Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Tolerance to biotic stress“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Tolerance to biotic stress" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Tolerance to biotic stress"
Rauwane, Molemi, und Khayalethu Ntushelo. „Understanding Biotic Stress and Hormone Signalling in Cassava (Manihot esculenta): Potential for Using Hyphenated Analytical Techniques“. Applied Sciences 10, Nr. 22 (18.11.2020): 8152. http://dx.doi.org/10.3390/app10228152.
Der volle Inhalt der QuelleHamli, S., K. Kadi, I. Bekhouche, I. Harnane, D. Addad, A. Abdelmalek und N. Harrat. „Involvement of abiotic stress tolerance mechanisms in biotic stress tolerance in durum wheat“. Journal of Fundamental and Applied Sciences 12, Nr. 2 (21.05.2023): 738–54. http://dx.doi.org/10.4314/jfas.v12i2.15.
Der volle Inhalt der QuelleBhar, Anirban, und Amit Roy. „Emphasizing the Role of Long Non-Coding RNAs (lncRNA), Circular RNA (circRNA), and Micropeptides (miPs) in Plant Biotic Stress Tolerance“. Plants 12, Nr. 23 (23.11.2023): 3951. http://dx.doi.org/10.3390/plants12233951.
Der volle Inhalt der QuelleMarwal, Avinash, Akhilesh Kumar Srivastava und R. K. Gaur. „Improved plant tolerance to biotic stress for agronomic management“. Agrica 9, Nr. 2 (2020): 84–100. http://dx.doi.org/10.5958/2394-448x.2020.00013.9.
Der volle Inhalt der QuelleTsaniklidis, Georgios, Polyxeni Pappi, Athanasios Tsafouros, Spyridoula N. Charova, Nikolaos Nikoloudakis, Petros A. Roussos, Konstantinos A. Paschalidis und Costas Delis. „Polyamine homeostasis in tomato biotic/abiotic stress cross-tolerance“. Gene 727 (Februar 2020): 144230. http://dx.doi.org/10.1016/j.gene.2019.144230.
Der volle Inhalt der QuelleKandpal, Geeta, und MK Nautiyal. „Silicon solubilizer confers biotic stress tolerance in rice genotypes“. International Journal of Agriculture and Nutrition 1, Nr. 2 (01.04.2019): 28–30. http://dx.doi.org/10.33545/26646064.2019.v1.i2a.13.
Der volle Inhalt der QuelleWijerathna-Yapa, Akila, und Jayeni Hiti-Bandaralage. „Tissue Culture—A Sustainable Approach to Explore Plant Stresses“. Life 13, Nr. 3 (14.03.2023): 780. http://dx.doi.org/10.3390/life13030780.
Der volle Inhalt der QuelleHuang, Li, Xiangjing Yin, Xiaomeng Sun, Jinhua Yang, Mohammad Rahman, Zhiping Chen und Xiping Wang. „Expression of a Grape VqSTS36-Increased Resistance to Powdery Mildew and Osmotic Stress in Arabidopsis but Enhanced Susceptibility to Botrytis cinerea in Arabidopsis and Tomato“. International Journal of Molecular Sciences 19, Nr. 10 (30.09.2018): 2985. http://dx.doi.org/10.3390/ijms19102985.
Der volle Inhalt der QuelleFan, Jibiao, Weihong Zhang, Erick Amombo, Longxing Hu, Johan Olav Kjorven und Liang Chen. „Mechanisms of Environmental Stress Tolerance in Turfgrass“. Agronomy 10, Nr. 4 (06.04.2020): 522. http://dx.doi.org/10.3390/agronomy10040522.
Der volle Inhalt der QuelleBerens, Matthias L., Katarzyna W. Wolinska, Stijn Spaepen, Jörg Ziegler, Tatsuya Nobori, Aswin Nair, Verena Krüler et al. „Balancing trade-offs between biotic and abiotic stress responses through leaf age-dependent variation in stress hormone cross-talk“. Proceedings of the National Academy of Sciences 116, Nr. 6 (23.01.2019): 2364–73. http://dx.doi.org/10.1073/pnas.1817233116.
Der volle Inhalt der QuelleDissertationen zum Thema "Tolerance to biotic stress"
South, Kaylee. „Improving abiotic and biotic stress tolerance in floriculture crops“. The Ohio State University, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=osu1595499762154056.
Der volle Inhalt der QuelleKarim, Sazzad. „Exploring plant tolerance to biotic and abiotic stresses /“. Uppsala : Dept. of Plant Biology and Forest Genetics, Swedish University of Agricultural Sciences, 2007. http://epsilon.slu.se/200758.pdf.
Der volle Inhalt der QuelleChilufya, Jedaidah, Kousha Mohensi und Aruna Kilaru. „The Role of Anandamide in Biotic Stress Tolerance in Mosses“. Digital Commons @ East Tennessee State University, 2015. https://dc.etsu.edu/etsu-works/4843.
Der volle Inhalt der QuelleMuthevhuli, Mpho. „Investigation of the role of AtNOGC1, a guanylyl cyclase protein in response to abiotic and biotic stress“. University of the Western Cape, 2018. http://hdl.handle.net/11394/6763.
Der volle Inhalt der QuelleAgricultural production is one of the most important sectors which provide food for the growing world population which is estimated to reach 9.7 billion by 2050, thus there is a need to produce more food. Climate change, on the other hand, is negatively affecting major global crops such as maize, sorghum, wheat and barley. Environmental factors such as salinity, drought, high temperatures and pathogens affect plant production by oxidatively damaging the physiological processes in plants, leading to plant death. Poor irrigation used to combat drought result in salinasation, which is estimated to affect 50% of arable land by 2050. Plants have developed several mechanisms that protect them against stress and these include overexpression of stress responsive genes and altered signal transduction to change the expression of stress responsive genes, among others. Cyclic 3’5’ guanosine monophosphate (cGMP), a second messenger that is synthesised by guanylyl cyclase (GC), transmit signals to various cellular functions in plants during plant development, growth and response to abiotic and biotic stresses. Arabidopsis thaliana nitric oxide guanylyl cyclase 1 (AtNOGC1) is a guanylyl cyclase which upon activation by nitric oxide (NO) leads to the production of more cGMP. Cyclic GMP further activates protein kinases, ion gated channels and phosphodiesterase which mediate response to various stresses. In this project the role of AtNOGC1 was investigated in response to abiotic and biotic stresses through analysis of its evolutionary relationships, promoter, gene expression and functional analysis via the viability assays in Escherichia coli (E.coli). Phylogenetic tree, exon-intron structure and conserved motifs were analysed using the Molecular Evolutionary Genetics Analysis (MEGA V.7), Gene Structure Display Server 2.0 (GSDS 2.0), and Multiple Expectation Maximisation for Motif Elicitation (MEME) tools respectively. AtNOGC1’s gene expression was analysed by the Real-Time Quantitative Reverse Transcription Polymerase Reaction (qRT-PCR), whereas functional analysis was carried out using the cell viability (liquid and spot) assays to determine its ability to confer stress tolerance to E. coli.
Sarkar, Jayanwita. „Temperature stress in wheat plants, its alleviation by selected plant growth promoting rhizobacteria and comparative evaluation of their role in tolerance to biotic stress“. Thesis, University of North Bengal, 2018. http://ir.nbu.ac.in/handle/123456789/2656.
Der volle Inhalt der QuelleLo, Cicero Luca. „Generation of CsGSTUs over-expressing tobacco plants and their role in abiotic and biotic stress tolerance“. Doctoral thesis, Università di Catania, 2014. http://hdl.handle.net/10761/1574.
Der volle Inhalt der QuelleRouifed, Soraya. „Bases scientifiques pour un contrôle des renouées asiatiques : performances du complexe hybride Fallopia en réponse aux contraintes environnementales“. Thesis, Lyon 1, 2011. http://www.theses.fr/2011LYO10006.
Der volle Inhalt der QuellePlant growth is a dynamic process that responds to environmental characteristics. The decrease of the plant biomass production induced by various stresses, disturbance, or competition, determines the tolerance to these constraints. In the case of invasive plants, assessing this tolerance is crucial to determine invasibility and to find prevention or control methods. The taxa of the genus Fallopia are here considered in the context of the invasion of the Loire department. Their responses to nutrient stress, salt stress, and disturbance are associated with environmental conditions favouring or limiting the invasion. The results give some evidences about mechanisms implied in the success of Fallopia spp and about the effectiveness of different prevention or control methods
Escalante, Pérez María. „Poplar responses to biotic and abiotic stress“. kostenfrei, 2009. http://nbn-resolving.de/urn/resolver.pl?urn=nbn:de:bvb:20-opus-46893.
Der volle Inhalt der QuelleMadeo, M. „MEDICINAL PLANT RESPONSE TO ABIOTIC AND BIOTIC STRESS“. Doctoral thesis, Università degli Studi di Milano, 2010. http://hdl.handle.net/2434/150114.
Der volle Inhalt der QuelleCapra, E. „PROTEIN EXPRESSION PROFILING ASSOCIATED TO BIOTIC STRESS IN MAIZE“. Doctoral thesis, Università degli Studi di Milano, 2012. http://hdl.handle.net/2434/168732.
Der volle Inhalt der QuelleBücher zum Thema "Tolerance to biotic stress"
Vats, Sharad, Hrsg. Biotic and Abiotic Stress Tolerance in Plants. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-10-9029-5.
Der volle Inhalt der QuelleWani, Shabir Hussain, Vennampally Nataraj und Gyanendra Pratap Singh, Hrsg. Transcription Factors for Biotic Stress Tolerance in Plants. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-12990-2.
Der volle Inhalt der QuelleSunkar, Ramanjulu, Hrsg. Plant Stress Tolerance. New York, NY: Springer New York, 2017. http://dx.doi.org/10.1007/978-1-4939-7136-7.
Der volle Inhalt der QuelleSunkar, Ramanjulu, Hrsg. Plant Stress Tolerance. Totowa, NJ: Humana Press, 2010. http://dx.doi.org/10.1007/978-1-60761-702-0.
Der volle Inhalt der QuelleMosa, Kareem A., Ahmed Ismail und Mohamed Helmy. Plant Stress Tolerance. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-59379-1.
Der volle Inhalt der QuelleHasanuzzaman, Mirza, Khalid Rehman Hakeem, Kamrun Nahar und Hesham F. Alharby, Hrsg. Plant Abiotic Stress Tolerance. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-06118-0.
Der volle Inhalt der Quelle1932-, Jennings D. H., Hrsg. Stress tolerance of fungi. New York: M. Dekker, 1993.
Den vollen Inhalt der Quelle findenSolankey, Shashank Shekhar, und Md Shamim. Biotic Stress Management in Tomato. Boca Raton: Apple Academic Press, 2021. http://dx.doi.org/10.1201/9781003186960.
Der volle Inhalt der QuelleAnsari, Rizwan Ali, und Irshad Mahmood, Hrsg. Plant Health Under Biotic Stress. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-6040-4.
Der volle Inhalt der QuelleAnsari, Rizwan Ali, und Irshad Mahmood, Hrsg. Plant Health Under Biotic Stress. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-6043-5.
Der volle Inhalt der QuelleBuchteile zum Thema "Tolerance to biotic stress"
Mosa, Kareem A., Ahmed Ismail und Mohamed Helmy. „Omics Approaches to Understand Biotic Stresses: A Case Study on Plant Parasitic Nematodes“. In Plant Stress Tolerance, 35–54. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-59379-1_3.
Der volle Inhalt der QuelleRedondo-Gómez, Susana. „Abiotic and Biotic Stress Tolerance in Plants“. In Molecular Stress Physiology of Plants, 1–20. India: Springer India, 2013. http://dx.doi.org/10.1007/978-81-322-0807-5_1.
Der volle Inhalt der QuelleKotari, Pavitra, V. Swarupa und Kundapura V. Ravishankar. „Genomics of Biotic Stress Tolerance in Banana“. In Banana: Genomics and Transgenic Approaches for Genetic Improvement, 61–75. Singapore: Springer Singapore, 2016. http://dx.doi.org/10.1007/978-981-10-1585-4_5.
Der volle Inhalt der QuelleDe Filippis, L. F. „Breeding for Biotic Stress Tolerance in Plants“. In Crop Production for Agricultural Improvement, 145–200. Dordrecht: Springer Netherlands, 2012. http://dx.doi.org/10.1007/978-94-007-4116-4_6.
Der volle Inhalt der QuelleHernández, J. A., G. Barba-Espín und P. Diaz-Vivancos. „Glutathione-Mediated Biotic Stress Tolerance in Plants“. In Glutathione in Plant Growth, Development, and Stress Tolerance, 309–29. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-66682-2_14.
Der volle Inhalt der QuelleSatya, Pratik, Soham Ray, B. S. Gotyal, Kunal Mandal und Suman Roy. „Genomics for Biotic Stress Tolerance in Jute“. In Genomic Designing for Biotic Stress Resistant Technical Crops, 247–83. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-09293-0_7.
Der volle Inhalt der QuellePriya, Shalu, Ashish Kumar, Viabhav Kumar Upadhayay, Anuj Chaudhary, Heena Parveen und Govind Kumar. „Impact of Nanoparticles on Biotic Stress Tolerance“. In Advances in Nanotechnology for Smart Agriculture, 197–220. Boca Raton: CRC Press, 2023. http://dx.doi.org/10.1201/9781003345565-10.
Der volle Inhalt der QuelleSingh, Jitender, und Jitendra K. Thakur. „Photosynthesis and Abiotic Stress in Plants“. In Biotic and Abiotic Stress Tolerance in Plants, 27–46. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-10-9029-5_2.
Der volle Inhalt der QuelleKumar, Sonu, und Asheesh Shanker. „Bioinformatics Resources for the Stress Biology of Plants“. In Biotic and Abiotic Stress Tolerance in Plants, 367–86. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-10-9029-5_14.
Der volle Inhalt der QuelleKumar, Sanjay, Supriya Sachdeva, K. V. Bhat und Sharad Vats. „Plant Responses to Drought Stress: Physiological, Biochemical and Molecular Basis“. In Biotic and Abiotic Stress Tolerance in Plants, 1–25. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-10-9029-5_1.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Tolerance to biotic stress"
Ibragimov, A. E., D. Yu Garshina, An Kh Baymiev und O. V. Lastochkina. „Modulation of Triticum aestivum L. tolerance to combined abiotic/biotic stresses by endophytic plant growth promoting bacteria Bacillus subtilis“. In РАЦИОНАЛЬНОЕ ИСПОЛЬЗОВАНИЕ ПРИРОДНЫХ РЕСУРСОВ В АГРОЦЕНОЗАХ. Federal State Budget Scientific Institution “Research Institute of Agriculture of Crimea”, 2020. http://dx.doi.org/10.33952/2542-0720-15.05.2020.11.
Der volle Inhalt der QuelleDascaliuc, Alexandru, Natalia Jelev und Eugeniu Alexandrov. „The biostimulator Reglalg as an inductor of plants' viability and vigor“. In Scientific International Symposium "Plant Protection – Achievements and Perspectives". Institute of Genetics, Physiology and Plant Protection, Republic of Moldova, 2023. http://dx.doi.org/10.53040/ppap2023.46.
Der volle Inhalt der QuelleSora, Dorin, und Mădălina Doltu. „GRAFTED TOMATOES – ECOLOGICAL ALTERNATIVE FOR CHEMICAL DISINFECTION OF SOIL“. In GEOLINKS International Conference. SAIMA Consult Ltd, 2020. http://dx.doi.org/10.32008/geolinks2020/b1/v2/21.
Der volle Inhalt der QuelleLeon-Reyes, Antonio. „Induced tolerance to abiotic and biotic stresses of broccoli and Arabidopsis after treatment with elicitor molecules“. In ASPB PLANT BIOLOGY 2020. USA: ASPB, 2020. http://dx.doi.org/10.46678/pb.20.1383241.
Der volle Inhalt der QuelleAlibekov, M. R. „Diagnosis of Plant Biotic Stress by Methods of Explainable Artificial Intelligence“. In 32nd International Conference on Computer Graphics and Vision. Keldysh Institute of Applied Mathematics, 2022. http://dx.doi.org/10.20948/graphicon-2022-728-739.
Der volle Inhalt der QuelleKoroleva, E. S., P. V. Kuzmitskaya und O. Yu Urbanovich. „IMPACT OF DROUGHT STRESS ON STRESS-ASSOCIATED PROTEINS APPLE GENES EXPRESSION LEVEL“. In SAKHAROV READINGS 2021: ENVIRONMENTAL PROBLEMS OF THE XXI CENTURY. International Sakharov Environmental Institute, 2021. http://dx.doi.org/10.46646/sakh-2021-1-268-271.
Der volle Inhalt der QuelleKoroleva, E. S., P. V. Kuzmitskaya und O. Yu Urbanovich. „IMPACT OF DROUGHT STRESS ON STRESS-ASSOCIATED PROTEINS APPLE GENES EXPRESSION LEVEL“. In SAKHAROV READINGS 2021: ENVIRONMENTAL PROBLEMS OF THE XXI CENTURY. International Sakharov Environmental Institute, 2021. http://dx.doi.org/10.46646/sakh-2021-1-268-271.
Der volle Inhalt der QuelleNansen, Christian. „Remote sensing of nutrient-induced host plant susceptibility and biotic stress responses“. In 2016 International Congress of Entomology. Entomological Society of America, 2016. http://dx.doi.org/10.1603/ice.2016.94313.
Der volle Inhalt der Quelle„Complex resistance of spring bread wheat lines to biotic and abiotic stress“. In Plant Genetics, Genomics, Bioinformatics, and Biotechnology. Novosibirsk ICG SB RAS 2021, 2021. http://dx.doi.org/10.18699/plantgen2021-119.
Der volle Inhalt der QuelleNigam, Rahul, Rajsi Kot, Sandeep S. Sandhu, Bimal K. Bhattacharya, Ravinder S. Chandi, Manjeet Singh, Jagdish Singh und K. R. Manjunath. „Ground-based hyperspectral remote sensing to discriminate biotic stress in cotton crop“. In SPIE Asia-Pacific Remote Sensing, herausgegeben von Allen M. Larar, Prakash Chauhan, Makoto Suzuki und Jianyu Wang. SPIE, 2016. http://dx.doi.org/10.1117/12.2228122.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Tolerance to biotic stress"
Freeman, Stanley, Russell Rodriguez, Adel Al-Abed, Roni Cohen, David Ezra und Regina Redman. Use of fungal endophytes to increase cucurbit plant performance by conferring abiotic and biotic stress tolerance. United States Department of Agriculture, Januar 2014. http://dx.doi.org/10.32747/2014.7613893.bard.
Der volle Inhalt der QuelleBlum, Abraham, und Charles Y. Sullivan. The Evaluation of Endemic Land-Races of Wheat as Genetic Resources for Wheat Breeding Towards Environmental and Biotic Stress Tolerance. United States Department of Agriculture, September 1985. http://dx.doi.org/10.32747/1985.7566569.bard.
Der volle Inhalt der QuelleTronstad, Lusha. Aquatic invertebrate monitoring at Agate Fossil Beds National Monument: 2019 data report. National Park Service, April 2022. http://dx.doi.org/10.36967/nrds-2293128.
Der volle Inhalt der QuelleDodd, Hope, David Bowles, John Cribbs, Jeffrey Williams, Cameron Cheri und Tani Hubbard. Aquatic community monitoring at Herbert Hoover National Historic Site, 2008?2017. National Park Service, 2024. http://dx.doi.org/10.36967/2303263.
Der volle Inhalt der QuelleGinzberg, Idit, und Walter De Jong. Molecular genetic and anatomical characterization of potato tuber skin appearance. United States Department of Agriculture, September 2008. http://dx.doi.org/10.32747/2008.7587733.bard.
Der volle Inhalt der QuelleDodd, Hope, J. Cribbs, David Bowles, Cameron Cheri und Jeffrey Williams. Aquatic community monitoring at Effigy Mounds National Monument, 2008?2017. National Park Service, 2023. http://dx.doi.org/10.36967/2300634.
Der volle Inhalt der QuelleWhinnery, James E., und Duane C. Murray. Enhancing Tolerance to Acceleration (+Gz) Stress: The 'Hook' Maneuver. Fort Belvoir, VA: Defense Technical Information Center, August 1990. http://dx.doi.org/10.21236/ada231094.
Der volle Inhalt der QuelleYagmur, Fatma, und Fatih Hanci. Does Melatonin Improve Salt Stress Tolerance in Onion Genotypes? "Prof. Marin Drinov" Publishing House of Bulgarian Academy of Sciences, März 2021. http://dx.doi.org/10.7546/crabs.2021.03.18.
Der volle Inhalt der QuelleVierling, E. Role of HSP100 proteins in plant stress tolerance. Final technical report. Office of Scientific and Technical Information (OSTI), August 1998. http://dx.doi.org/10.2172/638185.
Der volle Inhalt der QuelleSela, Shlomo, und Michael McClelland. Investigation of a new mechanism of desiccation-stress tolerance in Salmonella. United States Department of Agriculture, Januar 2013. http://dx.doi.org/10.32747/2013.7598155.bard.
Der volle Inhalt der Quelle