Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Tomatoes Effect of salt on“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Tomatoes Effect of salt on" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Tomatoes Effect of salt on"
Zhang, Jifeng, Zhenhua Wang, Bihang Fan, Yusheng Hou, Yunqing Dou, Zuoli Ren und Xiaojie Chen. „Investigating the Proper Application Rate of Nitrogen under Mulched Drip Irrigation to Improve the Yield and Quality of Tomato in Saline Soil“. Agronomy 10, Nr. 2 (19.02.2020): 293. http://dx.doi.org/10.3390/agronomy10020293.
Der volle Inhalt der QuelleRangseekaew, Pharada, Adoración Barros-Rodríguez, Wasu Pathom-aree und Maximino Manzanera. „Deep-Sea Actinobacteria Mitigate Salinity Stress in Tomato Seedlings and Their Biosafety Testing“. Plants 10, Nr. 8 (17.08.2021): 1687. http://dx.doi.org/10.3390/plants10081687.
Der volle Inhalt der QuelleMartínez, Juan Pablo, Raúl Fuentes, Karen Farías, Carolina Lizana, Juan Felipe Alfaro, Lida Fuentes, Nicola Calabrese, Servane Bigot, Muriel Quinet und Stanley Lutts. „Effects of Salt Stress on Fruit Antioxidant Capacity of Wild (Solanum chilense) and Domesticated (Solanum lycopersicum var. cerasiforme) Tomatoes“. Agronomy 10, Nr. 10 (27.09.2020): 1481. http://dx.doi.org/10.3390/agronomy10101481.
Der volle Inhalt der QuelleSeron, J. S., R. J. Ferree, S. L. Knight, M. A. L. Smith und L. A. Spomer. „EFFECTS OF INCREASED SALINITY ON PHOTOSYNTHETIC CAPACITY OF `MICRO TOM' MINIATURE DWARF TOMATO“. HortScience 25, Nr. 9 (September 1990): 1092c—1092. http://dx.doi.org/10.21273/hortsci.25.9.1092c.
Der volle Inhalt der QuelleLi, Jingang, Jing Chen, Zhongyi Qu, Shaoli Wang, Pingru He und Na Zhang. „Effects of Alternating Irrigation with Fresh and Saline Water on the Soil Salt, Soil Nutrients, and Yield of Tomatoes“. Water 11, Nr. 8 (15.08.2019): 1693. http://dx.doi.org/10.3390/w11081693.
Der volle Inhalt der QuelleOliveira, Francisco de A. de, Francisco I. G. Paiva, José F. de Medeiros, Mikhael R. de S. Melo, Mychelle K. T. de Oliveira und Ricardo C. P. da Silvas. „Salinity tolerance of tomato fertigated with different K+/Ca2+ proportions in protected environment“. Revista Brasileira de Engenharia Agrícola e Ambiental 25, Nr. 9 (September 2021): 620–25. http://dx.doi.org/10.1590/1807-1929/agriambi.v25n9p620-625.
Der volle Inhalt der QuelleHossain, M. M., und H. Nonami. „Effect of salt stress on physiological response of tomato fruit grown in hydroponic culture system“. Horticultural Science 39, No. 1 (16.02.2012): 26–32. http://dx.doi.org/10.17221/63/2011-hortsci.
Der volle Inhalt der QuelleYan, Jianmin, Matthew D. Smith, Bernard R. Glick und Yan Liang. „Effects of ACC deaminase containing rhizobacteria on plant growth and expression of Toc GTPases in tomato (Solanum lycopersicum) under salt stress“. Botany 92, Nr. 11 (November 2014): 775–81. http://dx.doi.org/10.1139/cjb-2014-0038.
Der volle Inhalt der QuelleHanna, H. Y. „Properly Recycled Perlite Saves Money, Does Not Reduce Greenhouse Tomato Yield, and Can Be Reused for Many Years“. HortTechnology 15, Nr. 2 (Januar 2005): 342–45. http://dx.doi.org/10.21273/horttech.15.2.0342.
Der volle Inhalt der QuelleWilson, Clyde, Robert A. Clark und Monica A. Madore. „EFFECT OF SALT STRESS ON SUGAR TRANSPORT IN TOMATO“. HortScience 27, Nr. 6 (Juni 1992): 684d—684. http://dx.doi.org/10.21273/hortsci.27.6.684d.
Der volle Inhalt der QuelleDissertationen zum Thema "Tomatoes Effect of salt on"
Al-Rawahy, Salim Ali. „Nitrogen uptake, growth rate and yield of tomatoes under saline conditions“. Diss., The University of Arizona, 1989. http://hdl.handle.net/10150/184894.
Der volle Inhalt der QuelleSlail, Nabeel Younis 1963. „INFLUENCE OF SODIUM-CHLORIDE ON TRANSPIRATION AND PLANT GROWTH OF TWO TOMATO CULTIVARS“. Thesis, The University of Arizona, 1987. http://hdl.handle.net/10150/276516.
Der volle Inhalt der QuelleWang, Ding Xiang. „Interaction between the effects of sodium chloride and high temperature on the vegetative growth of tomato (Lycopersicon esculentum Mill.)“. Title page, contents and summary only, 1993. http://web4.library.adelaide.edu.au/theses/09PH/09phw2456.pdf.
Der volle Inhalt der QuelleDanon, Avihai. „Molecular events associated with halophytic growth in Lycopersicon pennellii“. Diss., The University of Arizona, 1989. http://hdl.handle.net/10150/184642.
Der volle Inhalt der QuelleLintnaar, Melissa. „The physiological responses of salinity stressed tomato plants to mycorrhizal infection and variation in rhizosphere carbon dioxide concentration“. Thesis, Stellenbosch : Stellenbosch University, 2000. http://hdl.handle.net/10019.1/52002.
Der volle Inhalt der QuelleENGLISH ABSTRACT: This investigation was undertaken to determine whether elevated concentrations of dissolved inorganic carbon (DIC) supplied to plant roots could improve plant growth and alleviate the effects of salinity stress on tomato plants infected with arbuscular mycorrhizae. Lycopersicon esculentum cv. FI44 seedlings were grown in hydroponic culture (pH 5.8) with 0 and 75 mM NaCI and with or without infection with the fungus Glomus mosseae. The root solution was aerated with ambient CO2 (360 ppm) or elevated CO2 ( 5 000 ppm) concentrations. The arbuscular and hypha I components of mycorrhizal infection as well as the percentages total infection were decreased or increased according to the variation in seasons. The plant dry weight of mycorrhizal plants was increased by 30% compared to non-mycorrhizal plants at elevated concentrations of CO2, while the dry weight was decreased by 68% at ambient CO2 concentrations. Elevated CO2 also stimulated the growth of the mycorrhizal fungus. Elevated CO2 increased the plant dry weight and stimulated fungal growth of mycorrhizal plants possibly by the provision of carbon due to the incorporation of HCO)- by PEPc. Plant roots supplied with elevated concentrations of CO2 had a decreased CO2 release rate compared to roots at ambient CO2. This decrease in CO2 release rate at elevated CO2 was due to the increased incorporation of HC03- by PEPc activity. Under conditions of salinity stress plants had a higher ratio of N03-: reduced N in the xylem sap compared to plants supplied with 0 mM NaCI. Under salinity stress conditions, more N03- was transported in the xylem stream possibly because of the production of more organic acids instead of amino acids due to low P conditions under which the plants were grown. The N03· uptake rate of plants increased at elevated concentrations of CO2 in the absence of salinity because the HCO)- could be used for the production of amino acids. In the presence of salinity, carbon was possibly used for the production of organic acids that diverted carbon away from the synthesis of amino acids. It was concluded that mycorrhizas were beneficial for plant growth under conditions of salinity stress provided that there was an additional source of carbon. Arbuscular mycorrhizal infection did not improve the nutrient uptake of hydroponically grown plants.
AFRIKAANSE OPSOMMING: In hierdie studie was die effek van verhoogde konsentrasies opgeloste anorganiese koolstof wat aan plant wortels verskaf is, getoets om te bepaal of dit die groei van plante kan verbeter asook of sout stres verlig kon word in tamatie plante wat met arbuskulêre mikorrhizas geïnfekteer was. Lycorpersicon esculentum cv. FJ44 saailinge was in water kultuur gegroei (pH 5.8) met 0 en 75 mM NaCI asook met of sonder infeksie met die fungus Glomus mosseae. Die plant wortels was bespuit met normale CO2 (360 dele per miljoen (dpm)) sowel as verhoogde CO2 (5 000 dpm) konsentrasies. Die arbuskulere en hife komponente, sowel as die persentasie infeksie was vermeerder of verminder na gelang van die verandering in seisoen. Die plant droë massa van mikorrhiza geïnfekteerde plante by verhoogde CO2 konsentrasies was verhoog met 30% in vergelyking met plante wat nie geïnfekteer was nie, terwyl die droë massa met 68% afgeneem het by gewone CO2 konsentrasies. Verhoogde CO2 konsentrasies het moontlik die plant droë massa en die groei van die fungus verbeter deur koolstof te verskaf as gevolg van die vaslegging van HCO)- deur die werking van PEP karboksilase. Plant wortels wat met verhoogde CO2 konsentrasies bespuit was, het 'n verlaagde CO2 vrystelling getoon in vergelyking met die wortels by normale CO2 vlakke. Die vermindering in CO2 vrystelling van wortels by verhoogde CO2 was die gevolg van die vaslegging van HC03- deur PEPk aktiwiteit. Onder toestande van sout stres, het plante 'n groter hoeveelheid N03- gereduseerde N in die xileemsap bevat in vergelyking met plante wat onder geen sout stres was nie, asook meer NO)- was in die xileemsap vervoer moontlik omdat meer organiese sure geproduseer was ten koste van amino sure. Dit was die moontlike gevolg omdat die plante onder lae P toestande gegroei het. Die tempo van NO.; opname was verhoog onder verhoogde CO2 konsentrasies en in die afwesigheid van sout stres omdat die HCO)- vir die produksie van amino sure gebruik was. In die teenwoordigheid van sout was koolstof moontlik gebruik om organiese sure te vervaardig wat koolstof weggeneem het van die vervaardiging van amino sure. Daar is tot die slotsom gekom dat mikorrhizas voordelig is vir die groei van plante onder toestande van sout stres mits daar 'n addisionele bron van koolstof teenwoordig is. Arbuskulere mikorrhiza infeksie het 'n geringe invloed gehad op die opname van voedingstowwe van plante wat in waterkultuur gegroei was.
Rawahy, Salim Ali 1951. „EFFECT OF SODIUM-CHLORIDE, SODIUM-SULFATE AND CALCIUM-CHLORIDE SALTS ON NITROGEN AND PHOSPHORUS UPTAKE BY TOMATO PLANTS (SALINITY, OSMOTIC PRESSURE, SPECIFIC ION EFFECT)“. Thesis, The University of Arizona, 1986. http://hdl.handle.net/10150/275527.
Der volle Inhalt der QuelleAl-Bahrany, Abdulaziz Maatook 1960. „PHYSIOLOGICAL RESPONSES OF TOMATO CULTIVARS SUBJECTED TO SALINITY (GERMINATION, RESPIRATION)“. Thesis, The University of Arizona, 1986. http://hdl.handle.net/10150/276460.
Der volle Inhalt der QuelleSaif, Salman Mohammed 1958. „EFFECT OF SALINITY ON THE TOMATO PLANTS GROWN IN A HYDROPONIC SYSTEM“. Thesis, The University of Arizona, 1986. http://hdl.handle.net/10150/277070.
Der volle Inhalt der QuelleNeto, Egidio Bezerra. „Salt tolerance in tomatoes“. Thesis, Bangor University, 1992. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.332560.
Der volle Inhalt der QuelleDessalegne, Lemma. „Salt tolerance in tomatoes (Lycopersicon esculentum Mill)“. Thesis, University of Reading, 1996. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.336686.
Der volle Inhalt der QuelleBücher zum Thema "Tomatoes Effect of salt on"
Hassan, Noaman Shawky. In vitro effect of salinity and selection for salt tolerant lines in some tomato species. Birmingham: University of Birmingham, 1987.
Den vollen Inhalt der Quelle findenGoudie, Andrew. Salt weathering. Oxford: University of Oxford School of Geography, 1985.
Den vollen Inhalt der Quelle findenGoudie, Andrew. Salt weathering. Oxford: School of Geography, University of Oxford, 1985.
Den vollen Inhalt der Quelle findenVapor-liquid equilibrium data--salt effect. Tokyo: Kodansha, 1991.
Den vollen Inhalt der Quelle findenWorld Salt Symposium (8th 2000 Hague, Netherlands). 8th World Salt Symposium. Amsterdam: Elsevier, 2000.
Den vollen Inhalt der Quelle findenSymposium, on Salt (7th 1992 Kyoto Japan). Seventh Symposium on Salt. Amsterdam: Elsevier, 1993.
Den vollen Inhalt der Quelle findenNavarrete, Francisco Fernández. La sal admirable de España (1738): Discurso médico-histórico y físico-analítico. Almería ; Barcelona: Griselda Bonet Girabet, 1998.
Den vollen Inhalt der Quelle findenMacLean, Jayne T. Salt tolerance in plants, 1983-85: 137 citations. Beltsville, Md: U. S. Dept. of Agriculture, National Agricultural Library, 1986.
Den vollen Inhalt der Quelle findenLangre, Jacques de. Seasalt's hidden powers: The biological action of all ocean minerals on body and mind. Asheville, N.C: Happiness Press, 1994.
Den vollen Inhalt der Quelle findenInternational Symposium on Inland Saline Lakes (5th 1991 Hotel Titikaka, Bolivia). Saline lakes V: Proceedings of the Vth International Symposium on Inland Saline Lakes, held in Bolivia, 22-29 March 1991. Dordrecht: Kluwer Academic, 1993.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Tomatoes Effect of salt on"
Saito, Takeshi, und Chiaki Matsukura. „Effect of Salt Stress on the Growth and Fruit Quality of Tomato Plants“. In Abiotic Stress Biology in Horticultural Plants, 3–16. Tokyo: Springer Japan, 2014. http://dx.doi.org/10.1007/978-4-431-55251-2_1.
Der volle Inhalt der QuelleFakhri, Nesrine, Hsan Youssef Mehdaoui, Nada Elloumi und Monem Kallel. „Magnetic Treatment Effects on Salt Water and Tomato Plants Growth“. In Recent Advances in Environmental Science from the Euro-Mediterranean and Surrounding Regions, 1095–97. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-70548-4_316.
Der volle Inhalt der QuelleDelgado, João M. P. Q., Fernando A. N. Silva, António C. Azevedo und Ariosvaldo Ribeiro. „Effect of Soluble Mineral Salts“. In Salt Damage in Ceramic Brick Masonry, 29–52. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-47114-9_4.
Der volle Inhalt der QuelleZhou, Liya, Junyan Huang, Hao Xing, Qinghua Gao, Yaoqi Li und Xiaomin Li. „Edible Coating Packaging and Its Preservation Effect to Cherry Tomatoes“. In Lecture Notes in Electrical Engineering, 1075–84. Singapore: Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-3530-2_132.
Der volle Inhalt der QuelleChang, K. R., und K. Sommer. „The effect of nitrogen supply by NH4-beaker-deposits on tomatoes“. In Plant Nutrition, 770–71. Dordrecht: Springer Netherlands, 2001. http://dx.doi.org/10.1007/0-306-47624-x_374.
Der volle Inhalt der QuelleTangwongchai, R., D. A. Ledward und J. M. Ames. „Effect of High Pressure Treatment on Lipoxygenase Activity in Cherry Tomatoes“. In Advances in High Pressure Bioscience and Biotechnology, 435–38. Berlin, Heidelberg: Springer Berlin Heidelberg, 1999. http://dx.doi.org/10.1007/978-3-642-60196-5_98.
Der volle Inhalt der QuelleNakagawa, Masao, Kazuo Takeda, Tatsuo Yoshitomi, Hiroshi Itoh, Tetsuo Nakata und Susumu Sasaki. „Antihypertensive Effect of Taurine on Salt-Induced Hypertension“. In Advances in Experimental Medicine and Biology, 197–206. Boston, MA: Springer US, 1994. http://dx.doi.org/10.1007/978-1-4899-1471-2_20.
Der volle Inhalt der QuelleSmaoui, A., und A. Cherif. „Effect of Salt on Lipid Reserves of Cotton Seeds“. In Biological Role of Plant Lipids, 541–42. Boston, MA: Springer US, 1989. http://dx.doi.org/10.1007/978-1-4684-1303-8_120.
Der volle Inhalt der QuelleLi, Yuan Hui, De Fu Luo und Shao Xu Wu. „Effect of QPQ Salt Bath Oxidation on Corrosion Resistance“. In Solid State Phenomena, 209–14. Stafa: Trans Tech Publications Ltd., 2006. http://dx.doi.org/10.4028/3-908451-25-6.209.
Der volle Inhalt der QuelleHeard, H. C., und F. J. Ryerson. „Effect of cation impurities on steady-state flow of salt“. In Mineral and Rock Deformation: Laboratory Studies, 99–115. Washington, D. C.: American Geophysical Union, 1986. http://dx.doi.org/10.1029/gm036p0099.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Tomatoes Effect of salt on"
MARTINEZ, Juan Pablo. „Effect of salt-tolerant rootstock issued from an interspecific cross between cultivated and wild relative halophyte tomato on physiological parameters in“. In ASPB PLANT BIOLOGY 2020. USA: ASPB, 2020. http://dx.doi.org/10.46678/pb.20.1053049.
Der volle Inhalt der QuelleSilva Junior, J. F., A. E. Klar, A. A. Tanaka, I. P. F. Silva und A. I. I. Cardoso. „Tomatoes Seeds Vigor under Water or Salt Stress“. In II Inovagri International Meeting. Fortaleza, Ceará, Brasil: INOVAGRI/INCT-EI/INCTSal, 2014. http://dx.doi.org/10.12702/ii.inovagri.2014-a734.
Der volle Inhalt der Quelle„Effects of sewage application on salt accumulation in soil and on sap flow of tomato plants under drip irrigation“. In 2015 ASABE / IA Irrigation Symposium: Emerging Technologies for Sustainable Irrigation - A Tribute to the Career of Terry Howell, Sr. Conference Proceedings. American Society of Agricultural and Biological Engineers, 2015. http://dx.doi.org/10.13031/irrig.20152143534.
Der volle Inhalt der QuelleBlaine Hanson und Don May. „Effect of Subsurface Drip Irrigation on Processing Tomatoes Yield, Water Table Depth, and Soil Salinity“. In 2003, Las Vegas, NV July 27-30, 2003. St. Joseph, MI: American Society of Agricultural and Biological Engineers, 2003. http://dx.doi.org/10.13031/2013.13774.
Der volle Inhalt der QuelleCampos, Gilson, Cristina Alex Simao, Cristiane Richard de Miranda, Sandip Patil, Abhimanyu Deshpande, Rahul C. Patil und Kris Ravi. „Salt Tolerant Cement Systems to Mitigate Gelling Effect“. In IADC/SPE Asia Pacific Drilling Technology Conference. Society of Petroleum Engineers, 2014. http://dx.doi.org/10.2118/170477-ms.
Der volle Inhalt der QuelleAnderson, K., O. Chvála, S. Skutnik und A. Wheeler. „Plutonium Diversion Effect on Molten-Salt Reactor Dynamics“. In Tranactions - 2019 Winter Meeting. AMNS, 2019. http://dx.doi.org/10.13182/t31324.
Der volle Inhalt der QuelleYamamoto, Takahisa, Koshi Mitachi und Takashi Suzuki. „Steady State Analysis of Molten Salt Reactor in Consideration of the Effect of Fuel Salt Flow“. In 12th International Conference on Nuclear Engineering. ASMEDC, 2004. http://dx.doi.org/10.1115/icone12-49077.
Der volle Inhalt der QuelleHongchuan Dong, Wenjie Xu, Bin Cao, Liming Wang und Zhicheng Guan. „Effect of soluble salt on conductivity of partial surface“. In 2015 IEEE Conference on Electrical Insulation and Dielectric Phenomena - (CEIDP). IEEE, 2015. http://dx.doi.org/10.1109/ceidp.2015.7352054.
Der volle Inhalt der QuelleAranghel, D., C. R. Badita, A. Radulescu, L. Moldovan, O. Craciunescu und M. Balasoiu. „The effect of divalent salt in chondroitin sulfate solutions“. In 9TH INTERNATIONAL PHYSICS CONFERENCE OF THE BALKAN PHYSICAL UNION (BPU-9). AIP Publishing LLC, 2016. http://dx.doi.org/10.1063/1.4944236.
Der volle Inhalt der QuelleZandraa, Oyunchimeg, Nabanita Saha, Tomas Saha, Takeshi Kitano und Petr Sáha. „Effect of salt concentration and temperature on the rheological properties of guar gum-dead sea salt gel“. In PROCEEDINGS OF THE REGIONAL CONFERENCE GRAZ 2015 – POLYMER PROCESSING SOCIETY PPS: Conference Papers. Author(s), 2016. http://dx.doi.org/10.1063/1.4965544.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Tomatoes Effect of salt on"
Gray, W. J. Effect of surface oxidation, alpha radiolysis, and salt brine composition on spent fuel and UO/sub 2/ leaching performance: Salt Repository Project. Office of Scientific and Technical Information (OSTI), Juni 1988. http://dx.doi.org/10.2172/6783908.
Der volle Inhalt der QuelleBradshaw, Robert W., und W. Miles Clift. Effect of chloride content of molten nitrate salt on corrosion of A516 carbon steel. Office of Scientific and Technical Information (OSTI), November 2010. http://dx.doi.org/10.2172/1002088.
Der volle Inhalt der QuelleDemirbas, Sefer, und Alpay Balkan. The Effect of H2O2 Pre-treatment on Antioxidant Enzyme Activities of Triticale under Salt Stress. "Prof. Marin Drinov" Publishing House of Bulgarian Academy of Sciences, August 2020. http://dx.doi.org/10.7546/crabs.2020.08.17.
Der volle Inhalt der QuelleJacobs, R. A. Response of DWPF thermal flowmeters to composition change: Effect on 02 determination in Salt Process Cell. Office of Scientific and Technical Information (OSTI), Februar 1992. http://dx.doi.org/10.2172/10136686.
Der volle Inhalt der QuelleKirova, Elisaveta. Effect of Nitrogen Nutrition Source on Antioxidant Defense System of Soybean Plants Subjected to Salt Stress. "Prof. Marin Drinov" Publishing House of Bulgarian Academy of Sciences, Februar 2020. http://dx.doi.org/10.7546/crabs.2020.02.09.
Der volle Inhalt der QuelleGorham, P. Accelerator Measurments of the Askaryan Effect in Rock Salt: A Roadmap Toward Teraton Underground Neutrino Detectors. Office of Scientific and Technical Information (OSTI), Dezember 2004. http://dx.doi.org/10.2172/839783.
Der volle Inhalt der QuelleJacobs, R. A. Response of DWPF thermal flowmeters to composition change: Effect on 02 determination in Salt Process Cell. Office of Scientific and Technical Information (OSTI), Februar 1992. http://dx.doi.org/10.2172/6985879.
Der volle Inhalt der QuelleBarnes, M. J. The Effect of Tri-N-Butyl Phosphate on Tank 48 as a Result of Salt Solution Transfers within the In-Tank Precipitation Facility. Office of Scientific and Technical Information (OSTI), Mai 1994. http://dx.doi.org/10.2172/292673.
Der volle Inhalt der QuelleHambley, D. F., J. E. Russell, R. G. Whitfield, L. D. McGinnis, W. Harrison, C. H. Jacoby, T. R. Bump, D. Z. Mraz, J. S. Busch und L. E. Fischer. Radioactive waste isolation in salt: Peer review of the Fluor Technology, Inc. , report and position paper concerning waste emplacement mode and its effect on repository conceptual design. Office of Scientific and Technical Information (OSTI), Februar 1987. http://dx.doi.org/10.2172/7094062.
Der volle Inhalt der QuelleWang, Chih-Hao, und Na Chen. Do Multi-Use-Path Accessibility and Clustering Effect Play a Role in Residents' Choice of Walking and Cycling? Mineta Transportation Institute, Juni 2021. http://dx.doi.org/10.31979/mti.2021.2011.
Der volle Inhalt der Quelle