Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Tip-Enhanced and Surface-Enhanced Raman Spectoscopies“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Tip-Enhanced and Surface-Enhanced Raman Spectoscopies" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Tip-Enhanced and Surface-Enhanced Raman Spectoscopies"
Bortchagovsky, Eugene G., Stefan Klein und Ulrich C. Fischer. „Surface plasmon mediated tip enhanced Raman scattering“. Applied Physics Letters 94, Nr. 6 (09.02.2009): 063118. http://dx.doi.org/10.1063/1.3081416.
Der volle Inhalt der QuellePettinger, Bruno, Gennaro Picardi, Rolf Schuster und Gerhard Ertl. „Surface-enhanced and STM-tip-enhanced Raman Spectroscopy at Metal Surfaces“. Single Molecules 3, Nr. 5-6 (November 2002): 285–94. http://dx.doi.org/10.1002/1438-5171(200211)3:5/6<285::aid-simo285>3.0.co;2-x.
Der volle Inhalt der QuelleHennemann, L. E., A. J. Meixner und D. Zhang. „Surface- and tip-enhanced Raman spectroscopy of DNA“. Spectroscopy 24, Nr. 1-2 (2010): 119–24. http://dx.doi.org/10.1155/2010/428026.
Der volle Inhalt der QuellePettinger, Bruno. „Single-molecule surface- and tip-enhanced raman spectroscopy“. Molecular Physics 108, Nr. 16 (20.08.2010): 2039–59. http://dx.doi.org/10.1080/00268976.2010.506891.
Der volle Inhalt der QuelleHartman, Thomas, Caterina S. Wondergem, Naresh Kumar, Albert van den Berg und Bert M. Weckhuysen. „Surface- and Tip-Enhanced Raman Spectroscopy in Catalysis“. Journal of Physical Chemistry Letters 7, Nr. 8 (14.04.2016): 1570–84. http://dx.doi.org/10.1021/acs.jpclett.6b00147.
Der volle Inhalt der QuelleWang, Jingang, Wenhua Qiao und Xijiao Mu. „Au Tip-Enhanced Raman Spectroscopy for Catalysis“. Applied Sciences 8, Nr. 11 (23.10.2018): 2026. http://dx.doi.org/10.3390/app8112026.
Der volle Inhalt der QuelleBello, J. M., und T. Vo-Dinh. „Surface-Enhanced Raman Scattering Fiber-Optic Sensor“. Applied Spectroscopy 44, Nr. 1 (Januar 1990): 63–69. http://dx.doi.org/10.1366/0003702904085877.
Der volle Inhalt der QuelleZhang, Jin Z., Damon A. Wheeler, Adam M. Schwartzberg und Jianying Shi. „Basics and practice of surface enhanced Raman scattering (SERS) and tip enhanced Raman scattering (TERS)“. Biomedical Spectroscopy and Imaging 3, Nr. 2 (2014): 121–59. http://dx.doi.org/10.3233/bsi-140086.
Der volle Inhalt der QuelleKaemmer, Stefan B., Ton Ruiter und Bede Pittenger. „Atomic Force Microscopy with Raman and Tip-Enhanced Raman Spectroscopy“. Microscopy Today 20, Nr. 6 (November 2012): 22–27. http://dx.doi.org/10.1017/s1551929512000855.
Der volle Inhalt der QuelleRasmussen, A., und V. Deckert. „Surface- and tip-enhanced Raman scattering of DNA components“. Journal of Raman Spectroscopy 37, Nr. 1-3 (Januar 2006): 311–17. http://dx.doi.org/10.1002/jrs.1480.
Der volle Inhalt der QuelleDissertationen zum Thema "Tip-Enhanced and Surface-Enhanced Raman Spectoscopies"
Cooney, Gary Sean. „Spectroscopie Raman exaltée de pointe pour la caractérisation de systèmes biologiques : de l'imagerie chimique et structurale nanométrique à l’air à son développement en milieu liquide“. Electronic Thesis or Diss., Bordeaux, 2024. http://www.theses.fr/2024BORD0267.
Der volle Inhalt der QuelleThe aims of this thesis are the development of tip-enhanced Raman spectroscopy (TERS) for applications in liquid media, specifically for the study of lipid membranes and amyloid proteins which are implicated in neurodegenerative diseases like Alzheimer’s. TERS overcomes the diffraction limit of conventional Raman spectroscopy by combining the high spatial resolution of scanning probe microscopy with the chemical specificity of surface-enhanced Raman spectroscopy (SERS). By employing a metal-coated nano-tapered scanning probe microscopy probe tip, TERS generates a localised enhancement of the Raman signal at the tip apex. This enables the study of optically non-resonant biomolecules at the nanoscale in a label-free and non-destructive manner. The key challenges that are addressed in this work include the fabrication of TERS-active tips, the optimisation of our novel total-internal reflection (TIR)-TERS system for use in liquid environments, and the handling of the complex data obtained from hyperspectral TERS imaging. Amyloid proteins in the form of Tau fibrils were studied using this TIR-TERS setup with heparin-induced Tau fibrils being a benchmark for evaluating the performance of the system. TERS studies of RNA-induced Tau fibrils provided insight into the underlying formation mechanisms of amyloid fibrils. In addition, these data were used to explore the use of chemometric methods, such as Principal Component Analysis (PCA) and Hierarchical Cluster Analysis (HCA), for their fine analysis. These methods were evaluated in the context of more traditional peak-picking methods. This thesis also details the development of a liquid-compatible TIR-TERS system and its application to the study of supported lipid bilayers in aqueous media. This advancement enables the nanoscale investigation of lipid membranes in biologically relevant media, which is more representative compared to TERS in air. With the outlook of future works investigating protein-lipid interactions, these innovations are crucial for understanding amyloid fibril formation and their deleterious effects on neuronal cells. To conclude, this thesis enhances TERS as a tool for studying biomolecular structures in the context of neurodegenerative diseases at the nanoscale, and the optimised TIR-TERS system provides a platform for future research in biological and biomedical applications
Touzalin, Thomas. „Tip-enhanced Raman spectroscopy on electrochemical systems“. Thesis, Sorbonne université, 2018. http://www.theses.fr/2018SORUS364.
Der volle Inhalt der QuelleThe in situ investigation of electrochemical interfaces structures at the nanoscale is a key element in the understanding of charge and electron transfer mechanisms e.g. in the fields of energy storage or electrocatalysis. This thesis introduces the implementation of tip-enhanced Raman spectroscopy (TERS) in liquid and in electrochemical conditions enabling the nanoscale analysis of electrified solid/liquid interfaces through the strong and local electric field enhancement at gold or silver scanning tunneling microscopy (STM) probes. The ability of TERS to image inhomogeneities in the coverage density of a self-assembled monolayer (SAM) through a layer of organic solvent on gold was demonstrated. A TERS-inspired analytical tool was also developed, based on a TERS tip used simultaneously as a single-hot spot surface-enhanced Raman spectroscopy (SERS) platform and as a microelectrode (EC tip SERS). The reduction of an electroactive SAM could then be monitored by electrochemical and in situ SERS measurements. In situ electrochemical STM-TERS was also evidenced through the imaging of local variations of the electric field enhancement on peculiar sites of a gold electrode with a lateral resolution lower than 8 nm. Finally TERS also demonstrated to be efficient in investigating the structure of organic layers grafted either by electrochemical reduction or spontaneously. This work is therefore a major advance for the analysis of functionalized surfaces
SACCO, ALESSIO. „Metrological Approach to Tip-enhanced Raman Spectroscopy“. Doctoral thesis, Politecnico di Torino, 2020. http://hdl.handle.net/11583/2827709.
Der volle Inhalt der QuelleSheremet, E., A. G. Milekhin, R. D. Rodriguez, T. Weiss, M. Nesterov, E. E. Rodyakina, O. D. Gordan et al. „Surface- and tip-enhanced resonant Raman scattering from CdSe nanocrystals“. Universitätsbibliothek Chemnitz, 2015. http://nbn-resolving.de/urn:nbn:de:bsz:ch1-qucosa-161500.
Der volle Inhalt der QuelleDieser Beitrag ist aufgrund einer (DFG-geförderten) Allianz- bzw. Nationallizenz frei zugänglich
Rodriguez, Raul D., Evgeniya Sheremet, Tanja Deckert-Gaudig, Corinne Chaneac, Michael Hietschold, Volker Deckert und Dietrich R. T. Zahn. „Surface- and tip-enhanced Raman spectroscopy reveals spin-waves in iron oxide nanoparticles“. Universitätsbibliothek Chemnitz, 2015. http://nbn-resolving.de/urn:nbn:de:bsz:ch1-qucosa-168045.
Der volle Inhalt der QuelleDieser Beitrag ist aufgrund einer (DFG-geförderten) Allianz- bzw. Nationallizenz frei zugänglich
Eschimese, Damien. „Design, fabrication, and characterization of TIP-enhanced Raman spectroscopy probes based on metallic nano-antennas“. Thesis, Lille 1, 2019. http://www.theses.fr/2019LIL1I020/document.
Der volle Inhalt der QuelleSince the start of the 2000s the evolution of tip-enhanced Raman spectroscopy (TERS) has enabled the simultaneous measurement of localized structural, molecular, and physicochemical properties. TERS technology combines scanning probe microscopy -- atomic force microscopy (AFM) -- with near field optical microscopy. The combined technique is referred to as AFM-TERS. The technique harnesses and exploits the generation of surface plasmons on metal surfaces. These plasmons lead to the generation of confined electromagnetic waves in a sub-wavelength volume at the very tip of the AFM-TERS probe. The main technological challenge today is the design and optimization of an AFM-TERS probe having nanometer-sized dimensions -- and the controlled, reproducible batch fabrication of such structures. The objective of the work presented in this PhD thesis was to design, fabricate, and characterize a new type of AFM probe capable of bettering the current state-of-the-art performances. The PhD was carried out in collaboration with HORIBA and funded partly by a French ‘CIFRE’ grant. In order to meet these objects, comprehensive numerical modelling led to the design of an optimized metal nanostructuring having maximum electromagnetic exaltation -- placed at the extremity of a silicon-based AFM cantilever. A new combined micro and nano fabrication process was developed to achieve this -- to be performed using the existing equipment found in the IEMN cleanroom. The process encompasses techniques such as masking using electron beam (ebeam) lithography and UV photolithography, thermal evaporation of metals and ‘lift-off’ techniques, and highly-controlled dry etching of small silicon mesas structures and deep etching for MEMS cantilever releasing. The process enables the batch-fabrication manufacture of AFM-TERS probes containing matter on the millimeter scale (the silicon probe support), the micrometer scale (the silicon cantilever), and the nanometer scale (the combined metallic disk and cone having sub-wavelength dimensions). This method allows nanostructuring on the optical/plasmonic behavior of TERS probes, the key factor which will lead to higher performance in TERS. Finally, a further study concerning the inclined evaporation of metallic nanostructures via an ebeam-derived lithographic shadow mask was performed in order to control the size and shape of the nanostructuring. The study proved this approach to be feasible. Furthermore, numerical modelling of such structures suggests that they are potential original candidates for both TERS and SERS (surface-enhanced Raman spectroscopy)
Le, Nader Victor. „Approche expérimentale et théorique de la diffusion Raman exaltée : résonance des plasmons de surface et effet de pointe“. Phd thesis, Université de Nantes, 2010. http://tel.archives-ouvertes.fr/tel-00559365.
Der volle Inhalt der QuelleAybeke, Ece Neslihan. „Study of the dynamics of biomolecules by high speed atomic force microscopy and surface enhanced Raman spectroscopy“. Thesis, Dijon, 2015. http://www.theses.fr/2015DIJOS023/document.
Der volle Inhalt der QuelleThis thesis focuses on the coupling of High–Speed Atomic Force Microscopy (HS-AFM) and Surface Enhanced Raman Spectroscopy (SERS) for biomolecule analysis. We have designed a fabrication protocol to manufacture “SERS-active” substrates. The efficacy of gold, silver and gold-silver bimetallic crystalline nanoparticle substrates were evaluated. We have investigated the impact of optical and morphological features of the substrates on Raman signal intensity by analyzing well-known samples such as bipyridine ethylene and methylene blue molecules. We took an interest in three distinct biological problematics with HS-AFM and SERS analyses. First, we have detected the chemical signature of cytochrome b5 protein. This study was followed by the investigation of conformational changes of small heat shock leuconostoc oenos Lo 18 protein in function of pH level and concentrations. The last application consists to the analyse a membrane and a virus interaction. In order to realize simultaneous Raman/AFM analysis, we have adapted our fabrication protocol to cover the surface of commercial AFM probes by crystalline gold nanoparticles. Tip – Enhanced Raman Spectroscopy (TERS) studies were performed on molybdenum disulfide to evaluate the quality of TERS probes. In the last part of this work, we have designed a new setup to combine Ando’s HS-AFM setup with Raman spectroscopy. We present the modifications that have been carried out and the challenges that we have encountered
Agapov, Rebecca L. „Advanced Scanning Probe Techniques for the Study of Polymer Surfaces“. University of Akron / OhioLINK, 2012. http://rave.ohiolink.edu/etdc/view?acc_num=akron1352922649.
Der volle Inhalt der QuelleBöhme, René, Msau Mkandawire, Udo Krause-Buchholz, Petra Rösch, Gerhard Rödel, Jürgen Popp und Volker Deckert. „Characterizing cytochrome c states – TERS studies of whole mitochondria“. Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2014. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-138679.
Der volle Inhalt der QuelleDieser Beitrag ist mit Zustimmung des Rechteinhabers aufgrund einer (DFG-geförderten) Allianz- bzw. Nationallizenz frei zugänglich
Bücher zum Thema "Tip-Enhanced and Surface-Enhanced Raman Spectoscopies"
Procházka, Marek, Janina Kneipp, Bing Zhao und Yukihiro Ozaki, Hrsg. Surface and Tip-Enhanced Raman Scattering Spectroscopy. Singapore: Springer Nature Singapore, 2024. http://dx.doi.org/10.1007/978-981-97-5818-0.
Der volle Inhalt der QuelleTsukuba Satellite Symposium on Single Molecule and Tip-Enhanced Raman Scattering (2006 Tsukuba Kenkyū Gakuen Toshi, Japan). SM-TERS 2006, Tsukuba Satellite Symposium on Single Molecule and Tip-enhanced Raman Scattering: Extended abstracts : August 17-19, 2006, AIST Tsukuba Center Auditorium, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki, Japan. Tsukuba, Japan: AIST, 2006.
Den vollen Inhalt der Quelle findenWeckhuysen, Bert M. Surface- and Tip-Enhanced Raman Spectroscopy for Catalysis: Fundamentals and Applications. Royal Society of Chemistry, The, 2022.
Den vollen Inhalt der Quelle findenWeckhuysen, Bert M. Surface- and Tip-Enhanced Raman Spectroscopy for Catalysis: Fundamentals and Applications. Royal Society of Chemistry, The, 2021.
Den vollen Inhalt der Quelle findenWeckhuysen, Bert M. Surface- and Tip-Enhanced Raman Spectroscopy for Catalysis: Fundamentals and Applications. Royal Society of Chemistry, The, 2021.
Den vollen Inhalt der Quelle findenHayazawa, Norihiko, und Prabhat Verma. Nanoanalysis of materials using near-field Raman spectroscopy. Herausgegeben von A. V. Narlikar und Y. Y. Fu. Oxford University Press, 2017. http://dx.doi.org/10.1093/oxfordhb/9780199533053.013.10.
Der volle Inhalt der QuelleBuchteile zum Thema "Tip-Enhanced and Surface-Enhanced Raman Spectoscopies"
Hayazawa, Norihiko. „Tip-Enhanced Raman Scattering“. In Compendium of Surface and Interface Analysis, 755–61. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-10-6156-1_121.
Der volle Inhalt der QuelleIchimura, Taro, und Satoshi Kawata. „Surface- and Tip-Enhanced CARS“. In Surface Enhanced Raman Spectroscopy, 305–21. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2010. http://dx.doi.org/10.1002/9783527632756.ch14.
Der volle Inhalt der QuelleKitahama, Yasutaka, und Keisuke Goda. „Wearable Surface-Enhanced Raman Spectroscopy“. In Surface and Tip-Enhanced Raman Scattering Spectroscopy, 195–217. Singapore: Springer Nature Singapore, 2024. http://dx.doi.org/10.1007/978-981-97-5818-0_8.
Der volle Inhalt der QuelleZhang, Yao, und Zhen-Chao Dong. „Ångström-Resolved Tip-Enhanced Raman Spectroscopy“. In Surface and Tip-Enhanced Raman Scattering Spectroscopy, 657–97. Singapore: Springer Nature Singapore, 2024. http://dx.doi.org/10.1007/978-981-97-5818-0_22.
Der volle Inhalt der QuelleGiri, Sajal Kumar, und George C. Schatz. „Plasmon-Enhanced Spectroscopy and Photocatalysis“. In Surface and Tip-Enhanced Raman Scattering Spectroscopy, 3–17. Singapore: Springer Nature Singapore, 2024. http://dx.doi.org/10.1007/978-981-97-5818-0_1.
Der volle Inhalt der QuelleYano, Taka-aki, und Satoshi Kawata. „Tip-Enhanced Raman Spectroscopy (TERS) for Nanoscale Imaging and Analysis“. In Frontiers of Surface-Enhanced Raman Scattering, 139–61. Chichester, UK: John Wiley & Sons, Ltd, 2014. http://dx.doi.org/10.1002/9781118703601.ch7.
Der volle Inhalt der QuellePienpinijtham, Prompong, und Yukihiro Ozaki. „State-of-the-Art Tip-Enhanced Raman Scattering“. In Surface and Tip-Enhanced Raman Scattering Spectroscopy, 117–64. Singapore: Springer Nature Singapore, 2024. http://dx.doi.org/10.1007/978-981-97-5818-0_6.
Der volle Inhalt der QuelleKočišová, Eva, Ondřej Kylián und Marek Procházka. „Non-plasmonic Metal Oxide Nanostructures for SERS Applications“. In Surface and Tip-Enhanced Raman Scattering Spectroscopy, 219–47. Singapore: Springer Nature Singapore, 2024. http://dx.doi.org/10.1007/978-981-97-5818-0_9.
Der volle Inhalt der QuelleAljuhani, Wafaa, Yingrui Zhang, Chunchun Li, Yikai Xu und Steven E. J. Bell. „Towards Reliable and Practical SERS“. In Surface and Tip-Enhanced Raman Scattering Spectroscopy, 87–115. Singapore: Springer Nature Singapore, 2024. http://dx.doi.org/10.1007/978-981-97-5818-0_5.
Der volle Inhalt der QuelleCao, Jun, Wei Zhu und Ai-Guo Shen. „SERS Bioanalysis Based on Tagging and Responsive Probes“. In Surface and Tip-Enhanced Raman Scattering Spectroscopy, 371–429. Singapore: Springer Nature Singapore, 2024. http://dx.doi.org/10.1007/978-981-97-5818-0_14.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Tip-Enhanced and Surface-Enhanced Raman Spectoscopies"
Ren, Bin, Zheng Liu, Xiang Wang, Zhi-Lin Yang, Zhong-Qun Tian, P. M. Champion und L. D. Ziegler. „Electromagnetic Coupling Effect for Surface-enhanced Raman Spectroscopy and Tip-enhanced Raman Spectroscopy“. In XXII INTERNATIONAL CONFERENCE ON RAMAN SPECTROSCOPY. AIP, 2010. http://dx.doi.org/10.1063/1.3482402.
Der volle Inhalt der QuellePettinger, Bruno, Philip Schambach, Nicola R. Scott, P. M. Champion und L. D. Ziegler. „Single Molecule Surface- and Tip-enhanced Raman Spectroscopy“. In XXII INTERNATIONAL CONFERENCE ON RAMAN SPECTROSCOPY. AIP, 2010. http://dx.doi.org/10.1063/1.3482423.
Der volle Inhalt der QuelleYi, K. J., X. N. He, W. Q. Yang, Y. S. Zhou, W. Xiong und Y. F. Lu. „Surface-and tip-enhanced Raman spectroscopy of silicon“. In ICALEO® 2008: 27th International Congress on Laser Materials Processing, Laser Microprocessing and Nanomanufacturing. Laser Institute of America, 2008. http://dx.doi.org/10.2351/1.5061406.
Der volle Inhalt der QuelleWang, Xiang, Shengchao Huang, Yifan Bao, Tengxiang Huang und Bin Ren. „Nanoscale characterization of the surface plasmon catalysis with electrochemical tip-enhanced Raman spectroscopy“. In Enhanced Spectroscopies and Nanoimaging 2021, herausgegeben von Prabhat Verma und Yung Doug Suh. SPIE, 2021. http://dx.doi.org/10.1117/12.2595112.
Der volle Inhalt der QuelleCialla-May, Dana. „Literature review on surface and tip enhanced Raman spectroscopy in bioanalytics“. In Nanoscale Imaging, Sensing, and Actuation for Biomedical Applications XVIII, herausgegeben von Dror Fixler, Sebastian Wachsmann-Hogiu und Ewa M. Goldys. SPIE, 2021. http://dx.doi.org/10.1117/12.2595757.
Der volle Inhalt der QuelleRabah, Jad, Gabriel Boitel-Aullen, Iwona Nierengarten, Jean-Francois Nierengarten und Emmanuel Maisonhaute. „Electrochemical tip surface-enhanced Raman spectroscopy: concept and applications in material science and electrocatalysis (Conference Presentation)“. In Enhanced Spectroscopies and Nanoimaging 2022, herausgegeben von Prabhat Verma und Yung Doug Suh. SPIE, 2022. http://dx.doi.org/10.1117/12.2633981.
Der volle Inhalt der QuelleTaguenang, J. M., A. Kassu, A. Sharma und D. Diggs. „Surface enhanced Raman spectroscopy on the tip of a plastic optical fiber“. In NanoScience + Engineering, herausgegeben von Mark I. Stockman. SPIE, 2007. http://dx.doi.org/10.1117/12.731246.
Der volle Inhalt der QuelleLiu, Min, Fanfan Lu, Wending Zhang und Ting Mei. „Plasmonic Tip Internally Excited via Cylindrical Vector Beam for Surface Enhanced Raman Spectroscopy“. In 2019 International Conference on Optical MEMS and Nanophotonics (OMN). IEEE, 2019. http://dx.doi.org/10.1109/omn.2019.8925029.
Der volle Inhalt der QuelleKazemi-Zanjani, Nastaran, Farshid Pashaee und François Lagugné-Labarthet. „Tip-enhanced Raman spectroscopy: application to the study of single silicon nanowire and functionalized gold surface“. In Photonics North 2012, herausgegeben von Jean-Claude Kieffer. SPIE, 2012. http://dx.doi.org/10.1117/12.981727.
Der volle Inhalt der QuelleJiang, Nan. „Recent progress in the study of surface chemistry on various noble metal surfaces by ultrahigh vacuum tip-enhanced Raman spectroscopy (Conference Presentation)“. In Nanoimaging and Nanospectroscopy V, herausgegeben von Prabhat Verma und Alexander Egner. SPIE, 2017. http://dx.doi.org/10.1117/12.2275256.
Der volle Inhalt der Quelle