Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Titanium and composite materials“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Titanium and composite materials" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Titanium and composite materials"
Pribytkov, Gennady A., Anton V. Baranovskiy, Victoria V. Korzhova, Irina A. Firsina, Kirill O. Akimov und Vladimir P. Krivopalov. „Study of synthesis products in mechanically activated mixtures of copper titanides with carbon“. Himičeskaâ fizika i mezoskopiâ 26, Nr. 1 (2024): 103–11. http://dx.doi.org/10.62669/17270227.2024.1.10.
Der volle Inhalt der QuelleGemelli, Enori, Patrícia Borges da Silva Maia, Fabio Nery, Nelson Heriberto Almeida Camargo, Vinícius André Rodrigues Henriques, Jailson de Jesus und Priscila Ferraz Franczak. „Effect of Calcium Titanate and/or Titanium-Phosphides in the Properties of Titanium Composites for Implant Materials“. Advanced Materials Research 906 (April 2014): 226–31. http://dx.doi.org/10.4028/www.scientific.net/amr.906.226.
Der volle Inhalt der QuelleWu, Yali, Wenjie Hao, Tian Tian, Jinhe Yang und Yueping Cao. „Preparation of Graphene Doped Titanium Dioxide Compo -site and Study on Treatment of Laboratory Wastewater“. International Journal of Materials Science and Technology Studies 1, Nr. 2 (30.05.2024): 1–11. http://dx.doi.org/10.62051/ijmsts.v1n2.01.
Der volle Inhalt der QuelleKashytskyi, V. P., O. L. Sadova, M. D. Melnychuk, G. I. Golodyuk und O. B. Klymovets. „Structuring of Modified Epoxy Composite Materials by Infrared Spectroscopy“. Journal of Engineering Sciences 10, Nr. 1 (2023): C9—C16. http://dx.doi.org/10.21272/jes.2023.10(1).c2.
Der volle Inhalt der QuelleKhabas, Tamara, Ekaterina Kulinich, Victor Merkulov, Сhristoph Roesli und Mihail Martusevich. „Development of Radioactive Sources on the Basis of Bioinert Ceramic Materials for Medical Applications and their Pre-Clinical Testing“. Advanced Materials Research 1040 (September 2014): 286–91. http://dx.doi.org/10.4028/www.scientific.net/amr.1040.286.
Der volle Inhalt der QuelleKim, D., und M. Ramulu. „Study on the Drilling of Titanium/Graphite Hybrid Composites“. Journal of Engineering Materials and Technology 129, Nr. 3 (30.03.2007): 390–96. http://dx.doi.org/10.1115/1.2744397.
Der volle Inhalt der QuelleWang, L. I., X. F. Wang, C. L. Yu und Y. Q. Zhao. „Effect of titanium addition on thermal stability of hydroxyapatite/zirconia nanocomposite“. Science of Sintering 47, Nr. 1 (2015): 107–12. http://dx.doi.org/10.2298/sos1501115w.
Der volle Inhalt der QuelleVoznesenskaya, Anna A., Andrei Kireev und Alena Ivashchenko. „Synthesis of Ultra-Dispersed Spherical Composite Materials“. Solid State Phenomena 299 (Januar 2020): 205–9. http://dx.doi.org/10.4028/www.scientific.net/ssp.299.205.
Der volle Inhalt der QuelleKusova, T. V., I. A. Yamanovskaya, N. S. Kopeikina, A. S. Kraev und A. V. Agafonov. „Obtaining mesoporous materials based on titanium dioxide modified by magnetite with high adsorption capacity and photocatalytic activity“. Perspektivnye Materialy 12 (2020): 64–72. http://dx.doi.org/10.30791/1028-978x-2020-12-64-72.
Der volle Inhalt der QuelleZhang, Zai-Yu, Yi-Long Liang, Hong-Chuan Cao und Yong Zhu. „The Preparation and Mechanical Properties of a Pure Titanium-Based Matrix Composite Reinforced with Graphene Nanoplatelets“. Science of Advanced Materials 12, Nr. 2 (01.02.2020): 296–303. http://dx.doi.org/10.1166/sam.2020.3531.
Der volle Inhalt der QuelleDissertationen zum Thema "Titanium and composite materials"
Cobb, Ted Quincy Jr. „Optimization of hybrid titanium composite laminates“. Thesis, Georgia Institute of Technology, 1998. http://hdl.handle.net/1853/19965.
Der volle Inhalt der QuelleStepina, Nataliia. „Biocompatible carbon nanotube/β-titanium alloy composite materials“. Thesis, University of Oxford, 2015. https://ora.ox.ac.uk/objects/uuid:09d4a408-9624-45c2-a8a9-0f14fd2b2251.
Der volle Inhalt der QuelleLi, Wenyu. „The fabrication of silicon nitride-titanium nitride composite materials“. Thesis, University of Leeds, 1992. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.305875.
Der volle Inhalt der QuelleLi, Edward. „Characterization of mechanical and fatigue properties for a hybrid titanium composite laminate“. Thesis, Georgia Institute of Technology, 1997. http://hdl.handle.net/1853/19897.
Der volle Inhalt der QuelleOsborne, Deborah J. „Experimental and computational study of interphase properties and mechanics in titanium metal matrix composites at elevated temperatures /“. View online ; access limited to URI, 2007. http://0-digitalcommons.uri.edu.helin.uri.edu/dissertations/AAI3277003.
Der volle Inhalt der QuelleRhymer, Donald William. „Fatigue damage mechanisms of advanced hybrid titanium composite laminates“. Thesis, Georgia Institute of Technology, 1999. http://hdl.handle.net/1853/18980.
Der volle Inhalt der QuelleMontoya, Anthony Tristan. „Synthesis of carbon nitrides and composite photocatalyst materials“. Diss., University of Iowa, 2018. https://ir.uiowa.edu/etd/6479.
Der volle Inhalt der QuelleCalcaterra, Jeffrey Ronald. „Life prediction evaluation and damage mechanism identification for SCS-6/Timetal 21S composites subjected to thermomechanical fatigue“. Diss., Georgia Institute of Technology, 1996. http://hdl.handle.net/1853/12548.
Der volle Inhalt der QuelleHo, Beatrice Jane, und 何沛枝. „Effects of sandblasting on resin composite bonding to zirconia and titanium“. Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2013. http://hdl.handle.net/10722/194577.
Der volle Inhalt der QuelleCastro, Gabriel. „Drilling carbon fiber reinforced plastic and titanium stacks“. Pullman, Wash. : Washington State University, 2010. http://www.dissertations.wsu.edu/Thesis/Spring2010/g_castro_042210.pdf.
Der volle Inhalt der QuelleTitle from PDF title page (viewed on July 16, 2010). "School of Engineering and Computer Science." Includes bibliographical references (p. 109-112).
Bücher zum Thema "Titanium and composite materials"
Naik, Rajiv A. Observations of fatigue crack initiation and damage growth in notched titanium matrix composites. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1990.
Den vollen Inhalt der Quelle findenAnt︠s︡iferov, V. N. Kompozit︠s︡ionnye materialy i konstrukt︠s︡ii na osnove titana i ego soedineniĭ: Monografii︠a︡. Novosibirsk: In-t gidrodinamiki im. M.A. Lavrentʹeva SO RAN, 2001.
Den vollen Inhalt der Quelle finden1935-, Wightman James P., und Langley Research Center. Materials Division., Hrsg. Fracture surface analysis in composite and titanium bonding: Semi-annual report. Blacksburg, VA: Chemistry Dept., Virginia Polytechnic Institute & State University, 1985.
Den vollen Inhalt der Quelle findenDavim, J. Paulo, R. Zitoune und V. Krishnaraj. Machining of titanium alloys and composites for aerospace applications: Special topic volume with invited peer reviewed papers only. Durnten-Zurich: Trans Tech Publications, 2013.
Den vollen Inhalt der Quelle findenLtjering, G. Titanium. Berlin: Springer, 2003.
Den vollen Inhalt der Quelle findenH, Froes F., Suryanarayana C, Ward-Close C. M, ASM International. Materials Synthesis and Processing Committee., Minerals, Metals and Materials Society. Materials Design and Manufacturing Division. und Minerals, Metals and Materials Society. Fall Meeting, Hrsg. Synthesis/processing of lightweight metallic materials: Proceedings of a symposium held during the TMS annual meeting in Las Vegas, Nevada, February 13-16, 1995. Warrendale, Pa: The Society, 1995.
Den vollen Inhalt der Quelle findenS, Johnson W., und Langley Research Center, Hrsg. Modeling fatigue crack growth in cross ply titanium matrix composites. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1993.
Den vollen Inhalt der Quelle findenO, Soboyejo W., Srivatsan T. S, Davidson D. L und Minerals, Metals and Materials Society. Structural Materials Division., Hrsg. Fatigue and fracture of ordered intermetallic materials I: Proceedings of a symposium sponsored by the Structural Materials Division (SMD) of the Minerals, Metals & Materials Society (TMS), held during Materials Week '93 in Pittsburgh, PA, October 17-21, 1993 hosted by the Materials, Metals & Materials Society (TMS), and the Materials Information Society (ASM International). Warrendale, Pa: Minerals, Metals & Materials Society, 1994.
Den vollen Inhalt der Quelle findenUnited States. National Aeronautics and Space Administration., Hrsg. Isothermal fatigue behavior of a [90] Sic/Ti-15-3 composite at 426 C. [Washington, D.C.]: NASA, 1991.
Den vollen Inhalt der Quelle findenA, Bartolotta P., und United States. National Aeronautics and Space Administration., Hrsg. Failure mechanisms during isothermal fatigue of SiC/Ti-24Al-11Nb composites. [Washington, D.C: National Aeronautics and Space Administration, 1995.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Titanium and composite materials"
Sharma, Ankush P., und R. Velmurugan. „High-Velocity Impact Response of Titanium/Composite Laminates“. In Composite Materials, 238–47. Boca Raton: CRC Press, 2023. http://dx.doi.org/10.1201/9781003352358-23.
Der volle Inhalt der QuelleXie, Yi Bing, Li Min Zhou und Hai Tao Huang. „Biosensor Application of Enzyme-Functionalized Titania/Titanium Composite“. In Advances in Composite Materials and Structures, 645–48. Stafa: Trans Tech Publications Ltd., 2007. http://dx.doi.org/10.4028/0-87849-427-8.645.
Der volle Inhalt der QuelleWang, Hong Hua, Chen Rong und Di Zhang. „The Mechanical Properties of a New Titanium Alloys with Low Modulus“. In Composite Materials V, 243–47. Stafa: Trans Tech Publications Ltd., 2007. http://dx.doi.org/10.4028/0-87849-451-0.243.
Der volle Inhalt der QuelleWang, K., Zheng Yi Fu, Wei Min Wang, Y. C. Wang, H. Wang, Jin Yong Zhang und Qing Jie Zhang. „Study on the Thermodynamics and Kinetics in the Combustion Reaction between Titanium and Boron Powders“. In Composite Materials V, 189–94. Stafa: Trans Tech Publications Ltd., 2007. http://dx.doi.org/10.4028/0-87849-451-0.189.
Der volle Inhalt der QuelleKukh, A., I. Ivanenko und I. Asterlin. „Composite Titanium Dioxide Photocatalytically Active Materials: Review“. In Springer Proceedings in Physics, 379–90. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-52268-1_28.
Der volle Inhalt der QuelleYang, D. M., C. X. Huang, D. T. Huang und X. Zhao. „Interfacial Reactions between Coated Nicalon Fiber and Titanium“. In Controlled Interphases in Composite Materials, 199–205. Dordrecht: Springer Netherlands, 1990. http://dx.doi.org/10.1007/978-94-011-7816-7_20.
Der volle Inhalt der QuelleMahamood, Rasheedat Modupe. „Laser Metal Deposition of Titanium Alloy and Titanium Alloy Composite: Case Studies“. In Engineering Materials and Processes, 165–95. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-64985-6_8.
Der volle Inhalt der QuelleIi, Seiichiro, Teruko Nishitani und Ryuichi Tomoshige. „Interfacial Microstructure of Titanium Nitride – Titanium Diboride Composite Synthesized by Hot Shock Compaction“. In Materials Science Forum, 2481–84. Stafa: Trans Tech Publications Ltd., 2007. http://dx.doi.org/10.4028/0-87849-462-6.2481.
Der volle Inhalt der QuelleShankar, S., R. Nithyaprakash und G. Abbas. „Tribological Study on Titanium Based Composite Materials in Biomedical Applications“. In Tribological Applications of Composite Materials, 215–41. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-9635-3_8.
Der volle Inhalt der QuelleBakarinova, Valentina I. „Interphase Interaction in Composite Materials Based on Titanium“. In MICC 90, 445–53. Dordrecht: Springer Netherlands, 1991. http://dx.doi.org/10.1007/978-94-011-3676-1_75.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Titanium and composite materials"
Wielage, B., S. Steinhäuser, T. Schnick, U. Hofmann, A. Ilyuschenko und T. Azarova. „Thermal Spraying of Titanium Carbide Composite Materials“. In ITSC 1999, herausgegeben von E. Lugscheider und P. A. Kammer. Verlag für Schweißen und verwandte Verfahren DVS-Verlag GmbH, 1999. http://dx.doi.org/10.31399/asm.cp.itsc1999p0301.
Der volle Inhalt der QuelleSimion, Demetra, Carmen Gaidau, Jianzhong Ma und Zhang Wenbo. „New nanostructured composite obtained by innovative technologies“. In The 8th International Conference on Advanced Materials and Systems. INCDTP - Leather and Footwear Research Institute (ICPI), Bucharest, Romania, 2020. http://dx.doi.org/10.24264/icams-2020.ii.22.
Der volle Inhalt der QuelleZhang, Jipeng, Yue Wang, Jiazhen Zhang und Zhengong Zhou. „Notched behavior of hybrid glass/aluminum/titanium fiber metal laminates“. In 2ND INTERNATIONAL CONFERENCE ON COMPOSITE MATERIALS AND MATERIAL ENGINEERING (ICCMME 2017). Author(s), 2017. http://dx.doi.org/10.1063/1.4983588.
Der volle Inhalt der QuelleBerton, B., G. Surdon und C. Colin. „Intermetallic and titanium matrix composite materials for hypersonic applications“. In International Aerospace Planes and Hypersonics Technologies. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1995. http://dx.doi.org/10.2514/6.1995-6132.
Der volle Inhalt der QuelleChittibabu, G., Ch Sri Chaitanya, Babar Pasha Mahammod, Manoj Gupta, Syed Ismail und R. Narasimha Rao. „Tribological behaviour of titanium carbide reinforced aluminum composite materials“. In INTERNATIONAL CONFERENCE ON SMART MATERIALS AND STRUCTURES, ICSMS-2022. AIP Publishing, 2023. http://dx.doi.org/10.1063/5.0146874.
Der volle Inhalt der QuelleAhmed, Nihal, Nzubechukwu Okolie und Sujan Ghosh. „Novel Polyetheretherketone/Polytetrafluoroethylene Composites Reinforced With Titanium Silicon Carbide for Conveyor Chute“. In ASME 2024 Aerospace Structures, Structural Dynamics, and Materials Conference. American Society of Mechanical Engineers, 2024. http://dx.doi.org/10.1115/ssdm2024-121599.
Der volle Inhalt der QuelleMall, Shankar, und Scott Cunningham. „Fatigue Response of Joint Between Titanium and Titanium Matrix Composite“. In 47th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference
14th AIAA/ASME/AHS Adaptive Structures Conference
7th. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2006. http://dx.doi.org/10.2514/6.2006-1673.
Malyutina, Yu N., K. A. Skorohod, K. E. Shevtsova und A. V. Chesnokova. „Multilayered titanium-steel composite produced by explosive welding“. In ADVANCED MATERIALS WITH HIERARCHICAL STRUCTURE FOR NEW TECHNOLOGIES AND RELIABLE STRUCTURES. AIP Publishing LLC, 2015. http://dx.doi.org/10.1063/1.4932832.
Der volle Inhalt der QuelleFeng, Zhongchao, Bingcun Zhang, Wanliang Hou, Lixin Chao, Yaqing Wang, Jun Feng und Yong Liang. „Laser-induced unitary/composite films of titanium ceramic-metal“. In ICALEO® ‘95: Proceedings of the Laser Materials Processing Conference. Laser Institute of America, 1995. http://dx.doi.org/10.2351/1.5058936.
Der volle Inhalt der QuelleKim, D., und M. Ramulu. „Study on the Drilling of Titanium/Graphite Hybrid Composites“. In ASME 2005 International Mechanical Engineering Congress and Exposition. ASMEDC, 2005. http://dx.doi.org/10.1115/imece2005-81132.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Titanium and composite materials"
Long, Wendy, Zackery McClelland, Dylan Scott und C. Crane. State-of-practice on the mechanical properties of metals for armor-plating. Engineer Research and Development Center (U.S.), Januar 2023. http://dx.doi.org/10.21079/11681/46382.
Der volle Inhalt der QuellePool, K. H., J. L. Brimhall, P. J. Raney und P. E. Hart. Evaluation of wear rates and mechanisms of titanium diboride-graphite composite materials proposed for use as cathodes in Hall-Heroult cells. Office of Scientific and Technical Information (OSTI), Januar 1987. http://dx.doi.org/10.2172/6727518.
Der volle Inhalt der QuelleLee, Max. Composite Materials. Fort Belvoir, VA: Defense Technical Information Center, September 1996. http://dx.doi.org/10.21236/ada316048.
Der volle Inhalt der QuelleAbkowitz, Susan M. Lightweight Durable Titanium Tracks Using Low Cost Powder Metal Titanium Composite Technology. Fort Belvoir, VA: Defense Technical Information Center, Juli 2001. http://dx.doi.org/10.21236/ada395519.
Der volle Inhalt der QuelleWadley, H. N. G., J. A. Simmons, R. B. Clough, F. Biancaniello, E. Drescher-Krasicka, M. Rosen, T. Hsieh und K. Hirschman. Composite materials interface characterization. Gaithersburg, MD: National Bureau of Standards, 1988. http://dx.doi.org/10.6028/nbs.ir.87-3630.
Der volle Inhalt der QuelleLund, T. Microstructure-strength relationship of a deformation processed aluminum-titanium composite. Office of Scientific and Technical Information (OSTI), Februar 1998. http://dx.doi.org/10.2172/658375.
Der volle Inhalt der QuelleSpangler, Lee. Composite Materials for Optical Limiting. Fort Belvoir, VA: Defense Technical Information Center, April 2001. http://dx.doi.org/10.21236/ada396124.
Der volle Inhalt der QuelleMagness, F. H. Joining of polymer composite materials. Office of Scientific and Technical Information (OSTI), November 1990. http://dx.doi.org/10.2172/6334940.
Der volle Inhalt der QuelleAnderson, D. P., und B. P. Rice. Intrinsically Survivable Structural Composite Materials. Fort Belvoir, VA: Defense Technical Information Center, April 2000. http://dx.doi.org/10.21236/ada387309.
Der volle Inhalt der QuelleAnderson, David P., Chenggang Chen, Larry Cloos und Thao Gibson. Intrinsically Survivable Structural Composite Materials. Fort Belvoir, VA: Defense Technical Information Center, Februar 2001. http://dx.doi.org/10.21236/ada388001.
Der volle Inhalt der Quelle