Zeitschriftenartikel zum Thema „Time gating four wave mixing“

Um die anderen Arten von Veröffentlichungen zu diesem Thema anzuzeigen, folgen Sie diesem Link: Time gating four wave mixing.

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit Top-50 Zeitschriftenartikel für die Forschung zum Thema "Time gating four wave mixing" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Sehen Sie die Zeitschriftenartikel für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.

1

Di Sieno, Laura, Alberto Dalla Mora, Alessandro Torricelli, Lorenzo Spinelli, Rebecca Re, Antonio Pifferi und Davide Contini. „A Versatile Setup for Time-Resolved Functional Near Infrared Spectroscopy Based on Fast-Gated Single-Photon Avalanche Diode and on Four-Wave Mixing Laser“. Applied Sciences 9, Nr. 11 (10.06.2019): 2366. http://dx.doi.org/10.3390/app9112366.

Der volle Inhalt der Quelle
Annotation:
In this paper, a time-domain fast gated near-infrared spectroscopy system is presented. The system is composed of a fiber-based laser providing two pulsed sources and two fast gated detectors. The system is characterized on phantoms and was tested in vivo, showing how the gating approach can improve the contrast and contrast-to-noise-ratio for detection of absorption perturbation inside a diffusive medium, regardless of source-detector separation.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Fourkas, John T., Rick Trebino, Mark A. Dugan und M. D. Fayer. „Extra resonances in time-domain four-wave mixing“. Optics Letters 18, Nr. 10 (15.05.1993): 781. http://dx.doi.org/10.1364/ol.18.000781.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Wegener, M., D. S. Chemla, S. Schmitt-Rink und W. Schäfer. „Line shape of time-resolved four-wave mixing“. Physical Review A 42, Nr. 9 (01.11.1990): 5675–83. http://dx.doi.org/10.1103/physreva.42.5675.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Gomes, M. J. M., B. Kippelen, R. Levy, J. B. Grun und B. Hönerlage. „Time-Resolved Four-Wave Mixing Experiments in CuCl“. physica status solidi (b) 159, Nr. 1 (01.05.1990): 101–6. http://dx.doi.org/10.1002/pssb.2221590111.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Beach, R., D. DeBeer und S. R. Hartmann. „Time-delayed four-wave mixing using intense incoherent light“. Physical Review A 32, Nr. 6 (01.12.1985): 3467–74. http://dx.doi.org/10.1103/physreva.32.3467.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Shalit, Andrey, und Yehiam Prior. „Time resolved polarization dependent single shot four wave mixing“. Physical Chemistry Chemical Physics 14, Nr. 40 (2012): 13989. http://dx.doi.org/10.1039/c2cp42112g.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Belov, M. N., E. A. Manykin und M. A. Selifanov. „Self-consistent theory of time-resolved four-wave mixing“. Optics Communications 99, Nr. 1-2 (Mai 1993): 101–4. http://dx.doi.org/10.1016/0030-4018(93)90712-e.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Kawanishi, S., und O. Kamatani. „All-optical time division multiplexing using four-wave mixing“. Electronics Letters 30, Nr. 20 (29.09.1994): 1697–98. http://dx.doi.org/10.1049/el:19941153.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Strait, J., und A. M. Glass. „Time-resolved photorefractive four-wave mixing in semiconductor materials“. Journal of the Optical Society of America B 3, Nr. 2 (01.02.1986): 342. http://dx.doi.org/10.1364/josab.3.000342.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Meyer, S., und V. Engel. „Non-perturbative wave-packet calculations of time-resolved four-wave-mixing signals“. Applied Physics B 71, Nr. 3 (September 2000): 293–97. http://dx.doi.org/10.1007/s003400000342.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
11

Wang, Sheng, Xin Dong, Bowen Li und Kenneth K. Y. Wong. „Polarization-independent parametric time magnifier based on four-wave mixing“. Optics Letters 46, Nr. 22 (08.11.2021): 5627. http://dx.doi.org/10.1364/ol.438351.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
12

Ma, H., A. S. L. Gomes und Cid B. de Araújo. „Raman-assisted polarization beats in time-delayed four-wave mixing“. Optics Letters 17, Nr. 15 (01.08.1992): 1052. http://dx.doi.org/10.1364/ol.17.001052.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
13

Wasak, T., P. Szańkowski, V. V. Konotop und M. Trippenbach. „Four-wave mixing in a parity-time (PT)-symmetric coupler“. Optics Letters 40, Nr. 22 (09.11.2015): 5291. http://dx.doi.org/10.1364/ol.40.005291.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
14

Ding, Thomas, Christian Ott, Andreas Kaldun, Alexander Blättermann, Kristina Meyer, Veit Stooss, Marc Rebholz et al. „Time-resolved four-wave-mixing spectroscopy for inner-valence transitions“. Optics Letters 41, Nr. 4 (05.02.2016): 709. http://dx.doi.org/10.1364/ol.41.000709.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
15

Goldman, Martin V., und Edward A. Williams. „Time‐dependent phase conjugation and four‐wave mixing in plasmas“. Physics of Fluids B: Plasma Physics 3, Nr. 3 (März 1991): 751–65. http://dx.doi.org/10.1063/1.859871.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
16

Chow, W. W., R. Indik, A. Knorr, S. W. Koch und J. V. Moloney. „Time-resolved nondegenerate four-wave mixing in a semiconductor amplifier“. Physical Review A 52, Nr. 3 (01.09.1995): 2479–82. http://dx.doi.org/10.1103/physreva.52.2479.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
17

Schmitt, M., G. Knopp, A. Materny und W. Kiefer. „Femtosecond time-resolved four-wave mixing spectroscopy in iodine vapour“. Chemical Physics Letters 280, Nr. 3-4 (Dezember 1997): 339–47. http://dx.doi.org/10.1016/s0009-2614(97)01139-1.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
18

Horowitz, Moshe, Daniel Kligler und Baruch Fischer. „Time-dependent behavior of photorefractive two- and four-wave mixing“. Journal of the Optical Society of America B 8, Nr. 10 (01.10.1991): 2204. http://dx.doi.org/10.1364/josab.8.002204.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
19

Yu, Sungkyu, Joo In Lee und Annamraju Kasi Viswanath. „Time-resolved four-wave mixing signal in thick bulk GaAs“. Journal of Applied Physics 86, Nr. 6 (15.09.1999): 3159–64. http://dx.doi.org/10.1063/1.371183.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
20

Schillak, P., und I. Balslev. „Theory of propagation effects in time-resolved four-wave mixing“. Physical Review B 48, Nr. 13 (01.10.1993): 9426–33. http://dx.doi.org/10.1103/physrevb.48.9426.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
21

Villaeys, A. A., und J. P. Lavoine. „Time dependent description of four wave mixing in absorbing media“. Optics Communications 63, Nr. 5 (September 1987): 349–54. http://dx.doi.org/10.1016/0030-4018(87)90190-8.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
22

Ja, Y. H. „Real-time optical image differentiation by degenerate four-wave mixing“. Applied Physics B Photophysics and Laser Chemistry 36, Nr. 1 (Januar 1985): 21–24. http://dx.doi.org/10.1007/bf00698032.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
23

Yamaguchi, K., Y. Toda, T. Ishiguro, S. Adachi, K. Hoshino und K. Tadatomo. „Time-resolved four-wave mixing studies of excitons in GaN“. physica status solidi (c) 4, Nr. 7 (Juni 2007): 2752–55. http://dx.doi.org/10.1002/pssc.200674703.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
24

MINO, HIROFUMI, AYUMU KOBAYASHI, SHOJIRO TAKEYAMA, GRZEGOSZ KARCZEWSKI, TOMASZ WOJTOWICZ und JACEK KOSSUT. „TRIPLET BIEXCITON TRANSITION UNDER HIGH MAGNETIC FIELD IN (Cd,Mn)Te/CdTe/(Cd,Mg)Te ASYMMETRIC QUANTUM WELLS“. International Journal of Modern Physics B 18, Nr. 27n29 (30.11.2004): 3753–56. http://dx.doi.org/10.1142/s0217979204027402.

Der volle Inhalt der Quelle
Annotation:
Biexciton spin states in a CdMnTe / CdTe / CdMgTe single quantum well have been investigated by means of the time-integrated and the spectrally-resolved four-wave mixing measurements in magnetic fields. Applying magnetic field in a Faraday geometry, the four-wave mixing signal showed a beat like structure at an early delay-time region with a co-circular (σ+,σ+) configuration. The spectrally-resolved four-wave mixing signals indicated an additional transition appeared at 1 meV higher energy side of the exciton resonance. These results were explained well by a magnetic field induced triplet biexciton transition.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
25

SEGUR, HARVEY. „EXPLOSIVE INSTABILITY DUE TO 3-WAVE OR 4-WAVE MIXING, WITH OR WITHOUT DISSIPATION“. Analysis and Applications 06, Nr. 04 (Oktober 2008): 413–28. http://dx.doi.org/10.1142/s0219530508001183.

Der volle Inhalt der Quelle
Annotation:
It is known that an "explosive instability" can occur when nonlinear waves propagate in certain media that admit 3-wave mixing. In that context, three resonantly interacting wavetrains all gain energy from a background source, and all blow up together, in finite time. A recent paper [17] showed that explosive instabilities can occur even in media that admit no 3-wave mixing. Instead, the instability is caused by 4-wave mixing, and results in four resonantly interacting wavetrains all blowing up in finite time. In both cases, the instability occurs in systems with no dissipation. This paper reviews the earlier work, and shows that adding a common form of dissipation to the system, with either 3-wave or 4-wave mixing, provides an effective threshold for blow-up. Only initial data that exceed the respective thresholds blow up in finite time.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
26

Ochoa, Ellen, Lambertus Hesselink und Joseph W. Goodman. „Real-time intensity inversion using two-wave and four-wave mixing in photorefractive Bi_12GeO_20“. Applied Optics 24, Nr. 12 (15.06.1985): 1826. http://dx.doi.org/10.1364/ao.24.001826.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
27

Yuan Hao, 袁浩, 武保剑 Wu Baojian, 周星宇 Zhou Xingyu und 文峰 Wen Feng. „Equalization and Regeneration of Four-Wave Mixing for Time-Interleaved Channel“. Acta Optica Sinica 34, Nr. 2 (2014): 0206002. http://dx.doi.org/10.3788/aos201434.0206002.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
28

Fourkas, John T., Timothy R. Brewer, Hackjin Kim und M. D. Fayer. „Picosecond time-resolved four-wave mixing experiments in sodium-seeded flames“. Optics Letters 16, Nr. 3 (01.02.1991): 177. http://dx.doi.org/10.1364/ol.16.000177.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
29

Vemuri, Gautam. „Four-wave mixing with time-delayed, correlated, phase-diffusing optical fields“. Physical Review A 48, Nr. 4 (01.10.1993): 3256–64. http://dx.doi.org/10.1103/physreva.48.3256.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
30

Meyer, S., M. Schmitt, A. Materny, W. Kiefer und V. Engel. „Simulation of femtosecond time-resolved four-wave mixing experiments on I2“. Chemical Physics Letters 301, Nr. 3-4 (Februar 1999): 248–54. http://dx.doi.org/10.1016/s0009-2614(99)00040-8.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
31

Steffen, Thomas, John T. Fourkas und Koos Duppen. „Time resolved four‐ and six‐wave mixing in liquids. I. Theory“. Journal of Chemical Physics 105, Nr. 17 (November 1996): 7364–82. http://dx.doi.org/10.1063/1.472594.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
32

Khoury, Jed. „Four-wave mixing real-time intensity filtering with organic photorefractive materials“. Optical Engineering 50, Nr. 1 (01.01.2011): 018201. http://dx.doi.org/10.1117/1.3530048.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
33

Gelin, Maxim F., Dassia Egorova und Wolfgang Domcke. „Efficient Calculation of Time- and Frequency-Resolved Four-Wave-Mixing Signals“. Accounts of Chemical Research 42, Nr. 9 (15.09.2009): 1290–98. http://dx.doi.org/10.1021/ar900045d.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
34

Klein, Avi, Shir Shahal, Gilad Masri, Hamootal Duadi und Moti Fridman. „Four Wave Mixing-Based Time Lens for Orthogonal Polarized Input Signals“. IEEE Photonics Journal 9, Nr. 2 (April 2017): 1–7. http://dx.doi.org/10.1109/jphot.2017.2690899.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
35

Rozouvan, Stanislav. „Commutative spatial and time symmetry of degenerate four-wave mixing measurements“. Journal of the Optical Society of America B 16, Nr. 5 (01.05.1999): 768. http://dx.doi.org/10.1364/josab.16.000768.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
36

Schmitt-Rink, Stefan, Shaul Mukamel, Karl Leo, Jagdeep Shah und Daniel S. Chemla. „Stochastic theory of time-resolved four-wave mixing in interacting media“. Physical Review A 44, Nr. 3 (01.08.1991): 2124–29. http://dx.doi.org/10.1103/physreva.44.2124.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
37

Meyer, Kent A., John C. Wright und David E. Thompson. „Frequency and Time-Resolved Triply Vibrationally Enhanced Four-Wave Mixing Spectroscopy“. Journal of Physical Chemistry A 108, Nr. 52 (Dezember 2004): 11485–93. http://dx.doi.org/10.1021/jp046137j.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
38

Grenier, P., D. Houde, S. Jandl und L. A. Boatner. „Measurement of the soft polariton inKTa0.93Nb0.07O3by time-resolved four-wave mixing“. Physical Review B 50, Nr. 22 (01.12.1994): 16295–308. http://dx.doi.org/10.1103/physrevb.50.16295.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
39

Steffen, Thomas, und Koos Duppen. „Time resolved four- and six-wave mixing in liquids. II. Experiments“. Journal of Chemical Physics 106, Nr. 10 (08.03.1997): 3854–64. http://dx.doi.org/10.1063/1.473106.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
40

Wong, C. S., und H. K. Tsang. „Polarization-independent time-division demultiplexing using orthogonal-pumps four-wave mixing“. IEEE Photonics Technology Letters 15, Nr. 1 (Januar 2003): 129–31. http://dx.doi.org/10.1109/lpt.2002.805743.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
41

Shalit, Andrey, Yuri Paskover und Yehiam Prior. „In situ heterodyne detection in femtosecond time resolved four wave mixing“. Chemical Physics Letters 450, Nr. 4-6 (Januar 2008): 408–16. http://dx.doi.org/10.1016/j.cplett.2007.11.027.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
42

Yeh, Pochi, und Arthur E. T. Chiou. „Real-time contrast reversal via four-wave mixing in nonlinear media“. Optics Communications 64, Nr. 2 (Oktober 1987): 160–62. http://dx.doi.org/10.1016/0030-4018(87)90044-7.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
43

Göbel, E. O., M. Koch, J. Feldmann, G. von Plessen, T. Meier, A. Schulze, P. Thomas, S. Schmitt-Rink, K. Köhler und K. Ploog. „Time-Resolved Four-Wave Mixing in GaAs/AlAs Quantum Well Structures“. physica status solidi (b) 173, Nr. 1 (01.09.1992): 21–30. http://dx.doi.org/10.1002/pssb.2221730103.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
44

Borri, P., W. Langbein, S. Schneider, U. Woggon, R. L. Sellin, D. Ouyang und D. Bimberg. „Temperature-Dependent Time-Resolved Four-Wave Mixing in InGaAs Quantum Dots“. physica status solidi (a) 190, Nr. 2 (April 2002): 517–21. http://dx.doi.org/10.1002/1521-396x(200204)190:2<517::aid-pssa517>3.0.co;2-k.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
45

Ivakhnik, V. V., und M. V. Savelyev. „Transient four-wave mixing in a transparent two-component medium“. Computer Optics 42, Nr. 2 (24.07.2018): 227–35. http://dx.doi.org/10.18287/2412-6179-2018-42-2-227-235.

Der volle Inhalt der Quelle
Annotation:
We analyze changes in the spatial structure of an object wave under four-wave mixing in a transparent two-component medium in schemes with opposing and concurrent pump waves. It is shown that in the spatial spectrum of the object wave there is a dip, whose position is determined by the propagation direction of the second pump wave. Angular rotation and frequency shift of the pump waves lead to a decrease in the conversion efficiency of high spatial frequencies. The bandwidth of the spatial frequencies cut out by the four-wave radiation converter decreases monotonically over time, whereas the bandwidth of the most efficiently converted spatial frequencies increases.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
46

Bencivenga, F., A. Calvi, F. Capotondi, R. Cucini, R. Mincigrucci, A. Simoncig, M. Manfredda et al. „Four-wave-mixing experiments with seeded free electron lasers“. Faraday Discussions 194 (2016): 283–303. http://dx.doi.org/10.1039/c6fd00089d.

Der volle Inhalt der Quelle
Annotation:
The development of free electron laser (FEL) sources has provided an unprecedented bridge between the scientific communities working with ultrafast lasers and extreme ultraviolet (XUV) and X-ray radiation. Indeed, in recent years an increasing number of FEL-based applications have exploited methods and concepts typical of advanced optical approaches. In this context, we recently used a seeded FEL to demonstrate a four-wave-mixing (FWM) process stimulated by coherent XUV radiation, namely the XUV transient grating (X-TG). We hereby report on X-TG measurements carried out on a sample of silicon nitride (Si3N4). The recorded data bears evidence for two distinct signal decay mechanisms: one occurring on a sub-ps timescale and one following slower dynamics extending throughout and beyond the probed timescale range (100 ps). The latter is compatible with a slower relaxation (time decay > ns), that may be interpreted as the signature of thermal diffusion modes. From the peak intensity of the X-TG signal we could estimate a value of the effective third-order susceptibility which is substantially larger than that found in SiO2, so far the only sample with available X-TG data. Furthermore, the intensity of the time-coincidence peak shows a linear dependence on the intensity of the three input beams, indicating that the measurements were performed in the weak field regime. However, the timescale of the ultrafast relaxation exhibits a dependence on the intensity of the XUV radiation. We interpreted the observed behaviour as the generation of a population grating of free-electrons and holes that, on the sub-ps timescale, relaxes to generate lattice excitations. The background free detection inherent to the X-TG approach allowed the determination of FEL-induced electron dynamics with a sensitivity largely exceeding that of transient reflectivity and transmissivity measurements, usually employed for this purpose.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
47

Zhu, Chang Jun, und Jun Fang He. „Study on Coherent Dynamics of Alkali Metal Atomic Wave Packets“. Key Engineering Materials 538 (Januar 2013): 285–88. http://dx.doi.org/10.4028/www.scientific.net/kem.538.285.

Der volle Inhalt der Quelle
Annotation:
A theoretical model consisting of 5 energy levels, with the three upper states coherently excited, was proposed to analyze the coherent characteristics of atomic wave packets using perturbative theory. Pump-probe technique was implemented to detect coupled difference frequency four-wave mixing processes for studying the coherent characteristics of Rb atomic wave packets. Quantum beats were extracted the time domain signal by Fourier transform. Moreover, the variation of quantum beats was gained by time-dependent Fourier transform. The results show that the coherent characteristics of alkali metal atomic wave packets are closely related to quantum beats embedded in the time delayed four-wave mixing signal. Theoretical results are consistent with experimental observations, possessing potential applications in multi-channel information encoding and decoding.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
48

Zhu, Chang Jun, Jun Fang He, Xue Jun Zhai, Bing Xue und Chong Hui Zhang. „Investigation of Quantum Beatings at 608 cm-1 and 70 cm-1 in Rb Vapor“. Solid State Phenomena 181-182 (November 2011): 413–16. http://dx.doi.org/10.4028/www.scientific.net/ssp.181-182.413.

Der volle Inhalt der Quelle
Annotation:
Two coupled axially phase matched parametric four-wave mixings have been achieved in Rb vapor by using broad bandwidth laser pulses. Coherent radiations at 420 nm produced by difference-frequency optical wave mixing processes were detected and a pump-probe scheme was employed to record time varying characteristics of the parametric four-wave mixing signals. Quantum beatings at 608 cm-1 and 70 cm-1 were retrieved from the time varying signals by Fourier transform. Moreover, time dependent Fourier transform was utilized to analyze the dynamics of quantum beatings. The results indicate that two wave packets associated with the two quantum beating frequency components interact strongly and the quantum beating dynamics can be controlled by adjusting Rb number density.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
49

You, Jian Wei, Zhihao Lan und Nicolae C. Panoiu. „Four-wave mixing of topological edge plasmons in graphene metasurfaces“. Science Advances 6, Nr. 13 (März 2020): eaaz3910. http://dx.doi.org/10.1126/sciadv.aaz3910.

Der volle Inhalt der Quelle
Annotation:
We study topologically protected four-wave mixing (FWM) interactions in a plasmonic metasurface consisting of a periodic array of nanoholes in a graphene sheet, which exhibits a wide topological bandgap at terahertz frequencies upon the breaking of time reversal symmetry by a static magnetic field. We demonstrate that due to the significant nonlinearity enhancement and large life time of graphene plasmons in specific configurations, a net gain of FWM interaction of plasmonic edge states located in the topological bandgap can be achieved with a pump power of less than 10 nW. In particular, we find that the effective nonlinear edge-waveguide coefficient is about γ ≃ 1.1 × 1013 W−1 m−1, i.e., more than 10 orders of magnitude larger than that of commonly used, highly nonlinear silicon photonic nanowires. These findings could pave a new way for developing ultralow-power-consumption, highly integrated, and robust active photonic systems at deep-subwavelength scale for applications in quantum communications and information processing.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
50

Kim, Dai-Sik, Jagdeep Shah, J. E. Cunningham, T. C. Damen, Wilfried Schäfer, Michael Hartmann und Stefan Schmitt-Rink. „Giant excitonic resonance in time-resolved four-wave mixing in quantum wells“. Physical Review Letters 68, Nr. 7 (17.02.1992): 1006–9. http://dx.doi.org/10.1103/physrevlett.68.1006.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Wir bieten Rabatte auf alle Premium-Pläne für Autoren, deren Werke in thematische Literatursammlungen aufgenommen wurden. Kontaktieren Sie uns, um einen einzigartigen Promo-Code zu erhalten!

Zur Bibliographie