Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Time series outlier detection“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Time series outlier detection" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Time series outlier detection"
Twumasi-Ankrah, Sampson, Simon Kojo Appiah, Doris Arthur, Wilhemina Adoma Pels, Jonathan Kwaku Afriyie und Danielson Nartey. „Comparison of outlier detection techniques in non-stationary time series data“. Global Journal of Pure and Applied Sciences 27, Nr. 1 (05.03.2021): 55–60. http://dx.doi.org/10.4314/gjpas.v27i1.7.
Der volle Inhalt der QuelleJi, Yanjie, Dounan Tang, Weihong Guo, Phil T. Blythe und Gang Ren. „Detection of Outliers in a Time Series of Available Parking Spaces“. Mathematical Problems in Engineering 2013 (2013): 1–12. http://dx.doi.org/10.1155/2013/416267.
Der volle Inhalt der QuelleChoi, Jeong In, In Ok Um und Hyung Jun Choa. „Outlier detection in time series data“. Korean Journal of Applied Statistics 29, Nr. 5 (31.08.2016): 907–20. http://dx.doi.org/10.5351/kjas.2016.29.5.907.
Der volle Inhalt der QuelleChoy, Kokyo. „Outlier detection for stationary time series“. Journal of Statistical Planning and Inference 99, Nr. 2 (Dezember 2001): 111–27. http://dx.doi.org/10.1016/s0378-3758(01)00081-7.
Der volle Inhalt der QuelleAbraham, Bovas, und Alice Chuang. „Outlier Detection and Time Series Modeling“. Technometrics 31, Nr. 2 (Mai 1989): 241–48. http://dx.doi.org/10.1080/00401706.1989.10488517.
Der volle Inhalt der QuelleLjung, Greta M. „On Outlier Detection in Time Series“. Journal of the Royal Statistical Society: Series B (Methodological) 55, Nr. 2 (Januar 1993): 559–67. http://dx.doi.org/10.1111/j.2517-6161.1993.tb01924.x.
Der volle Inhalt der QuelleTran, Trong Dinh, Toan Duy Dao, Tung So Vu, Dung Ngoc Luong, Chieu Dinh Vu, Son Ngoc Bui und Hang Thi Ha. „Outlier detection in GNSS position time series“. Science and Technology Development Journal 19, Nr. 2 (30.06.2016): 43–50. http://dx.doi.org/10.32508/stdj.v19i2.665.
Der volle Inhalt der QuelleOlewuezi, N. P., B. Onoghojobi und A. O. Aduobi. „OUTLIER DETECTION IN UNIVARIATE TIME SERIES DATA“. Far East Journal of Theoretical Statistics 50, Nr. 2 (09.06.2015): 143–51. http://dx.doi.org/10.17654/fjtsmar2015_143_151.
Der volle Inhalt der QuelleVorotnikov, I., A. Rozanov, M. Sidelnikova, S. Tkachev und L. Volochuk. „Outlier Detection of the Agricultural Time Series“. IOP Conference Series: Earth and Environmental Science 723, Nr. 4 (01.03.2021): 042070. http://dx.doi.org/10.1088/1755-1315/723/4/042070.
Der volle Inhalt der QuelleBlázquez-García, Ane, Angel Conde, Usue Mori und Jose A. Lozano. „A Review on Outlier/Anomaly Detection in Time Series Data“. ACM Computing Surveys 54, Nr. 3 (Juni 2021): 1–33. http://dx.doi.org/10.1145/3444690.
Der volle Inhalt der QuelleDissertationen zum Thema "Time series outlier detection"
Sedman, Robin. „Online Outlier Detection in Financial Time Series“. Thesis, KTH, Matematisk statistik, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-228069.
Der volle Inhalt der QuelleI detta examensarbete undersöks olika modeller för outlierdetektering i finansiella tidsserier. De finansiella tidsserierna är prisserier som indexpriser eller tillgångspriser. Outliers är i detta examensarbete definierade som extrema och falska punkter, men denna definition undersöks och revideras också. Två olika tidsseriemodeller undersöks: en autoregressiv (AR) och en generel au-toregressiv betingad heteroskedasticitet1 (GARCH) tidsseriemodell, samt en hypotesprövning2 baserad på GARCH-modellen. Dessutom undersöks en icke-parametrisk modell, vilken använder sig utav uppskattning av täthetsfunktionen med hjälp av kärnfunktioner3 för att detektera out-liers. Modellerna utvärderas utifrån hur väl de upptäcker outliers, hur ofta de kategoriserar icke-outliers som outliers samt modellens körtid. Det är konstaterat att alla modeller ungefär presterar lika bra, baserat på den data som används och de simuleringar som gjorts, i form av hur väl outliers är detekterade, förutom metoden baserad på hypotesprövning som fungerar sämre än de andra. Vidare är det uppenbart att definitionen av en outlier är väldigt avgörande för hur bra en modell detekterar outliers. För tillämpningen av detta examensarbete, så är körtid en viktig faktor, och med detta i åtanke är en autoregressiv modell med Students t-brusfördelning funnen att vara den bästa modellen, både med avseende på hur väl den detekterar outliers, felaktigt detekterar inliers som outliers och modellens körtid.
Wang, Dan Tong. „Outlier detection with data stream mining approach in high-dimenional time series data“. Thesis, University of Macau, 2017. http://umaclib3.umac.mo/record=b3691091.
Der volle Inhalt der QuelleBergamelli, Michele. „Structural breaks and outliers detection in time-series econometrics : methods and applications“. Thesis, City University London, 2015. http://openaccess.city.ac.uk/14868/.
Der volle Inhalt der QuelleEghbalian, Amirmohammad. „Data mining techniques for modeling the operating behaviors of smart building control valve systems“. Thesis, Blekinge Tekniska Högskola, Institutionen för datavetenskap, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:bth-20102.
Der volle Inhalt der QuelleSlávik, Ľuboš. „Dynamická faktorová analýza časových řad“. Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2021. http://www.nusl.cz/ntk/nusl-445469.
Der volle Inhalt der QuelleAllab, Nedjmeddine. „Détection d'anomalies et de ruptures dans les séries temporelles. Applications à la gestion de production de l'électricité“. Thesis, Paris 6, 2016. http://www.theses.fr/2016PA066658.
Der volle Inhalt der QuelleContinental is the main tool that edf uses for the long-term management of electricity. It elaborates the strategy exploitation of the electrical parc made up by power plants distributed all over europe. the tool simulates for each zone and each scenario several variables, such as the electricity demand, the generated quantity as well as the related costs. our works aim to provide methods to analyse the data of electricity production in order to ease their discovery and synthesis. we get a set of problmatics from the users of continental that we tent to solve through techniques of outliers and changepoints detection in time series
Ribeiro, Joana Patrícia Bordonhos. „Outlier identification in multivariate time series“. Master's thesis, Universidade de Aveiro, 2017. http://hdl.handle.net/10773/22200.
Der volle Inhalt der QuelleCom o desenvolvimento tecnológico, existe uma cada vez maior disponibilidade de dados. Geralmente representativos de situações do dia-a-dia, a existência de grandes quantidades de informação tem o seu interesse quando permite a extração de valor para o mercado. Além disso, surge importância em analisar não só os valores disponíveis mas também a sua associação com o tempo. A existência de valores anormais é inevitável. Geralmente denotados como outliers, a procura por estes valores é realizada comummente com o intuito de fazer a sua exclusão do estudo. No entanto, os outliers representam muitas vezes um objetivo de estudo. Por exemplo, no caso de deteção de fraudes bancárias ou no diagnóstico de doenças, o objetivo central é identificar situações anormais. Ao longo desta dissertação é apresentada uma metodologia que permite detetar outliers em séries temporais multivariadas, após aplicação de métodos de classificação. A abordagem escolhida é depois aplicada a um conjunto de dados real, representativo do funcionamento de caldeiras. O principal objetivo é identificar as suas falhas. Consequentemente, pretende-se melhorar os componentes do equipamento e portanto diminuir as suas falhas. Os algoritmos implementados permitem identificar não só as falhas do aparelho mas também o seu funcionamento normal. Pretende-se que as metodologias escolhidas sejam também aplicadas nos aparelhos futuros, permitindo melhorar a identificação em tempo real das falhas.
With the technological development, there is an increasing availability of data. Usually representative of day-to-day actions, the existence of large amounts of information has its own interest when it allows to extract value to the market. In addition, it is important to analyze not only the available values but also their association with time. The existence of abnormal values is inevitable. Usually denoted as outliers, the search for these values is commonly made in order to exclude them from the study. However, outliers often represent a goal of study. For example, in the case of bank fraud detection or disease diagnosis, the central objective is to identify the abnormal situations. Throughout this dissertation we present a methodology that allows the detection of outliers in multivariate time series, after application of classification methods. The chosen approach is then applied to a real data set, representative of boiler operation. The main goal is to identify faults. It is intended to improve boiler components and, hence, reduce the faults. The implemented algorithms allow to identify not only the boiler faults but also their normal operation cycles. We aim that the chosen methodologies will also be applied in future devices, allowing to improve real-time fault identification.
Åkerström, Emelie. „Real-time Outlier Detection using Unbounded Data Streaming and Machine Learning“. Thesis, Luleå tekniska universitet, Datavetenskap, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-80044.
Der volle Inhalt der QuelleSánchez, Enríquez Heider Ysaías. „Anomaly detection in streaming multivariate time series“. Tesis, Universidad de Chile, 2017. http://repositorio.uchile.cl/handle/2250/149078.
Der volle Inhalt der QuelleEste trabajo de tesis presenta soluciones para al problema de detección de anomalı́as en flujo de datos multivariantes. Dado una subsequencia de serie temporal (una pequeña parte de la serie original) como entrada, uno quiere conocer si este corresponde a una observación normal o es una anomalı́a, con respecto a la información histórica. Pueden surgir dificultades debido principalmente a que los tipos de anomalı́a son desconocidos. Además, la detección se convierte en una tarea costosa debido a la gran cantidad de datos y a la existencia de variables de dominios heterogéneos. En este contexto, se propone un enfoque de detección de anomalı́as basado en Discord Discovery, que asocia la anomalı́a con la subsecuencia más inusual utilizando medidas de similitud. Tı́picamente, los métodos de reducción de la dimensionalidad y de indexación son elaborados para restringir el problema resolviéndolo eficientemente. Adicionalmente, se propone técnicas para generar modelos representativos y consisos a partir de los datos crudos con el fin de encontrar los patrones inusuales. Estas técnicas también mejoran la eficiencia en la búsqueda mediante la reducción de la dimensionalidad. Se aborda las series multivariantes usando técnicas de representación sobre subsequencias no- normalizadas, y se propone nuevas técnicas de discord discovery basados en ı́ndices métricos. El enfoque propuesto es comparado con técnicas del estado del arte. Los resultados ex- perimentales demuestran que aplicando la transformación de translación y representación de series temporales pueden contribuir a mejorar la eficacia en la detección. Además, los métodos de indexación métrica y las heurı́sticas de discord discovery pueden resolver eficien- temente la detección de anomalı́as en modo offline y online en flujos de series temporales multivariantes.
Este trabajo ha sido financiado por beca CONICYT - CHILE / Doctorado para Extranjeros, y apoyada parcialmente por el Proyecto FONDEF D09I1185 y el Programa de Becas de NIC Chile
Tinawi, Ihssan. „Machine learning for time series anomaly detection“. Thesis, Massachusetts Institute of Technology, 2019. https://hdl.handle.net/1721.1/123129.
Der volle Inhalt der QuelleThesis: M. Eng., Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, 2019
Cataloged from student-submitted PDF version of thesis.
Includes bibliographical references (page 55).
In this thesis, I explored machine learning and other statistical techniques for anomaly detection on time series data obtained from Internet-of-Things sensors. The data, obtained from satellite telemetry signals, were used to train models to forecast a signal based on its historic patterns. When the prediction passed a dynamic error threshold, then that point was flagged as anomalous. I used multiple models such as Long Short-Term Memory (LSTM), autoregression, Multi-Layer Perceptron, and Encoder-Decoder LSTM. I used the "Detecting Spacecraft Anomalies Using LSTMs and Nonparametric Dynamic Thresholding" paper as a basis for my analysis, and was able to beat their performance on anomaly detection by obtaining an F0.5 score of 76%, an improvement over their 69% score.
by Ihssan Tinawi.
M. Eng.
M.Eng. Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science
Bücher zum Thema "Time series outlier detection"
Olympia, Hadjiliadis, Hrsg. Quickest detection. Cambridge: Cambridge University Press, 2009.
Den vollen Inhalt der Quelle findenCédric, Demeure, Hrsg. Statistical signal processing: Detection, estimation, and time series analysis. Reading, Mass: Addison-Wesley Pub. Co., 1991.
Den vollen Inhalt der Quelle findenRiazuddin, Riaz. Detection and forecasting of Islamic calendar effects in Time Series Data. Karachi: State Bank of Pakistan, 2002.
Den vollen Inhalt der Quelle findenTime-frequency analysis and synthesis of linear signal spaces: Time-frequency filters, signal detection and estimation, and range-Doppler estimation. Boston: Kluwer Academic Publishers, 1998.
Den vollen Inhalt der Quelle findenHlawatsch, F. Time-Frequency Analysis and Synthesis of Linear Signal Spaces: Time-Frequency Filters, Signal Detection and Estimation, and Range-Doppler Estimation. Boston, MA: Springer US, 1998.
Den vollen Inhalt der Quelle findenRadzeijewski, Maciej. Development, use and application of the Hydrospect data analysis system for the detection of changes in hydrological time series for use in WCP-water and national hydrological services. Poznań, Poland: World Meteorological Organization, 2004.
Den vollen Inhalt der Quelle findenPanova, Anna. Tourism statistics. ru: INFRA-M Academic Publishing LLC., 2020. http://dx.doi.org/10.12737/1046178.
Der volle Inhalt der QuelleAn Influence method for outlier detection applied to time series traffic data. Institute for Transport Studies, University of Leeds, 1992.
Den vollen Inhalt der Quelle findenRobust Regression and Outlier Detection (Wiley Series in Probability and Statistics). Wiley-Interscience, 2003.
Den vollen Inhalt der Quelle findenDijk, Dick van, Andri Lucas und Philip H. Franses. Outlier Robust Analysis of Economic Time Series (Advanced Texts in Econometrics). Oxford University Press, USA, 2005.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Time series outlier detection"
Aggarwal, Charu C. „Time Series and Multidimensional Streaming Outlier Detection“. In Outlier Analysis, 273–310. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-47578-3_9.
Der volle Inhalt der QuelleAggarwal, Charu C. „Time Series and Multidimensional Streaming Outlier Detection“. In Outlier Analysis, 225–65. New York, NY: Springer New York, 2012. http://dx.doi.org/10.1007/978-1-4614-6396-2_8.
Der volle Inhalt der QuelleWang, Xiaochun, Xiali Wang und Mitch Wilkes. „Unsupervised Fraud Detection in Environmental Time Series Data“. In New Developments in Unsupervised Outlier Detection, 257–77. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-9519-6_10.
Der volle Inhalt der QuelleLandauer, Max, Markus Wurzenberger, Florian Skopik, Giuseppe Settanni und Peter Filzmoser. „Time Series Analysis: Unsupervised Anomaly Detection Beyond Outlier Detection“. In Information Security Practice and Experience, 19–36. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-99807-7_2.
Der volle Inhalt der QuelleKarioti, Vassiliki, und Polychronis Economou. „Detection of Outlier in Time Series Count Data“. In Contributions to Statistics, 209–21. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-55789-2_15.
Der volle Inhalt der QuelleGołaszewski, Grzegorz. „Similarity-Based Outlier Detection in Multiple Time Series“. In Advances in Intelligent Systems and Computing, 116–31. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-18058-4_10.
Der volle Inhalt der Quellevan de Wiel, L., D. M. van Es und A. J. Feelders. „Real-Time Outlier Detection in Time Series Data of Water Sensors“. In Advanced Analytics and Learning on Temporal Data, 155–70. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-65742-0_11.
Der volle Inhalt der QuelleKhoshrou, Abdolrahman, und Eric J. Pauwels. „Data-Driven Pattern Identification and Outlier Detection in Time Series“. In Advances in Intelligent Systems and Computing, 471–84. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-030-01174-1_35.
Der volle Inhalt der QuelleAmarbayasgalan, Tsatsral, Heon Gyu Lee, Pham Van Huy und Keun Ho Ryu. „Deep Reconstruction Error Based Unsupervised Outlier Detection in Time-Series“. In Intelligent Information and Database Systems, 312–21. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-42058-1_26.
Der volle Inhalt der QuelleKha, Nguyen Huy, und Duong Tuan Anh. „From Cluster-Based Outlier Detection to Time Series Discord Discovery“. In Lecture Notes in Computer Science, 16–28. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-25660-3_2.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Time series outlier detection"
Akouemo, Hermine N., und Richard J. Povinelli. „Time series outlier detection and imputation“. In 2014 IEEE Power & Energy Society General Meeting. IEEE, 2014. http://dx.doi.org/10.1109/pesgm.2014.6939802.
Der volle Inhalt der QuelleZwilling, Chris E., und Michelle Yongmei Wang. „Multivariate voronoi outlier detection for time series“. In 2014 Health Innovations and POCT. IEEE, 2014. http://dx.doi.org/10.1109/hic.2014.7038934.
Der volle Inhalt der QuelleFerdousi, Z., und A. Maeda. „Unsupervised Outlier Detection in Time Series Data“. In 22nd International Conference on Data Engineering Workshops (ICDEW'06). IEEE, 2006. http://dx.doi.org/10.1109/icdew.2006.157.
Der volle Inhalt der QuelleKieu, Tung, Bin Yang, Chenjuan Guo und Christian S. Jensen. „Outlier Detection for Time Series with Recurrent Autoencoder Ensembles“. In Twenty-Eighth International Joint Conference on Artificial Intelligence {IJCAI-19}. California: International Joint Conferences on Artificial Intelligence Organization, 2019. http://dx.doi.org/10.24963/ijcai.2019/378.
Der volle Inhalt der QuelleWang, Xin. „Two-phase outlier detection in multivariate time series“. In 2011 Eighth International Conference on Fuzzy Systems and Knowledge Discovery (FSKD 2011). IEEE, 2011. http://dx.doi.org/10.1109/fskd.2011.6019794.
Der volle Inhalt der Quelle„A Deep Autoencoder based Outlier Detection for Time Series“. In 2018 3rd International Conference on Computer Science and Information Engineering. Clausius Scientific Press, 2018. http://dx.doi.org/10.23977/iccsie.2018.1038.
Der volle Inhalt der QuelleSmith, Gavin, und James Goulding. „A novel symbolization technique for time-series outlier detection“. In 2015 IEEE International Conference on Big Data (Big Data). IEEE, 2015. http://dx.doi.org/10.1109/bigdata.2015.7364037.
Der volle Inhalt der QuelleMehrang, Saeed, Elina Helander, Misha Pavel, Angela Chieh und Ilkka Korhonen. „Outlier detection in weight time series of connected scales“. In 2015 IEEE International Conference on Bioinformatics and Biomedicine (BIBM). IEEE, 2015. http://dx.doi.org/10.1109/bibm.2015.7359896.
Der volle Inhalt der QuelleMacEachern, Leonard, und Ghazaleh Vazhbakht. „Configurable FPGA-Based Outlier Detection for Time Series Data“. In 2020 IEEE 63rd International Midwest Symposium on Circuits and Systems (MWSCAS). IEEE, 2020. http://dx.doi.org/10.1109/mwscas48704.2020.9184548.
Der volle Inhalt der QuelleWang, Jin, Fang Miao, Lei You und Wenjie Fan. „A Deep Autoencoder Based Outlier Detection for Time Series“. In 2020 IEEE International Conference on Power, Intelligent Computing and Systems (ICPICS). IEEE, 2020. http://dx.doi.org/10.1109/icpics50287.2020.9202041.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Time series outlier detection"
Grosskopf, Michael John. Aligning Time Series for Cyber-Physical Network Intrusion Detection. Office of Scientific and Technical Information (OSTI), August 2015. http://dx.doi.org/10.2172/1212612.
Der volle Inhalt der QuelleChen, Z., und S. E. Grasby. Detection of decadal and interdecadal oscillations and temporal trend analysis of climate and hydrological time series, Canadian Prairies. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 2009. http://dx.doi.org/10.4095/248138.
Der volle Inhalt der QuelleRose-Pehrsson, Susan, Sean J. Hart, Mark H. Hammond, Daniel T. Gottuk und Mark T. Wright. Real-Time Probabilistic Neural Network Performance and Optimization for Fire Detection and Nuisance Alarm Rejection: Test Series 2 Results. Fort Belvoir, VA: Defense Technical Information Center, Oktober 2000. http://dx.doi.org/10.21236/ada383627.
Der volle Inhalt der QuelleBerney, Ernest, Naveen Ganesh, Andrew Ward, J. Newman und John Rushing. Methodology for remote assessment of pavement distresses from point cloud analysis. Engineer Research and Development Center (U.S.), April 2021. http://dx.doi.org/10.21079/11681/40401.
Der volle Inhalt der Quelle