Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Time-Dependent Maxwell's equations“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Time-Dependent Maxwell's equations" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Time-Dependent Maxwell's equations"
Huang, Yunqing, Jichun Li und Qun Lin. „Superconvergence analysis for time-dependent Maxwell's equations in metamaterials“. Numerical Methods for Partial Differential Equations 28, Nr. 6 (01.09.2011): 1794–816. http://dx.doi.org/10.1002/num.20703.
Der volle Inhalt der QuelleFeliziani, M., und F. Maradei. „Hybrid finite element solutions of time dependent Maxwell's curl equations“. IEEE Transactions on Magnetics 31, Nr. 3 (Mai 1995): 1330–35. http://dx.doi.org/10.1109/20.376273.
Der volle Inhalt der QuelleCiarlet, Jr, P., und Jun Zou. „Fully discrete finite element approaches for time-dependent Maxwell's equations“. Numerische Mathematik 82, Nr. 2 (01.04.1999): 193–219. http://dx.doi.org/10.1007/s002110050417.
Der volle Inhalt der QuelleŁoś, Marcin, Maciej Woźniak, Keshav Pingali, Luis Emilio Garcia Castillo, Julen Alvarez-Arramberri, David Pardo und Maciej Paszyński. „Fast parallel IGA-ADS solver for time-dependent Maxwell's equations“. Computers & Mathematics with Applications 151 (Dezember 2023): 36–49. http://dx.doi.org/10.1016/j.camwa.2023.09.035.
Der volle Inhalt der QuelleEgger, Herbert, Fritz Kretzschmar, Sascha M. Schnepp und Thomas Weiland. „A Space-Time Discontinuous Galerkin Trefftz Method for Time Dependent Maxwell's Equations“. SIAM Journal on Scientific Computing 37, Nr. 5 (Januar 2015): B689—B711. http://dx.doi.org/10.1137/140999323.
Der volle Inhalt der QuelleHolland, Peter. „Hydrodynamic construction of the electromagnetic field“. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 461, Nr. 2063 (19.09.2005): 3659–79. http://dx.doi.org/10.1098/rspa.2005.1525.
Der volle Inhalt der QuelleBenoit, J., C. Chauvière und P. Bonnet. „Time-dependent current source identification for numerical simulations of Maxwell's equations“. Journal of Computational Physics 289 (Mai 2015): 116–28. http://dx.doi.org/10.1016/j.jcp.2015.02.033.
Der volle Inhalt der QuelleZhang, Ya, Li-Qun Cao und Yau-Shu Wong. „Multiscale Computations for 3D Time-Dependent Maxwell's Equations in Composite Materials“. SIAM Journal on Scientific Computing 32, Nr. 5 (Januar 2010): 2560–83. http://dx.doi.org/10.1137/080740337.
Der volle Inhalt der QuelleLi, Jichun, und Yitung Chen. „Finite element study of time-dependent Maxwell's equations in dispersive media“. Numerical Methods for Partial Differential Equations 24, Nr. 5 (14.12.2007): 1203–21. http://dx.doi.org/10.1002/num.20314.
Der volle Inhalt der QuelleYao, Changhui, und Dongyang Shi. „Nonconforming Mixed Finite Element Method for Time-dependent Maxwell's Equations with ABC“. Numerical Mathematics: Theory, Methods and Applications 9, Nr. 2 (Mai 2016): 193–214. http://dx.doi.org/10.4208/nmtma.2016.m1427.
Der volle Inhalt der QuelleDissertationen zum Thema "Time-Dependent Maxwell's equations"
Schütte, Maria [Verfasser]. „On shape sensitivity analysis for 3D time-dependent Maxwell's equations / Maria Schütte“. Paderborn : Universitätsbibliothek, 2017. http://d-nb.info/1127109979/34.
Der volle Inhalt der QuelleFreese, Jan Philip [Verfasser], und C. [Akademischer Betreuer] Wieners. „Numerical homogenization of time-dependent Maxwell's equations with dispersion effects / Jan Philip Freese ; Betreuer: C. Wieners“. Karlsruhe : KIT-Bibliothek, 2021. http://d-nb.info/1227451113/34.
Der volle Inhalt der QuelleGao, Liping. „Splitting finite difference methods for the time-dependent Maxwell equations“. Thesis, Coventry University, 2006. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.429698.
Der volle Inhalt der QuelleMazzolo, Lisa-Marie. „Étude et développement d’un outil efficace de simulation pour l’évaluation de SER : Application à la détection d’objets enfouis à partir de plates-formes aéroportées“. Electronic Thesis or Diss., Toulouse, ISAE, 2024. http://www.theses.fr/2024ESAE0047.
Der volle Inhalt der QuelleThe detection of buried objects, whether explosive devices in a military context or archaeological structures in a civilian context, is a major concern. In radar remote sensing, airborne systems such as Synthetic Aperture Radar (SAR) allow non-destructive imaging of subsurface environments while offering the possibility of exploring large areas from a safe distance. However, their effectiveness in detecting buried objects depends on many factors, such as the dielectric properties of the soil, which affect the penetration depth of electromagnetic waves, the nature of targets, and the type of transmitter... A preliminary study that predicts target response based on system and scene characteristics would be a valuable tool for assessing detection capabilities before launching measurement campaigns.This thesis addresses such context by focusing on the research, development, and optimization of a numerical simulation tool designed to accurately evaluate the radar cross-section (RCS) of buried objects. The proposed approach is based on a hybridization strategy using Finite Volume Time Domain (FVTD) solvers applied to hybrid Cartesian/unstructured meshes to optimize computational costs. More specifically, these hybrid meshes allow for a conformal representation of curved geometries and spatial discretization adapted to the varying electromagnetic wave propagation speeds in different media. The procedure for generating these meshes, based on the subdivision of the computational domain into subdomains is detailed, and used FVTD solvers are described, highlighting the choices made to optimize their efficiency. The implementation of models for representative soil description, accurate handling of plane-wave sources, and far-field calculations in lossy media are also addressed. The hybridization of FVTD solvers through a multi-domain/multi-method strategy is presented in detail, emphasizing proposed software architecture, the stability of the hybrid solution, and the challenges of hybridization. Finally, a comparison of simulated results with experimental data obtained during a measurement campaign conducted for this thesis provides an initial assessment of the performance of developed simulation tool. In conclusion, this thesis highlights the potential of this tool in studying the impact of radar system configuration parameters on buried objects RCS in given scenarios
Lilienthal, Martin [Verfasser], Thomas [Akademischer Betreuer] Weiland und Herbert [Akademischer Betreuer] Egger. „Error Controlled hp-Adaptive Finite Element Methods for the Time-Dependent Maxwell Equations / Martin Lilienthal. Betreuer: Thomas Weiland ; Herbert Egger“. Darmstadt : Universitäts- und Landesbibliothek Darmstadt, 2015. http://d-nb.info/111190992X/34.
Der volle Inhalt der QuelleLilienthal, Martin. „Error Controlled hp-Adaptive Finite Element Methods for the Time-Dependent Maxwell Equations“. Phd thesis, 2015. http://tuprints.ulb.tu-darmstadt.de/4573/14/main.pdf.
Der volle Inhalt der QuelleBücher zum Thema "Time-Dependent Maxwell's equations"
I, Hariharan S., Ida Nathan und United States. National Aeronautics and Space Administration., Hrsg. Solving time-dependent two-dimensional eddy current problems. [Washington, DC]: National Aeronautics and Space Administration, 1988.
Den vollen Inhalt der Quelle findenI, Hariharan S., Ida Nathan und United States. National Aeronautics and Space Administration., Hrsg. Solving time-dependent two-dimensional eddy current problems. [Washington, DC]: National Aeronautics and Space Administration, 1988.
Den vollen Inhalt der Quelle findenLee, Min Eig. Solving time-dependent two-dimensional eddy current problems. Cleveland, Ohio: Institute for Computational Mechanics in Propulsion, 1988.
Den vollen Inhalt der Quelle findenSolving time-dependent two-dimensional eddy current problems. [Washington, DC]: National Aeronautics and Space Administration, 1988.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Time-Dependent Maxwell's equations"
Hochbruck, Marlis, und Christian Stohrer. „Finite Element Heterogeneous Multiscale Method for Time-Dependent Maxwell’s Equations“. In Lecture Notes in Computational Science and Engineering, 269–81. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-65870-4_18.
Der volle Inhalt der QuelleDe Raedt, H., K. Michielsen, J. S. Kole und M. T. Figge. „Chebyshev Method to Solve the Time-Dependent Maxwell Equations“. In Springer Proceedings in Physics, 211–15. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-642-55522-0_26.
Der volle Inhalt der QuelleFan, Jishan, und Tohru Ozawa. „Uniform Regularity for the Time-Dependent Ginzburg-Landau-Maxwell Equations“. In Trends in Mathematics, 301–6. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-48812-7_38.
Der volle Inhalt der QuelleKole, J. S., M. T. Figge und H. De Raedt. „Solving the Time-Dependent Maxwell Equations by Unconditionally Stable Algorithms“. In Springer Proceedings in Physics, 205–10. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-642-55522-0_25.
Der volle Inhalt der QuelleKole, J. S., M. T. Figge und H. De Raedt. „New Unconditionally Stable Algorithms to Solve the Time-Dependent Maxwell Equations“. In Lecture Notes in Computer Science, 803–12. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/3-540-46043-8_81.
Der volle Inhalt der QuelleScully, Marlan O. „The Time-Dependent Schrödinger Equation Revisited: Quantum Optical and Classical Maxwell Routes to Schrödinger’s Wave Equation“. In Time in Quantum Mechanics II, 15–24. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-03174-8_2.
Der volle Inhalt der Quelle„Time-dependent fields: Faraday's law and Maxwell's equations“. In Electricity and Magnetism, 39–44. Cambridge University Press, 1991. http://dx.doi.org/10.1017/cbo9781139168106.009.
Der volle Inhalt der QuelleTosti, Fabio, und Andrea Umiliaco. „FDTD Simulation of the GPR Signal for Preventing the Risk of Accidents Due to Pavement Damages“. In Civil and Environmental Engineering, 597–605. IGI Global, 2016. http://dx.doi.org/10.4018/978-1-4666-9619-8.ch026.
Der volle Inhalt der QuelleFreeman, Richard, James King und Gregory Lafyatis. „Essentials of Electricity and Magnetism“. In Electromagnetic Radiation, 3–42. Oxford University Press, 2019. http://dx.doi.org/10.1093/oso/9780198726500.003.0001.
Der volle Inhalt der QuellePierrus, J. „Some applications of Maxwell’s equations in matter“. In Solved Problems in Classical Electromagnetism. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198821915.003.0010.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Time-Dependent Maxwell's equations"
Gao, Liping. „Splitting finite element methods for time dependent Maxwell's equations in 2D“. In Computational Electromagnetics (ICMTCE). IEEE, 2011. http://dx.doi.org/10.1109/icmtce.2011.5915542.
Der volle Inhalt der QuelleSu, Qichang C., S. Mandel, S. Menon und R. Grobe. „Split operator solution of the time-dependent Maxwell's equations for random scatterers“. In International Workshop on Photonics and Imaging in Biology and Medicine, herausgegeben von Qingming Luo, Britton Chance und Valery V. Tuchin. SPIE, 2002. http://dx.doi.org/10.1117/12.462558.
Der volle Inhalt der QuelleSaito, H., T. Fujino, H. Takana und J. Mostaghimi. „Interaction Between Rotary Arc and Injected Particles in a Non-Transferred DC Plasma Spray with Externally Applied Magnetic Field“. In ITSC2017, herausgegeben von A. Agarwal, G. Bolelli, A. Concustell, Y. C. Lau, A. McDonald, F. L. Toma, E. Turunen und C. A. Widener. DVS Media GmbH, 2017. http://dx.doi.org/10.31399/asm.cp.itsc2017p0285.
Der volle Inhalt der QuelleShang, J., und Datta Gaitonde. „On high resolution schemes for time-dependent Maxwell equations“. In 34th Aerospace Sciences Meeting and Exhibit. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1996. http://dx.doi.org/10.2514/6.1996-832.
Der volle Inhalt der QuelleShang, J. „High-order compact-difference schemes for time-dependent Maxwell equations“. In 29th AIAA, Plasmadynamics and Lasers Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1998. http://dx.doi.org/10.2514/6.1998-2471.
Der volle Inhalt der QuelleDaveau, C., A. Riaz, Theodore E. Simos, George Psihoyios und Ch Tsitouras. „A New Symmetric Discontinuous Galerkin Formulation for the Time-Dependent Maxwell’s Equation“. In ICNAAM 2010: International Conference of Numerical Analysis and Applied Mathematics 2010. AIP, 2010. http://dx.doi.org/10.1063/1.3498462.
Der volle Inhalt der QuelleSHANG, J., und DATTA GAITONDE. „Characteristic-based, time-dependent Maxwell equations solvers on a general curvilinear frame“. In 24th Plasma Dynamics, and Lasers Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1993. http://dx.doi.org/10.2514/6.1993-3178.
Der volle Inhalt der QuelleMandel, S., S. Menon, W. Harshawardhan, Qichang C. Su und R. Grobe. „Numerical solution techniques to the time-dependent Maxwell equations for highly scattering media“. In European Conference on Biomedical Optics, herausgegeben von Stefan Andersson-Engels und Michael F. Kaschke. SPIE, 2001. http://dx.doi.org/10.1117/12.447416.
Der volle Inhalt der QuelleMundell-Thomas, Karema, und Victor M. Job. „Mathematical Model of Unsteady MHD Couette Flow of Maxwell Viscoelastic Material and Heat Transfer with Ramped Wall Temperature“. In The International Conference on Applied Research and Engineering. Switzerland: Trans Tech Publications Ltd, 2024. http://dx.doi.org/10.4028/p-lt6gso.
Der volle Inhalt der QuelleDaveau, C., A. Zaghdani, George Maroulis und Theodore E. Simos. „A hp—Discontinuous Galerkin Method for the Time-Dependent Maxwell’s Equation: a priori Error Estimate“. In COMPUTATIONAL METHODS IN SCIENCE AND ENGINEERING: Advances in Computational Science: Lectures presented at the International Conference on Computational Methods in Sciences and Engineering 2008 (ICCMSE 2008). AIP, 2009. http://dx.doi.org/10.1063/1.3225428.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Time-Dependent Maxwell's equations"
Shields, Sidney. Novel methods for the time-dependent Maxwell's equations and their applications. Office of Scientific and Technical Information (OSTI), April 2017. http://dx.doi.org/10.2172/1352142.
Der volle Inhalt der QuelleZhiquiang, C., und J. Jones. Least-Squares Approaches for the Time-Dependent Maxwell Equations. Office of Scientific and Technical Information (OSTI), Dezember 2001. http://dx.doi.org/10.2172/15002754.
Der volle Inhalt der Quelle