBA), Juni 2024. http://dx.doi.org/10.1148/qiba/202406.
Der volle Inhalt der QuelleGantzer, Clark J., Shmuel Assouline und Stephen H. Anderson. Synchrotron CMT-measured soil physical properties influenced by soil compaction. United States Department of Agriculture, Februar 2006. http://dx.doi.org/10.32747/2006.7587242.bard.
Der volle Inhalt der QuellePositron Emission Tomography-Scanner at Children`s Hospital of Michigan at Detroit, Michigan. Office of Scientific and Technical Information (OSTI), Dezember 1992. http://dx.doi.org/10.2172/10110463.
Der volle Inhalt der Quelle