Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Tissue folding“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Tissue folding" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Tissue folding"
Zečić, Aleksandra, und Chadanat Noonin. „Whole-mount in situ hybridization: minimizing the folding problem of thin-sheet tissue-like crayfish haematopoietic tissue“. Crustaceana 91, Nr. 1 (2018): 1–15. http://dx.doi.org/10.1163/15685403-00003745.
Der volle Inhalt der QuelleInoue, Yasuhiro, Itsuki Tateo und Taiji Adachi. „Epithelial tissue folding pattern in confined geometry“. Biomechanics and Modeling in Mechanobiology 19, Nr. 3 (14.11.2019): 815–22. http://dx.doi.org/10.1007/s10237-019-01249-8.
Der volle Inhalt der QuelleHookway, Tracy A. „Engineering Biology by Controlling Tissue Folding“. Trends in Biotechnology 36, Nr. 4 (April 2018): 341–43. http://dx.doi.org/10.1016/j.tibtech.2018.02.003.
Der volle Inhalt der QuelleAllen, Simon, Hassan Y. Naim und Neil J. Bulleid. „Intracellular Folding of Tissue-type Plasminogen Activator“. Journal of Biological Chemistry 270, Nr. 9 (03.03.1995): 4797–804. http://dx.doi.org/10.1074/jbc.270.9.4797.
Der volle Inhalt der QuelleZartman, Jeremiah J., und Stanislav Y. Shvartsman. „Unit Operations of Tissue Development: Epithelial Folding“. Annual Review of Chemical and Biomolecular Engineering 1, Nr. 1 (15.06.2010): 231–46. http://dx.doi.org/10.1146/annurev-chembioeng-073009-100919.
Der volle Inhalt der QuelleHiraiwa, Tetsuya, Fu-Lai Wen, Tatsuo Shibata und Erina Kuranaga. „Mathematical Modeling of Tissue Folding and Asymmetric Tissue Flow during Epithelial Morphogenesis“. Symmetry 11, Nr. 1 (19.01.2019): 113. http://dx.doi.org/10.3390/sym11010113.
Der volle Inhalt der QuelleChan, Hon Fai, Ruike Zhao, German A. Parada, Hu Meng, Kam W. Leong, Linda G. Griffith und Xuanhe Zhao. „Folding artificial mucosa with cell-laden hydrogels guided by mechanics models“. Proceedings of the National Academy of Sciences 115, Nr. 29 (02.07.2018): 7503–8. http://dx.doi.org/10.1073/pnas.1802361115.
Der volle Inhalt der QuelleKo, Clint S., Vardges Tserunyan und Adam C. Martin. „Microtubules promote intercellular contractile force transmission during tissue folding“. Journal of Cell Biology 218, Nr. 8 (21.06.2019): 2726–42. http://dx.doi.org/10.1083/jcb.201902011.
Der volle Inhalt der QuelleCodd, S. L., R. K. Lambert, M. R. Alley und R. J. Pack. „Tensile stiffness of ovine tracheal wall“. Journal of Applied Physiology 76, Nr. 6 (01.06.1994): 2627–35. http://dx.doi.org/10.1152/jappl.1994.76.6.2627.
Der volle Inhalt der QuelleTozluoǧlu, Melda, und Yanlan Mao. „On folding morphogenesis, a mechanical problem“. Philosophical Transactions of the Royal Society B: Biological Sciences 375, Nr. 1809 (24.08.2020): 20190564. http://dx.doi.org/10.1098/rstb.2019.0564.
Der volle Inhalt der QuelleDissertationen zum Thema "Tissue folding"
Vasiev, Iskandar. „3D self-folding tissue engineering scaffold origami“. Thesis, University of Glasgow, 2015. http://theses.gla.ac.uk/7071/.
Der volle Inhalt der QuelleVasquez, Claudia G. (Claudia Gabriela). „Mechanisms of myosin regulation and function during tissue folding“. Thesis, Massachusetts Institute of Technology, 2015. http://hdl.handle.net/1721.1/101504.
Der volle Inhalt der QuelleCataloged from PDF version of thesis. "September 2015."
Includes bibliographical references.
Throughout organismal development, precise three-dimensional organization of tissues is required for proper tissue function. These three-dimensional forms are generated by coordinated cell shape changes that induce global tissue shape changes, such as the transformation of an epithelial sheet into a tube. A model for this transformation occurs early in Drosophila development where approximately 1,000 cells on the ventral side of the embryo constrict their apical sides. Apical constriction drives the formation of a furrow that invaginates, forming a tube, and consequently, a new cell layer in the embryo. Constriction of ventral cells is driven by cycles of assembly and disassembly of actin-myosin networks at the cell apex, called pulses. Pulsatile myosin leads to phases of cellular contraction and cell shape stabilization that result in step-wise apical constriction. While many of the key components of the pathway have been identified, how pulsatile myosin is regulated was previously not well understood. The results presented in this thesis identify mechanisms of regulation of these myosin pulses. First, we demonstrated that cycles of phosphorylation and dephosphorylation of the myosin regulatory light chain are required for myosin pulsing and step-wise apical constriction. Uncoupling myosin from its upstream regulators resulted in loss of pulsatile myosin behavior and continuous, instead of incremental, apical constriction. A consequence of persistent, non-pulsatile myosin is a loss of myosin network integrity as the tissue invaginated. Thus, pulsatile myosin requires tight coordination between its activator and inactivator to generate cycles of myosin assembly, coupled to cellular constriction, and myosin disassembly, associated with cell shape stabilization. Second, we demonstrated that myosin motor activity is required for efficient apical constriction and for effective generation of tissue tension. This work defines essential molecular mechanisms that are required for proper cellular constriction and tissue invagination.
by Claudia G. Vasquez.
Ph. D.
Nauli, Sehat. „Folding kinetics and redesign of Peptostreptococcal protein L and G /“. Thesis, Connect to this title online; UW restricted, 2003. http://hdl.handle.net/1773/9237.
Der volle Inhalt der QuelleVan, Leen Eric. „On the morphogenesis of the D. melanogaster pupa : a study on gene patterning and tissue folding“. Electronic Thesis or Diss., Sorbonne université, 2020. http://www.theses.fr/2020SORUS387.
Der volle Inhalt der QuelleIn order to achieve complex shapes during development, multicellular organisms need to coordinate cellular behaviors to form complex and functional organs. Identifying genes that are expressed in patterns that correlate with cellular processes is therefore primordial. Using the dorsal epithelium (the notum) of drosophila pupa as a model, my thesis aimed at uncovering the molecular mechanisms which control the spatial regulation of morphogenesis at the cell and tissue scale. First, I developed spatial transcriptomics which enabled the identification of new expression patterns involved in notum morphogenesis. Second, I developed, in collaboration with the imaging platform of Institut Curie, Rotating Sample Confocal Microscopy. Using this technique, I was able to simultaneously observe the morphogenesis of the notum, hinge and wing blade. This enabled the discovery of a new morphogenetic movement in the notum between 45-50hAPF. My results suggest that this extensive folding and elongation of the notum is independent of folding in the wing. Furthermore, I demonstrated that the expression of serine proteases regulate the attachment of the tissue to the cuticle which triggers the onset of the folding and determines the final shape of the tissue. Overall, this work increases our understanding of the spatial regulation of morphogenesis and contributes to the knowledge on how the extracellular matrix can regulate tissue shape
Sukonina, Valentina. „Angiopoietin-like protein 4 : an unfolding chaperone regulating lipoprotein lipase activity“. Doctoral thesis, Umeå : Univ, 2007. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-1343.
Der volle Inhalt der QuelleFu, Josephine K. Y. „Functional characterization of the teleost multiple tissue (tmt) opsin family and their role in light detection“. Thesis, University of Oxford, 2013. http://ora.ox.ac.uk/objects/uuid:39bc18bb-16cb-4549-94cd-5f872daafe7e.
Der volle Inhalt der QuelleScott, Henry Hepburne. „#alpha#B-crystallin expression, mutagenesis and immunoreactivity“. Thesis, University of Reading, 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.284449.
Der volle Inhalt der QuelleBücher zum Thema "Tissue folding"
Clarke, Andrew. Water. Oxford University Press, 2017. http://dx.doi.org/10.1093/oso/9780199551668.003.0005.
Der volle Inhalt der QuelleBuchteile zum Thema "Tissue folding"
Israelowitz, Meir, Birgit Weyand, Syed W. H. Rizvi, Christoph Gille und Herbert P. von Schroeder. „Protein Modelling and Surface Folding by Limiting the Degrees of Freedom“. In Computational Modeling in Tissue Engineering, 19–45. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/8415_2012_141.
Der volle Inhalt der QuelleSpiegel, Holger, Stefan Schillberg und Greta Nölke. „Production of Recombinant Proteins by Agrobacterium-Mediated Transient Expression“. In Recombinant Proteins in Plants, 89–102. New York, NY: Springer US, 2022. http://dx.doi.org/10.1007/978-1-0716-2241-4_6.
Der volle Inhalt der QuelleBach, Anna Sofie. „The Affective Temporalities of Ovarian Tissue Freezing: Hopes, Fears, and the Folding of Embodied Time in Medical Fertility Preservation“. In Reproductive Citizenship, 51–73. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-16-9451-6_3.
Der volle Inhalt der QuelleMehner, Philipp J., Tian Liu, Majid Bigdeli Karimi, Alyssa Brodeur, Juan Paniagua, Stephanie Giles, Patricia Richard et al. „Toward engineering biological tissues by directed assembly and origami folding“. In Origami⁶, 545–55. Providence, Rhode Island: American Mathematical Society, 2015. http://dx.doi.org/10.1090/mbk/095.2/17.
Der volle Inhalt der QuelleBalusek, Curtis, Hyea Hwang, Anthony Hazel, Karl Lundquist, Anna Pavlova und James C. Gumbart. „Diverse Protein-Folding Pathways and Functions of β-Hairpins and β-Sheets“. In Quantitative Models for Microscopic to Macroscopic Biological Macromolecules and Tissues, 1–20. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-73975-5_1.
Der volle Inhalt der QuelleBaum, Jean, und Barbara Brodsky. „Case study 2: Folding of the collagen triple-helix and its naturally occurring mutants“. In Mechanisms of Protein Folding, 330–51. Oxford University PressOxford, 2000. http://dx.doi.org/10.1093/oso/9780199637898.003.0012.
Der volle Inhalt der QuelleCovizzi, Ian Vilas Boas, Thatiana Scalon, João Renato Villas Bôas, Isadora Cucolo Oliveira, Tárik Abdalla dos Santos, Alba Regina de Abreu Lima und Uderlei Doniseti Silveira Covizzi. „The incorrect folding of proteins and their involvement with pathological processes“. In INNOVATION IN HEALTH RESEARCH ADVANCING THE BOUNDARIES OF KNOWLEDGE. Seven Editora, 2023. http://dx.doi.org/10.56238/innovhealthknow-033.
Der volle Inhalt der QuelleAhsan, Haseeb, Salman Ul Islam, Muhammad Bilal Ahmed, Adeeb Shehzad, Mazhar Ul Islam, Young Sup Lee und Jong Kyung Sonn. „Principles of Supra Molecular Self Assembly and Use of Fiber mesh Scaffolds in the Fabrication of Biomaterials“. In Biomaterial Fabrication Techniques, 218–42. BENTHAM SCIENCE PUBLISHERS, 2022. http://dx.doi.org/10.2174/9789815050479122010012.
Der volle Inhalt der QuelleFisch, Adam. „Surfaces of the Brain“. In Neuroanatomy : Draw It to Know It, 272–93. Oxford University PressNew York, NY, 2009. http://dx.doi.org/10.1093/oso/9780195369946.003.0025.
Der volle Inhalt der QuelleHawkins, Philip N. „Amyloidosis“. In Oxford Textbook of Rheumatology, 1397–409. Oxford University Press, 2013. http://dx.doi.org/10.1093/med/9780199642489.003.0163.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Tissue folding"
Shin, Jae-Won, und Jenny Sabin. „Tissue Architecture: Programmable Folding in Digital Responsive Skins“. In ACADIA 2013: Adaptive Architecture. ACADIA, 2013. http://dx.doi.org/10.52842/conf.acadia.2013.443.
Der volle Inhalt der QuelleMatsushima, Yuto, Dina Mikimoto, Minghao Nie und Shoji Takeuchi. „Origami-Inspired Culture Device for Mechanical Folding Stimulation of Skin Tissue Equivalent“. In 2024 IEEE 37th International Conference on Micro Electro Mechanical Systems (MEMS). IEEE, 2024. http://dx.doi.org/10.1109/mems58180.2024.10439332.
Der volle Inhalt der QuelleJoshi, Sagar D., und Lance A. Davidson. „Remote Control of Apical Epithelial Sheet Contraction by Laser Ablation or Nano-Perfusion: Acute Stimulus Triggers Rapid Remodeling of F-Actin Network in Apical Cortex“. In ASME 2009 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2009. http://dx.doi.org/10.1115/sbc2009-204904.
Der volle Inhalt der QuelleWheeler, Charles M., und Martin L. Culpepper. „Soft Origami: Classification, Constraint, and Actuation of Highly Compliant Origami Structures“. In ASME 2015 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/detc2015-46877.
Der volle Inhalt der QuelleHiggins, Deborah L., und William E. Holmes. „CHARACTERIZATION OF RECOMBINANT HUMAN TISSUE-TYPE PLASMINOGEN ACTIVATOR MISSING THE FINGER DOMAIN“. In XIth International Congress on Thrombosis and Haemostasis. Schattauer GmbH, 1987. http://dx.doi.org/10.1055/s-0038-1643842.
Der volle Inhalt der QuelleBrowe, Daniel P., Carrie A. Rainis, Patrick J. McMahon und Richard E. Debski. „The Effect of Anterior Dislocation on the Mechanical Properties of the Inferior Glenohumeral Ligament“. In ASME 2012 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/sbc2012-80099.
Der volle Inhalt der QuelleKaufman, Randal J., David G. Bole und Andrew J. Dorner. „THE INFLUENCE OF N-LINKED GLYCOSYLATION AND BINDING PROTEIN (BiP) ASSOCIATION IN THE SECRETION EFFICIENCY OF COMPLEX GLYCOPROTEINS“. In XIth International Congress on Thrombosis and Haemostasis. Schattauer GmbH, 1987. http://dx.doi.org/10.1055/s-0038-1644016.
Der volle Inhalt der QuelleMehraban, Arash, Jed Brown, Valeria Barra, Henry Tufo, Jeremy Thompson und Richard Regueiro. „Efficient Residual and Matrix-Free Jacobian Evaluation for Three-Dimensional Tri-Quadratic Hexahedral Finite Elements With Nearly-Incompressible Neo-Hookean Hyperelasticity Applied to Soft Materials on Unstructured Meshes in Parallel, With PETSc and libCEED“. In ASME 2020 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2020. http://dx.doi.org/10.1115/imece2020-24522.
Der volle Inhalt der QuelleLiu, Yang, Jianquan Xu und Hongqiang Ma. „Visualization of disrupted chromatin folding at nanoscale in early carcinogenesis via super-resolution microscopy“. In Imaging, Manipulation, and Analysis of Biomolecules, Cells, and Tissues XIX, herausgegeben von James F. Leary, Attila Tarnok und Irene Georgakoudi. SPIE, 2021. http://dx.doi.org/10.1117/12.2579259.
Der volle Inhalt der QuelleAbakumets, V. Y., und K. Ya Bulanava. „THE INFLUENCE OF INSULIN FIBRILLATION“. In SAKHAROV READINGS 2021: ENVIRONMENTAL PROBLEMS OF THE XXI CENTURY. International Sakharov Environmental Institute of Belarusian State University, 2021. http://dx.doi.org/10.46646/sakh-2021-2-7-10.
Der volle Inhalt der Quelle