Zeitschriftenartikel zum Thema „TiO2 polymorphs“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit Top-50 Zeitschriftenartikel für die Forschung zum Thema "TiO2 polymorphs" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Sehen Sie die Zeitschriftenartikel für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.
Eddy, Diana Rakhmawaty, Muhamad Diki Permana, Lintang Kumoro Sakti, Geometry Amal Nur Sheha, Solihudin, Sahrul Hidayat, Takahiro Takei, Nobuhiro Kumada und Iman Rahayu. „Heterophase Polymorph of TiO2 (Anatase, Rutile, Brookite, TiO2 (B)) for Efficient Photocatalyst: Fabrication and Activity“. Nanomaterials 13, Nr. 4 (12.02.2023): 704. http://dx.doi.org/10.3390/nano13040704.
Der volle Inhalt der QuelleSerga, Vera, Regina Burve, Aija Krumina, Marina Romanova, Eugene A. Kotomin und Anatoli I. Popov. „Extraction–Pyrolytic Method for TiO2 Polymorphs Production“. Crystals 11, Nr. 4 (16.04.2021): 431. http://dx.doi.org/10.3390/cryst11040431.
Der volle Inhalt der QuelleDima, Ratshilumela S., Lutendo Phuthu, Nnditshedzeni E. Maluta, Joseph K. Kirui und Rapela R. Maphanga. „Electronic, Structural, and Optical Properties of Mono-Doped and Co-Doped (210) TiO2 Brookite Surfaces for Application in Dye-Sensitized Solar Cells—A First Principles Study“. Materials 14, Nr. 14 (14.07.2021): 3918. http://dx.doi.org/10.3390/ma14143918.
Der volle Inhalt der QuellePoleti, Dejan, Ljiljana Karanovic, Miodrag Zdujic und Cedomir Jovalekic. „Phase composition of Bi2O3 specimens doped with Ti, Zr and Hf“. Journal of the Serbian Chemical Society 77, Nr. 8 (2012): 1091–96. http://dx.doi.org/10.2298/jsc110914215p.
Der volle Inhalt der QuelleBasavaraj, K., Anupriya Nyayban und Subhasis Panda. „Structural phase transitions and elastic properties of TiO2 polymorphs: Ab-initio study“. IOP Conference Series: Materials Science and Engineering 1248, Nr. 1 (01.07.2022): 012064. http://dx.doi.org/10.1088/1757-899x/1248/1/012064.
Der volle Inhalt der QuelleSong, Miao, Zexi Lu und Dongsheng Li. „Phase transformations among TiO2 polymorphs“. Nanoscale 12, Nr. 45 (2020): 23183–90. http://dx.doi.org/10.1039/d0nr06226j.
Der volle Inhalt der QuelleNagy, Dávidné, Tamás Firkala, Eszter Drotár, Ágnes Szegedi, Krisztina László und Imre Miklós Szilágyi. „Photocatalytic WO3/TiO2 nanowires: WO3 polymorphs influencing the atomic layer deposition of TiO2“. RSC Advances 6, Nr. 98 (2016): 95369–77. http://dx.doi.org/10.1039/c6ra18899k.
Der volle Inhalt der QuelleShi, Huili, Chaoyun Shi, Zhitong Jia, Long Zhang, Haifeng Wang und Jingbo Chen. „Titanium dioxide-based anode materials for lithium-ion batteries: structure and synthesis“. RSC Advances 12, Nr. 52 (2022): 33641–52. http://dx.doi.org/10.1039/d2ra05442f.
Der volle Inhalt der QuelleAsagoe, Keisuke, Supachai Ngamsinlapasathian, Yoshikazu Suzuki und Susumu Yoshikawa. „Addition of TiO2 nanowires in different polymorphs for dye-sensitized solar cells“. Open Chemistry 5, Nr. 2 (01.06.2007): 605–19. http://dx.doi.org/10.2478/s11532-007-0001-4.
Der volle Inhalt der QuelleGaspar, Miguel, Nuno Grácio, Rute Salgueiro und Mafalda Costa. „Trace Element Geochemistry of Alluvial TiO2 Polymorphs as a Proxy for Sn and W Deposits“. Minerals 12, Nr. 10 (30.09.2022): 1248. http://dx.doi.org/10.3390/min12101248.
Der volle Inhalt der QuelleManuputty, Manoel Y., Jochen A. H. Dreyer, Yuan Sheng, Eric J. Bringley, Maria L. Botero, Jethro Akroyd und Markus Kraft. „Polymorphism of nanocrystalline TiO2 prepared in a stagnation flame: formation of the TiO2-II phase“. Chemical Science 10, Nr. 5 (2019): 1342–50. http://dx.doi.org/10.1039/c8sc02969e.
Der volle Inhalt der QuelleNagy, Dávidné, Tamás Firkala, Eszter Drotár, Ágnes Szegedi, Krisztina László und Imre Miklós Szilágyi. „Correction: Photocatalytic WO3/TiO2 nanowires: WO3 polymorphs influencing the atomic layer deposition of TiO2“. RSC Advances 7, Nr. 10 (2017): 5979. http://dx.doi.org/10.1039/c7ra90002c.
Der volle Inhalt der QuelleKobir, Md Mahmudul, Sumaya Tabassum, Shanawaz Ahmed, Sumaiya Islam Sadia und Md Ashraful Alam. „Crystallographic Benchmarking on Diffraction Pattern Profiling of Polymorphs-TiO2 by WPPF for Pigment and Acrylic Paint“. Archives of Current Research International 24, Nr. 1 (22.01.2024): 62–70. http://dx.doi.org/10.9734/acri/2024/v24i1623.
Der volle Inhalt der QuelleLyu, Ying-hai, Feng Wei, Tingting Zhang, Li Luo, Yeye Pan, Xueqi Yang, Hao Yu und Shixue Zhou. „Different antibacterial effect of Ag3PO4/TiO2 heterojunctions and the TiO2 polymorphs“. Journal of Alloys and Compounds 876 (September 2021): 160016. http://dx.doi.org/10.1016/j.jallcom.2021.160016.
Der volle Inhalt der QuelleZhang, Maolin, Tiedan Chen und Yunjian Wang. „Insights into TiO2 polymorphs: highly selective synthesis, phase transition, and their polymorph-dependent properties“. RSC Advances 7, Nr. 83 (2017): 52755–61. http://dx.doi.org/10.1039/c7ra11515f.
Der volle Inhalt der QuelleLuo, Huixia, Weiwei Xie, Jing Tao, Hiroyuki Inoue, András Gyenis, Jason W. Krizan, Ali Yazdani, Yimei Zhu und Robert Joseph Cava. „Polytypism, polymorphism, and superconductivity in TaSe2−xTex“. Proceedings of the National Academy of Sciences 112, Nr. 11 (03.03.2015): E1174—E1180. http://dx.doi.org/10.1073/pnas.1502460112.
Der volle Inhalt der QuelleRajput, Nitul S., Sang-Gook Kim, Jeffrey B. Chou, Jehad Abed, Jaime Viegas und Mustapha Jouiad. „Electron beam induced rapid crystallization of water splitting nanostructures“. MRS Advances 1, Nr. 13 (21.12.2015): 825–30. http://dx.doi.org/10.1557/adv.2015.20.
Der volle Inhalt der QuelleBastow, T. J. „47,49Ti NMR in Metals, Inorganics, and Gels“. Zeitschrift für Naturforschung A 55, Nr. 1-2 (01.02.2000): 291–97. http://dx.doi.org/10.1515/zna-2000-1-251.
Der volle Inhalt der QuelleLumpkin, G. R., M. G. Blackford, K. L. Smith, K. R. Whittle, N. J. Zaluzec, E. A. Ryan und P. Baldo. „Ion irradiation of the TiO2 polymorphs and cassiterite“. American Mineralogist 95, Nr. 1 (23.12.2009): 192–95. http://dx.doi.org/10.2138/am.2010.3329.
Der volle Inhalt der QuelleLi, Haoguang, Michel Vrinat, Gilles Berhault, Dadong Li, Hong Nie und Pavel Afanasiev. „Hydrothermal synthesis and acidity characterization of TiO2 polymorphs“. Materials Research Bulletin 48, Nr. 9 (September 2013): 3374–82. http://dx.doi.org/10.1016/j.materresbull.2013.05.017.
Der volle Inhalt der QuelleAravindan, Vanchiappan, Yun-Sung Lee, Rachid Yazami und Srinivasan Madhavi. „TiO2 polymorphs in ‘rocking-chair’ Li-ion batteries“. Materials Today 18, Nr. 6 (Juli 2015): 345–51. http://dx.doi.org/10.1016/j.mattod.2015.02.015.
Der volle Inhalt der QuelleMbae, Jane Kathure, und Zipporah Wanjiku Muthui. „Ab initio Investigation of the Structural and Electronic Properties of Alkaline Earth Metal - TiO2 Natural Polymorphs“. Advances in Materials Science and Engineering 2022 (27.03.2022): 1–10. http://dx.doi.org/10.1155/2022/7629651.
Der volle Inhalt der QuelleElmaslmane, A. R., M. B. Watkins und K. P. McKenna. „First-Principles Modeling of Polaron Formation in TiO2 Polymorphs“. Journal of Chemical Theory and Computation 14, Nr. 7 (06.06.2018): 3740–51. http://dx.doi.org/10.1021/acs.jctc.8b00199.
Der volle Inhalt der QuelleVega Poot, Alberto G., David Reyes Coronado und G. Oskam. „Application of Three TiO2 Polymorphs in Photoelectrochemical Solar Cells“. ECS Transactions 3, Nr. 9 (21.12.2019): 233–37. http://dx.doi.org/10.1149/1.2357114.
Der volle Inhalt der QuelleKerisit, Sebastien, Kevin M. Rosso, Zhenguo Yang und Jun Liu. „Dynamics of Coupled Lithium/Electron Diffusion in TiO2 Polymorphs“. Journal of Physical Chemistry C 113, Nr. 49 (17.11.2009): 20998–1007. http://dx.doi.org/10.1021/jp9064517.
Der volle Inhalt der QuelleTriebold, Silke, George Luiz Luvizotto, Raimon Tolosana-Delgado, Thomas Zack und Hilmar von Eynatten. „Discrimination of TiO2 polymorphs in sedimentary and metamorphic rocks“. Contributions to Mineralogy and Petrology 161, Nr. 4 (13.07.2010): 581–96. http://dx.doi.org/10.1007/s00410-010-0551-x.
Der volle Inhalt der QuelleKocot, Karina, Gabriela Dyrda und Rudolf Słota. „The impact of TiO2 modifications on the effectiveness of photocatalytic processes [review]“. Acta Innovations, Nr. 28 (01.07.2018): 14–19. http://dx.doi.org/10.32933/actainnovations.28.2.
Der volle Inhalt der QuelleJohnson, Martha S., Mehmet Ates, Zikri Arslan, Ibrahim O. Farah und Coneliu Bogatu. „Assessment of Crystal Morphology on Uptake, Particle Dissolution, and Toxicity of Nanoscale Titanium Dioxide on Artemia Salina“. Journal of Nanotoxicology and Nanomedicine 2, Nr. 1 (Januar 2017): 11–27. http://dx.doi.org/10.4018/jnn.2017010102.
Der volle Inhalt der QuelleMurad, E., und H. M. Köster. „Determination of the Ti speciation in commercial kaolins by Raman spectroscopy“. Clay Minerals 34, Nr. 3 (September 1999): 479–85. http://dx.doi.org/10.1180/000985599546389.
Der volle Inhalt der QuelleJoshi, Bhupendra, und Soo Wohn Lee. „Modification of P25 titania in presence of hydrazine for Staphylococcus aureus inactivation“. Functional Materials Letters 12, Nr. 03 (16.05.2019): 1950030. http://dx.doi.org/10.1142/s1793604719500309.
Der volle Inhalt der QuelleMartínez, Lester, Mónica Benito, Ignasi Mata, Lluís Soler, Elies Molins und Jordi Llorca. „Preparation and photocatalytic activity of Au/TiO2 lyogels for hydrogen production“. Sustainable Energy & Fuels 2, Nr. 10 (2018): 2284–95. http://dx.doi.org/10.1039/c8se00293b.
Der volle Inhalt der QuelleZhu, Tong, und Shang-Peng Gao. „The Stability, Electronic Structure, and Optical Property of TiO2 Polymorphs“. Journal of Physical Chemistry C 118, Nr. 21 (19.05.2014): 11385–96. http://dx.doi.org/10.1021/jp412462m.
Der volle Inhalt der QuelleTosoni, Sergio, Oriol Lamiel-Garcia, Daniel Fernandez Hevia und Francesc Illas. „Theoretical Study of Atomic Fluorine Diffusion through Bulk TiO2 Polymorphs“. Journal of Physical Chemistry C 117, Nr. 11 (13.03.2013): 5855–60. http://dx.doi.org/10.1021/jp400474y.
Der volle Inhalt der QuelleAssadi, M. Hussein N., und Dorian A. H. Hanaor. „Theoretical study on copper's energetics and magnetism in TiO2 polymorphs“. Journal of Applied Physics 113, Nr. 23 (21.06.2013): 233913. http://dx.doi.org/10.1063/1.4811539.
Der volle Inhalt der QuelleLeal, J. H., Y. Cantu, D. F. Gonzalez und J. G. Parsons. „Brookite and anatase nanomaterial polymorphs of TiO2 synthesized from TiCl3“. Inorganic Chemistry Communications 84 (Oktober 2017): 28–32. http://dx.doi.org/10.1016/j.inoche.2017.07.014.
Der volle Inhalt der QuelleKerisit, Sebastien, Kevin M. Rosso, Zhenguo Yang und Jun Liu. „Computer Simulation of the Phase Stabilities of Lithiated TiO2 Polymorphs“. Journal of Physical Chemistry C 114, Nr. 44 (19.10.2010): 19096–107. http://dx.doi.org/10.1021/jp103809s.
Der volle Inhalt der QuelleMa, X. G., P. Liang, L. Miao, S. W. Bie, C. K. Zhang, L. Xu und J. J. Jiang. „Pressure-induced phase transition and elastic properties of TiO2 polymorphs“. physica status solidi (b) 246, Nr. 9 (06.07.2009): 2132–39. http://dx.doi.org/10.1002/pssb.200945111.
Der volle Inhalt der QuelleKujawa, Weronika, Agnieszka Didyk-Mucha, Ewa Olewnik-Kruszkowska, Magdalena Gierszewska und Anna Rudawska. „Synergistic Effect of Combined Polymorphs Anatase-Rutile Nano-Modified Lightweight Concrete on Photocatalytic Reduction of NOx, Self-Cleaning Performance, and Antimicrobial Properties“. Buildings 13, Nr. 7 (08.07.2023): 1736. http://dx.doi.org/10.3390/buildings13071736.
Der volle Inhalt der QuelleXu, Zhongnan, Paul Salvador und John R. Kitchin. „First-Principles Investigation of the Epitaxial Stabilization of Oxide Polymorphs: TiO2 on (Sr,Ba)TiO3“. ACS Applied Materials & Interfaces 9, Nr. 4 (17.01.2017): 4106–18. http://dx.doi.org/10.1021/acsami.6b11791.
Der volle Inhalt der QuelleQi, Xue Mei, Xin Yuan Zhu, Jiang Wu, Yu Wu und Han Cheng Luo. „Sol-Gel Synthesis and Characterization of TiO2-Based Photocatalyst and its Photoactivity Research“. Advanced Materials Research 864-867 (Dezember 2013): 613–16. http://dx.doi.org/10.4028/www.scientific.net/amr.864-867.613.
Der volle Inhalt der QuelleRoursgaard, Martin, Keld A. Jensen, Steen S. Poulsen, Niels-Erik V. Jensen, Lars K. Poulsen, Maria Hammer, Gunnar D. Nielsen und Søren T. Larsen. „Acute and Subchronic Airway Inflammation after Intratracheal Instillation of Quartz and Titanium Dioxide Agglomerates in Mice“. Scientific World JOURNAL 11 (2011): 801–25. http://dx.doi.org/10.1100/tsw.2011.67.
Der volle Inhalt der QuellePatra, Shanti Gopal, und Dan Meyerstein. „On the Mechanism of Heterogeneous Water Oxidation Catalysis: A Theoretical Perspective“. Inorganics 10, Nr. 11 (26.10.2022): 182. http://dx.doi.org/10.3390/inorganics10110182.
Der volle Inhalt der QuelleChiari-Andréo, Bruna G., Joana Marto, Andreia Ascenso, Carlos Carneiro, Laura Rodríguez, Antonio José Guillot, Teresa M. Garrigues, Helena M. Ribeiro, Ana Melero und Vera Isaac. „The Impact of Titanium Dioxide Type Combined with Coffee Oil Obtained from Coffee Industry Waste on Sunscreen Product Performance“. Dermato 1, Nr. 1 (21.06.2021): 2–17. http://dx.doi.org/10.3390/dermato1010002.
Der volle Inhalt der QuelleZhang, Wei, Yong Tian, Haili He, Li Xu, Wei Li und Dongyuan Zhao. „Recent advances in the synthesis of hierarchically mesoporous TiO2 materials for energy and environmental applications“. National Science Review 7, Nr. 11 (14.02.2020): 1702–25. http://dx.doi.org/10.1093/nsr/nwaa021.
Der volle Inhalt der QuelleRuus, R., A. Kikas, A. Saar, A. Ausmees, E. Nõmmiste, J. Aarik, A. Aidla, T. Uustare und I. Martinson. „Ti 2p and O 1s X-ray absorption of TiO2 polymorphs“. Solid State Communications 104, Nr. 4 (Oktober 1997): 199–203. http://dx.doi.org/10.1016/s0038-1098(97)00300-1.
Der volle Inhalt der QuelleCavaliere, Emanuele, Luca Artiglia, Gian Andrea Rizzi, Luca Gavioli und Gaetano Granozzi. „Structure and thermal stability of fully oxidized TiO2/Pt(111) polymorphs“. Surface Science 608 (Februar 2013): 173–79. http://dx.doi.org/10.1016/j.susc.2012.10.013.
Der volle Inhalt der QuelleNoto, L. L., O. M. Ntwaeaborwa, J. J. Terblans und H. C. Swart. „Dependence of luminescence properties of CaTiO3:Pr3+ on different TiO2 polymorphs“. Powder Technology 256 (April 2014): 477–81. http://dx.doi.org/10.1016/j.powtec.2014.01.082.
Der volle Inhalt der QuelleTong, Tiezheng, Andrea N. Hill, Marco A. Alsina, Jinsong Wu, Karis Y. Shang, John J. Kelly, Kimberly A. Gray und Jean-François Gaillard. „Spectroscopic Characterization of TiO2 Polymorphs in Wastewater Treatment and Sediment Samples“. Environmental Science & Technology Letters 2, Nr. 1 (23.12.2014): 12–18. http://dx.doi.org/10.1021/ez5004023.
Der volle Inhalt der QuelleAgirseven, O., D. T. Rivella, J. E. S. Haggerty, P. O. Berry, K. Diffendaffer, A. Patterson, J. Kreb et al. „Crystallization of TiO2 polymorphs from RF-sputtered, amorphous thin-film precursors“. AIP Advances 10, Nr. 2 (01.02.2020): 025109. http://dx.doi.org/10.1063/1.5140368.
Der volle Inhalt der QuelleAmore Bonapasta, Aldo, Francesco Filippone, Giuseppe Mattioli und Paola Alippi. „Oxygen vacancies and OH species in rutile and anatase TiO2 polymorphs“. Catalysis Today 144, Nr. 1-2 (Juni 2009): 177–82. http://dx.doi.org/10.1016/j.cattod.2009.01.047.
Der volle Inhalt der Quelle