Zeitschriftenartikel zum Thema „Time-Resolved spectroscopie“

Um die anderen Arten von Veröffentlichungen zu diesem Thema anzuzeigen, folgen Sie diesem Link: Time-Resolved spectroscopie.

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit Top-50 Zeitschriftenartikel für die Forschung zum Thema "Time-Resolved spectroscopie" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Sehen Sie die Zeitschriftenartikel für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.

1

Yakovlev, V. „Time-resolved luminescence spectroscopy study of CsI:Eu crystal“. Functional Materials 20, Nr. 4 (25.12.2013): 451–56. http://dx.doi.org/10.15407/fm20.04.451.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Liu Fan, 刘璠, 姚旭日 Yao Xuri, 刘雪峰 Liu Xuefeng und 翟光杰 Zhai Guangjie. „基于压缩感知的单光子时间分辨成像光谱技术“. Laser & Optoelectronics Progress 58, Nr. 10 (2021): 1011016. http://dx.doi.org/10.3788/lop202158.1011016.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Gaft, Michael, Harold Seigel, Gerard Panczer und Renata Reisfeld. „Laser-induced time-resolved luminescence spectroscopy of Pb2+ in minerals“. European Journal of Mineralogy 14, Nr. 6 (25.11.2002): 1041–48. http://dx.doi.org/10.1127/0935-1221/2002/0014-1041.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

DAI Zijie, 戴子杰, 康黎星 KANG Lixing, 龚诚 GONG Cheng, 刘政 LIU Zheng und 刘伟伟 LIU Weiwei. „PtSe2薄膜的时间分辨太赫兹光谱特性研究(特邀)“. ACTA PHOTONICA SINICA 50, Nr. 8 (2021): 0850206. http://dx.doi.org/10.3788/gzxb20215008.0850206.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Qingli Zhou, Qingli Zhou, und Xicheng Zhang Xicheng Zhang. „Applications of time-resolved terahertz spectroscopy in ultrafast carrier dynamics (Invited Paper)“. Chinese Optics Letters 9, Nr. 11 (2011): 110006–9. http://dx.doi.org/10.3788/col201109.110006.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Zhang Tong, 张童, 刘东远 Liu Dongyuan und 高峰 Gao Feng. „基于MC模型和Nelder‑Mead单纯形算法的时域组织光谱学“. Chinese Journal of Lasers 51, Nr. 3 (2024): 0307203. http://dx.doi.org/10.3788/cjl231142.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Fabelinskii, Immanuil L. „Time-resolved spectroscopy“. Uspekhi Fizicheskih Nauk 152, Nr. 8 (1987): 722. http://dx.doi.org/10.3367/ufnr.0152.198708y.0722.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Fabelinskiĭ, Immanuil L. „Time-resolved spectroscopy“. Soviet Physics Uspekhi 30, Nr. 8 (31.08.1987): 755–56. http://dx.doi.org/10.1070/pu1987v030n08abeh002959.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Clark, R. J. H., R. E. Hester und T. L. Gustafson. „Time Resolved Spectroscopy“. Vibrational Spectroscopy 1, Nr. 1 (Dezember 1990): 106–8. http://dx.doi.org/10.1016/0924-2031(90)80018-y.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Beddard, G. S. „Time resolved spectroscopy“. Spectrochimica Acta Part A: Molecular Spectroscopy 47, Nr. 2 (Januar 1991): 311. http://dx.doi.org/10.1016/0584-8539(91)80104-q.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
11

YAGI, Toshirou. „Time-Resolved Phonon Spectroscopy.“ Journal of the Spectroscopical Society of Japan 44, Nr. 5 (1995): 281–91. http://dx.doi.org/10.5111/bunkou.44.281.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
12

Görlach, Ekkehard, Hansruedi Gygax, Paolo Lubini und Urs P. Wild. „Time resolved fluorescence spectroscopy“. Proceedings / Indian Academy of Sciences 103, Nr. 3 (März 1991): 395–400. http://dx.doi.org/10.1007/bf02842096.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
13

Jones, W. J. „Time-Resolved Vibrational Spectroscopy“. Optica Acta: International Journal of Optics 33, Nr. 9 (September 1986): 1096. http://dx.doi.org/10.1080/716099710.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
14

Atkinson, George H. „Time-Resolved Vibrational Spectroscopy“. Journal of Physical Chemistry A 104, Nr. 18 (Mai 2000): 4129. http://dx.doi.org/10.1021/jp001015m.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
15

Bakker, Huib, Stephen R. Meech und Edwin J. Heilweil. „Time-Resolved Vibrational Spectroscopy“. Journal of Physical Chemistry A 122, Nr. 18 (10.05.2018): 4389. http://dx.doi.org/10.1021/acs.jpca.7b12769.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
16

Millar, David P. „Time-resolved fluorescence spectroscopy“. Current Opinion in Structural Biology 6, Nr. 5 (Oktober 1996): 637–42. http://dx.doi.org/10.1016/s0959-440x(96)80030-3.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
17

Erdmann, M., O. Rubner, Z. Shen und V. Engel. „Time-resolved photoelectron spectroscopy:“. Journal of Organometallic Chemistry 661, Nr. 1-2 (November 2002): 191–97. http://dx.doi.org/10.1016/s0022-328x(02)01822-3.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
18

Ajb. „Time-resolved Vibrational Spectroscopy“. Journal of Molecular Structure 131, Nr. 1-2 (Oktober 1985): 185. http://dx.doi.org/10.1016/0022-2860(85)85117-6.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
19

Andreoni, Alessandra. „Time-resolved fluorescence spectroscopy“. Journal of Photochemistry and Photobiology B: Biology 9, Nr. 3-4 (Juni 1991): 379–80. http://dx.doi.org/10.1016/1011-1344(91)80178-k.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
20

Yuzawa, Tetsuro, Chihiro Kato, Michael W. George und Hiro-O. Hamaguchi. „Nanosecond Time-Resolved Infrared Spectroscopy with a Dispersive Scanning Spectrometer“. Applied Spectroscopy 48, Nr. 6 (Juni 1994): 684–90. http://dx.doi.org/10.1366/000370294774368947.

Der volle Inhalt der Quelle
Annotation:
A nanosecond time-resolved infrared spectroscopic system based on a dispersive scanning spectrometer has been constructed. This is an advanced version of a similar system reported in a previous paper; the time resolution has been improved from 1 μs to 50 ns and the sensitivity from 10−4 in intensity changes to 10−6. These have been achieved by the use of a high-temperature ceramic infrared light source, a photovoltaic MCT detector, and a low-noise, wide-band preamplifier developed specifically for the present purpose. Time-resolved infrared spectra of a few samples of photochemical and photobiological interests are presented to show the capability of the system. The origin of the thermal artifacts, which have been found to hamper the time-resolved infrared measurements seriously, is shown to be due to the transient reflectance change induced by a small temperature jump. The future prospect of time-resolved infrared spectroscopy is discussed with reference to other methods including infrared laser spectroscopy and Fourier transform infrared spectroscopy.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
21

Maklygina, Yu S., I. D. Romanishkin, A. S. Skobeltsin, T. A. Savelyeva, A. A. Potapov, G. V. Pavlova, I. V. Chekhonin, O. I. Gurina und V. B. Loschenov. „Time-resolved fluorescence imaging technique for rat brain tumors analysis“. Journal of Physics: Conference Series 2058, Nr. 1 (01.10.2021): 012028. http://dx.doi.org/10.1088/1742-6596/2058/1/012028.

Der volle Inhalt der Quelle
Annotation:
Abstract The paper presents a new approach to assessing the state of tissues that differ in phenotype and in the degree of immunocompetent cells activity using photosensitizers (PS) and time-resolved fluorescence analysis methods. The main attention is paid to the detection of differences between tumor cells and tumor-associated macrophages (TAM) using spectroscopic and microscopic methods by the fluorescent kinetics signal and the difference in the accumulation of PS (the accumulation is several times greater in macrophages). The results of the PS photoluminescence study were obtained using two different techniques: time-resolved spectroscopy and time-resolved fluorescence microscopy (FLIM). Time-resolved spectroscopic analysis of the PS fluorescence lifetime was performed on adult female rats with induced C6 glioma in vivo. 5-ALA-induced Pp IX, which is widely used in clinical practice for carrying out effective conduction photodiagnostics and PDT, was used as the PS.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
22

Bickerton, Steven, Carles Badenes, Thomas Hettinger, Timothy Beers und Sonya Huang. „Time-Resolved Spectroscopy with SDSS“. Proceedings of the International Astronomical Union 7, S285 (September 2011): 289–90. http://dx.doi.org/10.1017/s1743921312000816.

Der volle Inhalt der Quelle
Annotation:
AbstractWe present a brief technical outline of the newly-formed project, “Detection of Spectroscopic Differences over Time” (DS/DT). Our collaboration is using individual exposures from the SDSS spectroscopic archive to produce a uniformly-processed set of time-resolved spectra. Here we provide an overview of the properties and processing of the available data, and highlight the wide range of time base-lines present in the archive.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
23

TORIUMI, Hirokazu. „FT-IR time-resolved spectroscopy.“ Journal of the Spectroscopical Society of Japan 37, Nr. 4 (1988): 289–90. http://dx.doi.org/10.5111/bunkou.37.289.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
24

IWATA, Koichi, und Hiro-o. HAMAGUCHI. „Picosecond Time-resolved Raman Spectroscopy.“ Journal of the Spectroscopical Society of Japan 44, Nr. 2 (1995): 61–73. http://dx.doi.org/10.5111/bunkou.44.61.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
25

Pophristic, Milan, Frederick H. Long, Chuong Tran und Ian T. Ferguson. „Time-Resolved Spectroscopy of InGaN“. MRS Internet Journal of Nitride Semiconductor Research 5, S1 (2000): 803–9. http://dx.doi.org/10.1557/s109257830000510x.

Der volle Inhalt der Quelle
Annotation:
We have used time-resolved photoluminescence (PL), with 400 nm (3.1 eV) excitation, to examine InxGa1−xN/GaN light-emitting diodes (LEDs) before the final stages of processing at room temperature. We have found dramatic differences in the time-resolved kinetics between dim, bright and super bright LED devices. The lifetime of the emission for dim LEDs is quite short, 110 ± 20 ps at photoluminescence (PL) maximum, and the kinetics are not dependent upon wavelength. This lifetime is short compared to bright and super bright LEDs, which we have examined under similar conditions. The kinetics of bright and super bright LEDs are clearly wavelength dependent, highly non-exponential, and are on the nanosecond time scale (lifetimes are in order of 1 ns for bright and 10 ns for super bright LED at the PL max). The non-exponential PL kinetics can be described by a stretched exponential function, indicating significant disorder in the material. Typical values for β, the stretching coefficient, are 0.45 − 0.6 for bright LEDs, at the PL maxima at room temperature. We attribute this disorder to indium alloy fluctuations.From analysis of the stretched exponential kinetics we estimate the potential fluctuations to be approximately 75 meV in the super bright LED. Assuming a hopping mechanism, the average distance between indium quantum dots in the super bright LED is estimated to be 20 Å.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
26

Helbing, Jan, und Mathias Bonmarin. „Time-Resolved Chiral Vibrational Spectroscopy“. CHIMIA International Journal for Chemistry 63, Nr. 3 (25.03.2009): 128–33. http://dx.doi.org/10.2533/chimia.2009.128.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
27

Millers, D., L. Grigorjeva, V. Pankratov, S. Chernov und A. Watterich. „Time-resolved spectroscopy of ZnWO4“. Radiation Effects and Defects in Solids 155, Nr. 1-4 (November 2001): 317–21. http://dx.doi.org/10.1080/10420150108214131.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
28

Greetham, G. M., D. Sole, I. P. Clark, A. W. Parker, M. R. Pollard und M. Towrie. „Time-resolved multiple probe spectroscopy“. Review of Scientific Instruments 83, Nr. 10 (Oktober 2012): 103107. http://dx.doi.org/10.1063/1.4758999.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
29

Betz, Timo, und Cécile Sykes. „Time resolved membrane fluctuation spectroscopy“. Soft Matter 8, Nr. 19 (2012): 5317–26. http://dx.doi.org/10.1039/c2sm00001f.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
30

Chernikov, Alexej, Thomas Feldtmann, Sangam Chatterjee, Martin Koch, Mackillo Kira und Stephan W. Koch. „Time-resolved phonon-sideband spectroscopy“. Solid State Communications 150, Nr. 37-38 (Oktober 2010): 1733–36. http://dx.doi.org/10.1016/j.ssc.2010.07.034.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
31

Böhmer, Martin, Michael Wahl, Hans-Jürgen Rahn, Rainer Erdmann und Jörg Enderlein. „Time-resolved fluorescence correlation spectroscopy“. Chemical Physics Letters 353, Nr. 5-6 (Februar 2002): 439–45. http://dx.doi.org/10.1016/s0009-2614(02)00044-1.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
32

Stolow, Albert, Arthur E. Bragg und Daniel M. Neumark. „Femtosecond Time-Resolved Photoelectron Spectroscopy“. Chemical Reviews 104, Nr. 4 (April 2004): 1719–58. http://dx.doi.org/10.1021/cr020683w.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
33

Spoonhower, J. P., und M. S. Burberry. „Time-resolved spectroscopy of BaFBr:Eu2+“. Journal of Luminescence 43, Nr. 4 (Juni 1989): 221–26. http://dx.doi.org/10.1016/0022-2313(89)90005-7.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
34

ISHIDA, Yukiaki. „Ultrafast Time-Resolved Photoemission Spectroscopy“. Hyomen Kagaku 37, Nr. 1 (2016): 31–36. http://dx.doi.org/10.1380/jsssj.37.31.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
35

Lin, S. H., B. Fain und C. Y. Yeh. „Ultrafast time-resolved fluorescence spectroscopy“. Physical Review A 41, Nr. 5 (01.03.1990): 2718–29. http://dx.doi.org/10.1103/physreva.41.2718.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
36

Plakhotnik, Taras, und Daniel Walser. „Time Resolved Single Molecule Spectroscopy“. Physical Review Letters 80, Nr. 18 (04.05.1998): 4064–67. http://dx.doi.org/10.1103/physrevlett.80.4064.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
37

Maíz Apellániz, J., R. H. Barbá, S. Simón-Díaz, A. Sota, E. Trigueros Páez, J. A. Caballero und E. J. Alfaro. „Lucky Spectroscopy, an equivalent technique to Lucky Imaging“. Astronomy & Astrophysics 615 (Juli 2018): A161. http://dx.doi.org/10.1051/0004-6361/201832885.

Der volle Inhalt der Quelle
Annotation:
Context. Many massive stars have nearby companions whose presence hamper their characterization through spectroscopy. Aims. We want to obtain spatially resolved spectroscopy of close massive visual binaries to derive their spectral types. Methods. We obtained a large number of short long-slit spectroscopic exposures of five close binaries under good seeing conditions. We selected those with the best characteristics, extracted the spectra using multiple-profile fitting, and combined the results to derive spatially separated spectra. Results. We demonstrate the usefulness of Lucky Spectroscopy by presenting the spatially resolved spectra of the components of each system, in two cases with separations of only ~0.′′3. Those are δ Ori Aa+Ab (resolved in the optical for the first time) and σ Ori AaAb+B (first time ever resolved). We also spatially resolve 15 Mon AaAb+B, ζ Ori AaAb+B (both previously resolved with GOSSS, the Galactic O-Star Spectroscopic Survey), and η Ori AaAb+B, a system with two spectroscopic B+B binaries and a fifth visual component. The systems have in common that they are composed of an inner pair of slow rotators orbited by one or more fast rotators, a characteristic that could have consequences for the theories of massive star formation.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
38

Saito, Mitsunori, Takahiro Koketsu und Yusuke Itai. „Time-space conversion for time-resolved spectroscopy“. OSA Continuum 2, Nr. 5 (29.04.2019): 1726. http://dx.doi.org/10.1364/osac.2.001726.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
39

Moffat, Anthony F. J. „Time-resolved optical-UV spectroscopy of colliding wind effects“. Symposium - International Astronomical Union 193 (1999): 278–88. http://dx.doi.org/10.1017/s0074180900205548.

Der volle Inhalt der Quelle
Annotation:
It is in the ultraviolet-optical domain where the strongest known emission lines arise in hot star winds. In the case of hot-star binaries, culminating in the relatively common, strong-wind WR+O systems, similar line-emission is seen in the cooling flows downstream from the highly compressed, X-ray emitting heads of the bow shock regions produced when the two winds collide. Time-resolved UV-optical spectroscopy of these flows around a complete orbit can provide important constraints not only on the colliding wind process itself, but also on the winds and the orbit. Spectroscopic wind-wind collision effects have now been seen in every relatively close WR+O system (P ≲ 100 d) that has been adequately observed so far.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
40

Ebihara, Ken, Hiroaki Takahashi und Isao Noda. „Nanosecond Two-Dimensional Resonance Raman Correlation Spectroscopy of Benzil Radical Anion“. Applied Spectroscopy 47, Nr. 9 (September 1993): 1343–44. http://dx.doi.org/10.1366/0003702934067405.

Der volle Inhalt der Quelle
Annotation:
Nanosecond two-dimensional resonance Raman spectroscopy was used to investigate the photochemistry of the production and decay of the radical anion of benzil in various solvents. A newly developed correlation formalism was applied to a set of time-resolved resonance Raman spectra of the benzil radical anion to generate two-dimensional Raman spectra. Unlike the 2D correlation method previously developed for IR spectroscopy, which was based on signals induced by a sinusoidally varying external perturbation, the new correlation formalism is generally applicable to the studies of any transient spectroscopic signals having an arbitrary waveform. This makes it ideally suited for the analysis of time-resolved spectroscopic signals following photoexcitation. 2D Raman spectra effectively accentuate certain useful information which is sometimes obscured in the original time-resolved spectra. Spectral intensity changes and peak shifts arising from the photochemical reaction processes were clearly observed by the synchronous and asynchronous correlation.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
41

Mouchet, M., S. F. Van Amerongen, J. M. Bonnet-Bidaud und J. P. Osborne. „Time-Resolved Optical Spectroscopy of AM Her X-Ray Sources“. International Astronomical Union Colloquium 93 (1987): 613–24. http://dx.doi.org/10.1017/s025292110010541x.

Der volle Inhalt der Quelle
Annotation:
AbstractWe present high-time resolution spectroscopy of two AM Her sources E1405−451 and E1013−477. For E1405−451, the Balmer emission lines profiles can be divided into a narrow component and a broad one. The amplitudes of the radial velocity curves of these components are respectively 265±30 km/s and 390±50 km/s. The orientation of the column determined from polarimetry is not compatible with the broad component being formed in the lowest parts of the column. Photometric and spectroscopic results on E1013−477 do not confirm the previous reported 103 min. period. Rapid variability (<1.5h) as well as long term modulation (>3.3h) is present in these data.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
42

Satoh, Azusa, Mamoru Kitaura, Kei Kamada, Akimasa Ohnishi, Minoru Sasaki und Kazuhiko Hara. „Time-resolved photoluminescence spectroscopy of Ce:Gd3Al2Ga3O12crystals“. Japanese Journal of Applied Physics 53, Nr. 5S1 (01.01.2014): 05FK01. http://dx.doi.org/10.7567/jjap.53.05fk01.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
43

Ostensen, R. „Time resolved spectroscopy of Balloon 090100001“. Communications in Asteroseismology 150 (2007): 265–66. http://dx.doi.org/10.1553/cia150s265.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
44

Ashfold, Michael, Majed Chergui, Ingo Fischer, Lingfeng Ge, Gilbert Grell, Misha Ivanov, Adam Kirrander et al. „Time-resolved ultrafast spectroscopy: general discussion“. Faraday Discussions 228 (2021): 329–48. http://dx.doi.org/10.1039/d1fd90024b.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
45

Weidner, H., und R. E. Peale. „Event-Locked Time-Resolved Fourier Spectroscopy“. Applied Spectroscopy 51, Nr. 8 (August 1997): 1106–12. http://dx.doi.org/10.1366/0003702971941917.

Der volle Inhalt der Quelle
Annotation:
A low-cost method of adding time-resolving capability to commercial Fourier transform spectrometers with a continuously scanning Michelson interferometer has been developed. This method is specifically designed to eliminate noise and artifacts caused by mirror-speed variations in the interferometer. The method exists of two parts: (1) a novel timing scheme for synchronizing the transient events under study and the digitizing of the interferogram and (2) a mathematical algorithm for extracting the spectral information from the recorded data. The novel timing scheme is a modification of the well-known interleaved, or stroboscopic, method. It achieves the same timing accuracy, signal-to-noise ratio, and freedom from artifacts as step-scan time-resolving Fourier spectrometers by locking the sampling of the interferogram to a stable time base rather than to the occurrences of the HeNe fringes. The necessary pathlength-difference information at which samples are taken is obtained from a record of the mirror speed. The resulting interferograms with uneven pathlength-difference spacings are transformed into wavenumber space by least-squares fits of periodic functions. Spectra from the far-infrared to the upper visible at resolutions up to 0.2 cm−1 are used to demonstrate the utility of this method.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
46

Buchner, Franziska, Andrea Lübcke, Nadja Heine und Thomas Schultz. „Time-resolved photoelectron spectroscopy of liquids“. Review of Scientific Instruments 81, Nr. 11 (November 2010): 113107. http://dx.doi.org/10.1063/1.3499240.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
47

Drescher, M., M. Hentschel, R. Kienberger, M. Uiberacker, V. Yakovlev, A. Scrinzi, Th Westerwalbesloh, U. Kleineberg, U. Heinzmann und F. Krausz. „Time-resolved atomic inner-shell spectroscopy“. Nature 419, Nr. 6909 (Oktober 2002): 803–7. http://dx.doi.org/10.1038/nature01143.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
48

Diaz, Marcos P. „Time‐resolved Spectroscopy of V Sagittae“. Publications of the Astronomical Society of the Pacific 111, Nr. 755 (Januar 1999): 76–83. http://dx.doi.org/10.1086/316289.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
49

Remacle, F., U. Even und R. D. Levine. „Time and Frequency Resolved ZEKE Spectroscopy“. Journal of Physical Chemistry 100, Nr. 51 (Januar 1996): 19735–39. http://dx.doi.org/10.1021/jp963005k.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
50

Khasanov, Oleg, Tatiana Smirnova, Olga Fedotova, Grigory Rusetsky, Vladimir Gayvoronsky und Sergey Pokutnyi. „Time resolved femtosecond spectroscopy of nanocomposites“. EPJ Web of Conferences 190 (2018): 03004. http://dx.doi.org/10.1051/epjconf/201819003004.

Der volle Inhalt der Quelle
Annotation:
Characterization methods of nanocomposites consisted of semiconductor metal-oxide quantum dots (QD) incorporated into a dielectric matrix have been elaborated on the base of time resolved four-wave mixing and photon echo. Large permanent dipole moment, inherent to QDs under study, local field effect, the QD spatial dispersion and distribution function of the transition dipole moments in QDs are taken into account. New responses at multiple frequencies in directions differed from spatial synchronism conditions of well-known signals have been predicted.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Wir bieten Rabatte auf alle Premium-Pläne für Autoren, deren Werke in thematische Literatursammlungen aufgenommen wurden. Kontaktieren Sie uns, um einen einzigartigen Promo-Code zu erhalten!

Zur Bibliographie