Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Time-Resolved cryoEM“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Time-Resolved cryoEM" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Time-Resolved cryoEM"
Budell, William, Venkata Dandey, Hui Wei, Daija Bobe, Kashyap Maruthi, Mykhailo Kopylov, Edward Eng, Peter Kahn, Clint Potter und Bridget Carragher. „Time-resolved CryoEM Using Spotiton“. Microscopy and Microanalysis 26, S2 (30.07.2020): 326–27. http://dx.doi.org/10.1017/s1431927620014245.
Der volle Inhalt der QuelleTan, Yong Zi, und John L. Rubinstein. „Through-grid wicking enables high-speed cryoEM specimen preparation“. Acta Crystallographica Section D Structural Biology 76, Nr. 11 (13.10.2020): 1092–103. http://dx.doi.org/10.1107/s2059798320012474.
Der volle Inhalt der QuelleJagielnicki, Maciej, Iga Kucharska, Brad C. Bennett, Andrew L. Harris und Mark Yeager. „Connexin Gap Junction Channels and Hemichannels: Insights from High-Resolution Structures“. Biology 13, Nr. 5 (26.04.2024): 298. http://dx.doi.org/10.3390/biology13050298.
Der volle Inhalt der QuellePichon, Benoît P., Paul H. H. Bomans, Peter M. Frederik und Nico A. J. M. Sommerdijk. „A Quasi-Time-Resolved CryoTEM Study of the Nucleation of CaCO3under Langmuir Monolayers“. Journal of the American Chemical Society 130, Nr. 12 (März 2008): 4034–40. http://dx.doi.org/10.1021/ja710416h.
Der volle Inhalt der QuelleBroadhurst, Edward T., Hongyi Xu, Simon Parsons und Fabio Nudelman. „Revealing the early stages of carbamazepine crystallization by cryoTEM and 3D electron diffraction“. IUCrJ 8, Nr. 6 (30.10.2021): 860–66. http://dx.doi.org/10.1107/s2052252521010101.
Der volle Inhalt der QuelleChestnut, H., D. P. Siegel, J. L. Burns und Y. Talmon. „A temperature-jump technique for time-resolved cryo-transmission Electron Microscopy“. Proceedings, annual meeting, Electron Microscopy Society of America 47 (06.08.1989): 742–43. http://dx.doi.org/10.1017/s0424820100155682.
Der volle Inhalt der QuelleBhattacharjee, Biddut, Md Mahfuzur Rahman, Ryan E. Hibbs und Michael H. B. Stowell. „A simple flash and freeze system for cryogenic time-resolved electron microscopy“. Frontiers in Molecular Biosciences 10 (07.03.2023). http://dx.doi.org/10.3389/fmolb.2023.1129225.
Der volle Inhalt der QuelleTemperini, Maria Eleonora, Raffaella Polito, Antonia Intze, Raymond Gillibert, Fritz Berkmann, Leonetta Baldassarre, Valeria Giliberti und Michele Ortolani. „A mid-infrared laser microscope for the time-resolved study of light-induced protein conformational changes“. Review of Scientific Instruments 94, Nr. 6 (01.06.2023). http://dx.doi.org/10.1063/5.0136676.
Der volle Inhalt der QuelleChang, Chen-Jen, Yen-Chang Hsiao, Ana Elena Aviña und Yu-Fan Chiang. „The effectiveness of flashlamp-pumped pulsed dye laser in conjunction with topical imiquimod treatment for rosacea“. Laser Therapy 29, Nr. 3 (27.12.2022). http://dx.doi.org/10.4081/ltj.2022.303.
Der volle Inhalt der QuelleDissertationen zum Thema "Time-Resolved cryoEM"
Moissonnier, Loïck. „Etude fonctionnelle et structurale du transporteur de multiple drogues, BmrA, en condition d’équilibre et en temps résolu. Caractérisation structurale de BmrA en liposome par cryoEM“. Electronic Thesis or Diss., Lyon 1, 2024. http://www.theses.fr/2024LYO10213.
Der volle Inhalt der QuelleAccording to the World Health Organization, antibiotic resistance is a major problem for humanity due to the emergence of multiresistant bacteria. The emergence of these resistances in bacteria is due to their ability to implement numerous strategies to prevent antibiotics from working. In particular, the first line of defense of these bacteria is the overexpression of ABC (ATP-Binding Cassette) transporters, which expel antibiotics out of the bacterial cell, reducing their concentrations below their cytotoxic thresholds. Over 50 years of study on these transporters have enabled the scientific community to establish a global mechanism, particularly thanks to the increasing acquisition of 3D structures. This has been closely linked to the technological and methodological evolution of structural biology in recent years, especially with the emergence of cryoEM. As knowledge advances, the questions become more precise, and many questions remain about understanding their functioning. As part of my project, I studied BmrA, one of these ABC transporters expressed in Bacillus subtilis, which confers resistance to cervimycin C, an antibiotic secreted by Streptomyces tendae, its natural competitor in the same biotope. Additionally, this transporter is capable of binding and transporting a wide variety of molecules, including many antibiotics, by adopting both a conformation that takes up the ligand (IF, inward-facing conformation) and an outward-facing conformation (OF) to release it. This ability to handle multiple molecules remains a highly debated question, especially in understanding the transport mechanism at the molecular level. During my Ph.D., I participated in a structural enzymology study on an inactive E504A mutant in the presence of ligands (Rhodamine 6G, Hoechst 33342) to improve knowledge of this mechanism. These ligands act as allosteric effectors on the ATP binding of BmrA, impacting the transition between IF and OF conformations. The resolution of several 3D structures by cryoEM was achieved by varying the concentration of ATP. An analysis of the flexibility of each of these conformations highlighted the molecular rearrangements that BmrA can adopt to ensure its polyspecificity. Moreover, I provided numerous functional insights regarding the coupling between ligand transport and the ATPase activity of this transporter. The second part of my work focused on studying the conformational transition occurring in BmrA after ATP binding using so-called "time-resolved" techniques. The objective was to monitor these conformational changes over time using the intrinsic fluorescence of BmrA coupled with cryoEM. I developed and optimized the experimental conditions to conduct this study, particularly acquiring kinetic and dynamic information on mutants as well as the wild-type protein. Finally, the last part of the manuscript involved reconstituting BmrA in a more native amphipathic environment than detergents to obtain its 3D structure by cryoEM. I optimized this reconstitution protocol to obtain the best possible sample for grid deposition. During this process, I characterized the formation of the proteoliposome at each stage of the protocol by observing it with cryoEM. Thanks to this study, I was able to obtain the first 2D classes of BmrA in a lipid bilayer. In conclusion, this thesis offers a new way to study the structure-function relationship of proteins by developing structural enzymology tools and methodology to visualize the dynamics of this ABC transporter, as well as a first approach to studying it in liposomes
Chen, Bo. „Cryo-EM and time-resolved cryo-EM studies on translation“. Thesis, 2015. https://doi.org/10.7916/D8WW7G9J.
Der volle Inhalt der QuelleFu, Ziao. „Time-resolved Cryo-EM Studies on Translation and Cryo-EM Studies on Membrane Proteins“. Thesis, 2019. https://doi.org/10.7916/d8-armm-km47.
Der volle Inhalt der QuelleBücher zum Thema "Time-Resolved cryoEM"
Fu, Ziao. Time-resolved Cryo-EM Studies on Translation and Cryo-EM Studies on Membrane Proteins. [New York, N.Y.?]: [publisher not identified], 2019.
Den vollen Inhalt der Quelle findenCryo-EM and time-resolved cryo-EM studies on translation. [New York, N.Y.?]: [publisher not identified], 2015.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Time-Resolved cryoEM"
Frank, Joachim. „Time-Resolved Cryo-Electron Microscopy: Recent Progress“. In Novel Developments in Cryo‐EM of Biological Molecules, 423–31. New York: Jenny Stanford Publishing, 2023. http://dx.doi.org/10.1201/9781003456100-20.
Der volle Inhalt der QuelleKaledhonkar, Sandip, Ziao Fu, Howard White und Joachim Frank. „Time-Resolved Cryo-Electron Microscopy Using a Microfluidic Chip“. In Novel Developments in Cryo‐EM of Biological Molecules, 433–47. New York: Jenny Stanford Publishing, 2023. http://dx.doi.org/10.1201/9781003456100-21.
Der volle Inhalt der QuelleKaledhonkar, Sandip, Ziao Fu, Howard White und Joachim Frank. „Time-Resolved Cryo-electron Microscopy Using a Microfluidic Chip“. In Protein Complex Assembly, 59–71. New York, NY: Springer New York, 2018. http://dx.doi.org/10.1007/978-1-4939-7759-8_4.
Der volle Inhalt der QuelleFu, Ziao, Sandip Kaledhonkar, Anneli Borg, Ming Sun, Bo Chen, Robert A. Grassucci, Mans Ehrenberg und Joachim Frank. „Key Intermediates in Ribosome Recycling Visualized by Time-Resolved Cryo-Electron Microscopy“. In Novel Developments in Cryo‐EM of Biological Molecules, 367–93. New York: Jenny Stanford Publishing, 2023. http://dx.doi.org/10.1201/9781003456100-18.
Der volle Inhalt der QuelleKaledhonkar, Sandip, Ziao Fu, Kelvin Caban, Wen Li, Bo Chen, Ming Sun, Ruben L. Gonzalez und Joachim Frank. „Late Steps in Bacterial Translation Initiation Visualized Using Time-Resolved Cryo-EM“. In Novel Developments in Cryo‐EM of Biological Molecules, 449–80. New York: Jenny Stanford Publishing, 2023. http://dx.doi.org/10.1201/9781003456100-22.
Der volle Inhalt der QuelleChen, Bo, Sandip Kaledhonkar, Ming Sun, Bingxin Shen, Zonghuan Lu, David Barnard, Toh-Ming Lu, Ruben L. Gonzalez und Joachim Frank. „Structural Dynamics of Ribosome Subunit Association Studied by Mixing-Spraying Time-Resolved Cryogenic Electron Microscopy“. In Novel Developments in Cryo‐EM of Biological Molecules, 315–41. New York: Jenny Stanford Publishing, 2023. http://dx.doi.org/10.1201/9781003456100-16.
Der volle Inhalt der QuelleFu, Ziao, Gabriele Indrisiunaite, Sandip Kaledhonkar, Binita Shah, Ming Sun, Bo Chen, Robert A. Grassucci, Mans Ehrenberg und Joachim Frank. „The Structural Basis for Release-Factor Activation During Translation Termination Revealed by Time-Resolved Cryogenic Electron Microscopy“. In Novel Developments in Cryo‐EM of Biological Molecules, 481–500. New York: Jenny Stanford Publishing, 2023. http://dx.doi.org/10.1201/9781003456100-23.
Der volle Inhalt der QuelleMandelkow, Eckhard, und Eva-Maria Mandelkow. „Microtubule Structure and Assembly Studied by Time-Resolved X-Ray Scattering and Cryo-Electron Microscopy“. In Structure, Dynamics and Function of Biomolecules, 148–51. Berlin, Heidelberg: Springer Berlin Heidelberg, 1987. http://dx.doi.org/10.1007/978-3-642-71705-5_32.
Der volle Inhalt der QuelleSun, Ming, Bingxin Shen, Wen Li, Parimal Samir, Christopher M. Browne, Andrew J. Link und Joachim Frank. „A Time-Resolved Cryo-EM Study of Saccharomyces cerevisiae 80S Ribosome Protein Composition in Response to a Change in Carbon Source“. In Novel Developments in Cryo‐EM of Biological Molecules, 501–21. New York: Jenny Stanford Publishing, 2023. http://dx.doi.org/10.1201/9781003456100-24.
Der volle Inhalt der Quelle„Time-resolved electron diffraction and microscopy studies of membrane proteins“. In Time-resolved Diffraction, herausgegeben von Richard Henderson und Nigel Unwin, 391–400. Oxford University PressOxford, 1997. http://dx.doi.org/10.1093/oso/9780198500322.003.0014.
Der volle Inhalt der Quelle