Zeitschriftenartikel zum Thema „Time-Aware LSTM“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit Top-50 Zeitschriftenartikel für die Forschung zum Thema "Time-Aware LSTM" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Sehen Sie die Zeitschriftenartikel für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.
Cheng, Lin, Yuliang Shi, Kun Zhang, Xinjun Wang und Zhiyong Chen. „GGATB-LSTM: Grouping and Global Attention-based Time-aware Bidirectional LSTM Medical Treatment Behavior Prediction“. ACM Transactions on Knowledge Discovery from Data 15, Nr. 3 (Mai 2021): 1–16. http://dx.doi.org/10.1145/3441454.
Der volle Inhalt der QuelleWiessner, Paul, Grigor Bezirganyan, Sana Sellami, Richard Chbeir und Hans-Joachim Bungartz. „Uncertainty-Aware Time Series Anomaly Detection“. Future Internet 16, Nr. 11 (31.10.2024): 403. http://dx.doi.org/10.3390/fi16110403.
Der volle Inhalt der QuelleYadulla, Akhila Reddy, Mounica Yenugula, Vinay Kumar Kasula, Bhargavi Konda, Santosh Reddy Addula und Sarath Babu Rakki. „A time-aware LSTM model for detecting criminal activities in blockchain transactions“. International Journal of Communication and Information Technology 4, Nr. 2 (01.07.2023): 33–39. https://doi.org/10.33545/2707661x.2023.v4.i2a.108.
Der volle Inhalt der QuelleYang, Xuan, und James A. Esquivel. „Time-Aware LSTM Neural Networks for Dynamic Personalized Recommendation on Business Intelligence“. Tsinghua Science and Technology 29, Nr. 1 (Februar 2024): 185–96. http://dx.doi.org/10.26599/tst.2023.9010025.
Der volle Inhalt der QuelleChen, Long, Zhiyao Tian, Shunhua Zhou, Quanmei Gong und Honggui Di. „Attitude deviation prediction of shield tunneling machine using Time-Aware LSTM networks“. Transportation Geotechnics 45 (März 2024): 101195. http://dx.doi.org/10.1016/j.trgeo.2024.101195.
Der volle Inhalt der QuelleChen, Jie, Chang Liu, Jiawu Xie, Jie An und Nan Huang. „Time–Frequency Mask-Aware Bidirectional LSTM: A Deep Learning Approach for Underwater Acoustic Signal Separation“. Sensors 22, Nr. 15 (26.07.2022): 5598. http://dx.doi.org/10.3390/s22155598.
Der volle Inhalt der QuelleZhang, Jinkai, Wenming Ma, En Zhang und Xuchen Xia. „Time-Aware Dual LSTM Neural Network with Similarity Graph Learning for Remote Sensing Service Recommendation“. Sensors 24, Nr. 4 (11.02.2024): 1185. http://dx.doi.org/10.3390/s24041185.
Der volle Inhalt der QuelleZheng, Ruixuan, Yanping Bao, Lihua Zhao und Lidong Xing. „Prediction of steelmaking process variables using K-medoids and a time-aware LSTM network“. Heliyon 10, Nr. 12 (Juni 2024): e32901. http://dx.doi.org/10.1016/j.heliyon.2024.e32901.
Der volle Inhalt der QuelleSubapriya Vijayakumar und Rajaprakash Singaravelu. „Time Aware Long Short-Term Memory and Kronecker Gated Intelligent Transportation for Smart Car Parking“. Journal of Advanced Research in Applied Sciences and Engineering Technology 44, Nr. 1 (26.04.2024): 134–50. http://dx.doi.org/10.37934/araset.44.1.134150.
Der volle Inhalt der QuelleGui, Zhipeng, Yunzeng Sun, Le Yang, Dehua Peng, Fa Li, Huayi Wu, Chi Guo, Wenfei Guo und Jianya Gong. „LSI-LSTM: An attention-aware LSTM for real-time driving destination prediction by considering location semantics and location importance of trajectory points“. Neurocomputing 440 (Juni 2021): 72–88. http://dx.doi.org/10.1016/j.neucom.2021.01.067.
Der volle Inhalt der QuelleLees, Thomas, Marcus Buechel, Bailey Anderson, Louise Slater, Steven Reece, Gemma Coxon und Simon J. Dadson. „Benchmarking data-driven rainfall–runoff models in Great Britain: a comparison of long short-term memory (LSTM)-based models with four lumped conceptual models“. Hydrology and Earth System Sciences 25, Nr. 10 (21.10.2021): 5517–34. http://dx.doi.org/10.5194/hess-25-5517-2021.
Der volle Inhalt der QuelleAnan, Muhammad, Khalid Kanaan, Driss Benhaddou, Nidal Nasser, Basheer Qolomany, Hanaa Talei und Ahmad Sawalmeh. „Occupant-Aware Energy Consumption Prediction in Smart Buildings Using a LSTM Model and Time Series Data“. Energies 17, Nr. 24 (21.12.2024): 6451. https://doi.org/10.3390/en17246451.
Der volle Inhalt der QuellePark, Hyun Joon, Min Seok Lee, Dong Il Park und Sung Won Han. „Time-Aware and Feature Similarity Self-Attention in Vessel Fuel Consumption Prediction“. Applied Sciences 11, Nr. 23 (04.12.2021): 11514. http://dx.doi.org/10.3390/app112311514.
Der volle Inhalt der QuelleZhang, Jiangnan, Hai Wang, Fengjuan Cui, Yongshuo Liu, Zhenxing Liu und Junyu Dong. „Research into Ship Trajectory Prediction Based on An Improved LSTM Network“. Journal of Marine Science and Engineering 11, Nr. 7 (22.06.2023): 1268. http://dx.doi.org/10.3390/jmse11071268.
Der volle Inhalt der QuelleKim, Jonghong, Inchul Choi und Minho Lee. „Context Aware Video Caption Generation with Consecutive Differentiable Neural Computer“. Electronics 9, Nr. 7 (17.07.2020): 1162. http://dx.doi.org/10.3390/electronics9071162.
Der volle Inhalt der QuelleNg, Yu Nie, Han Ying Lim, Ying Chyi Cham, Mohd Aftar Abu Bakar und Noratiqah Mohd Ariff. „Comparison Between LSTM, GRU and VARIMA in Forecasting of Air Quality Time Series Data“. Malaysian Journal of Fundamental and Applied Sciences 20, Nr. 6 (16.12.2024): 1248–60. https://doi.org/10.11113/mjfas.v20n6.3411.
Der volle Inhalt der QuelleYuan, Xiaofeng, Lin Li, Kai Wang und Yalin Wang. „Sampling-Interval-Aware LSTM for Industrial Process Soft Sensing of Dynamic Time Sequences With Irregular Sampling Measurements“. IEEE Sensors Journal 21, Nr. 9 (01.05.2021): 10787–95. http://dx.doi.org/10.1109/jsen.2021.3056210.
Der volle Inhalt der QuelleOzpinar, Alper, und Arma Deger Mut. „Multidimensional Next-Generation Time and Transition-Aware Product Recommendation System“. European Journal of Research and Development 4, Nr. 2 (31.05.2024): 229–46. http://dx.doi.org/10.56038/ejrnd.v4i2.458.
Der volle Inhalt der QuelleKratzert, Frederik, Daniel Klotz, Guy Shalev, Günter Klambauer, Sepp Hochreiter und Grey Nearing. „Towards learning universal, regional, and local hydrological behaviors via machine learning applied to large-sample datasets“. Hydrology and Earth System Sciences 23, Nr. 12 (17.12.2019): 5089–110. http://dx.doi.org/10.5194/hess-23-5089-2019.
Der volle Inhalt der QuelleZhang, Jiajun. „Time Series Analysis of Greenhouse Gas Emission Based on ARIMA and LSTM“. Highlights in Science, Engineering and Technology 76 (31.12.2023): 378–84. http://dx.doi.org/10.54097/zy49qb44.
Der volle Inhalt der QuellePalanichamy, Indurani, und Firdaus Begam Basheer Ahamed. „Prediction of Seizure in the EEG Signal with Time Aware Recurrent Neural Network“. Revue d'Intelligence Artificielle 36, Nr. 5 (23.12.2022): 717–24. http://dx.doi.org/10.18280/ria.360508.
Der volle Inhalt der QuelleYuan, Yuan, Yuying Zhou, Xuanyou Chen, Qi Xiong und Hector Chimeremeze Okere. „Enhancing Recommendation Diversity and Novelty with Bi-LSTM and Mean Shift Clustering“. Electronics 13, Nr. 19 (28.09.2024): 3841. http://dx.doi.org/10.3390/electronics13193841.
Der volle Inhalt der QuelleMehta, Amiben Maheshbhai, und Kajal S. Patel. „LSTM-based Forecasting of Dengue Cases in Gujarat: A Machine Learning Approach“. Indian Journal Of Science And Technology 17, Nr. 7 (15.02.2024): 635–42. http://dx.doi.org/10.17485/ijst/v17i7.2748.
Der volle Inhalt der QuelleYaprakdal, Fatma, und Merve Varol Arısoy. „A Multivariate Time Series Analysis of Electrical Load Forecasting Based on a Hybrid Feature Selection Approach and Explainable Deep Learning“. Applied Sciences 13, Nr. 23 (04.12.2023): 12946. http://dx.doi.org/10.3390/app132312946.
Der volle Inhalt der QuelleWang, Yakun, Yajun Du, Jinrong Hu, Xianyong Li und Xiaoliang Chen. „SAEP: A Surrounding-Aware Individual Emotion Prediction Model Combined with T-LSTM and Memory Attention Mechanism“. Applied Sciences 11, Nr. 23 (23.11.2021): 11111. http://dx.doi.org/10.3390/app112311111.
Der volle Inhalt der QuellePan, Feng, Bingyao Huang, Chunhong Zhang, Xinning Zhu, Zhenyu Wu, Moyu Zhang, Yang Ji, Zhanfei Ma und Zhengchen Li. „A survival analysis based volatility and sparsity modeling network for student dropout prediction“. PLOS ONE 17, Nr. 5 (05.05.2022): e0267138. http://dx.doi.org/10.1371/journal.pone.0267138.
Der volle Inhalt der QuellePuchała, Sebastian, Włodzimierz Kasprzak und Paweł Piwowarski. „Human Interaction Classification in Sliding Video Windows Using Skeleton Data Tracking and Feature Extraction“. Sensors 23, Nr. 14 (10.07.2023): 6279. http://dx.doi.org/10.3390/s23146279.
Der volle Inhalt der QuelleAlam, Kazi Nabiul, Md Shakib Khan, Abdur Rab Dhruba, Mohammad Monirujjaman Khan, Jehad F. Al-Amri, Mehedi Masud und Majdi Rawashdeh. „Deep Learning-Based Sentiment Analysis of COVID-19 Vaccination Responses from Twitter Data“. Computational and Mathematical Methods in Medicine 2021 (02.12.2021): 1–15. http://dx.doi.org/10.1155/2021/4321131.
Der volle Inhalt der QuelleFaudzi, A. A. M., M. M. Raslan und N. E. Alias. „IoT based real-time monitoring system of rainfall and water level for flood prediction using LSTM Network“. IOP Conference Series: Earth and Environmental Science 1143, Nr. 1 (01.02.2023): 012015. http://dx.doi.org/10.1088/1755-1315/1143/1/012015.
Der volle Inhalt der QuelleNi, Xiang, Jing Li, Mo Yu, Wang Zhou und Kun-Lung Wu. „Generalizable Resource Allocation in Stream Processing via Deep Reinforcement Learning“. Proceedings of the AAAI Conference on Artificial Intelligence 34, Nr. 01 (03.04.2020): 857–64. http://dx.doi.org/10.1609/aaai.v34i01.5431.
Der volle Inhalt der QuelleAlsaedi, Faisal, und Sara Masoud. „Condition-Based Maintenance for Degradation-Aware Control Systems in Continuous Manufacturing“. Machines 13, Nr. 2 (12.02.2025): 141. https://doi.org/10.3390/machines13020141.
Der volle Inhalt der QuelleTam, Prohim, Seungwoo Kang, Seyha Ros und Seokhoon Kim. „Enhancing QoS with LSTM-Based Prediction for Congestion-Aware Aggregation Scheduling in Edge Federated Learning“. Electronics 12, Nr. 17 (27.08.2023): 3615. http://dx.doi.org/10.3390/electronics12173615.
Der volle Inhalt der QuelleAbdullah, Hazem salim. „A comparison of several intrusion detection methods using the NSL-KDD dataset“. Wasit Journal of Computer and Mathematics Science 3, Nr. 2 (30.06.2024): 32–41. http://dx.doi.org/10.31185/wjcms.251.
Der volle Inhalt der QuelleYang, Hui, und Changchun Yang. „TIGNN-RL: Enabling time-sensitive and context-aware intelligent decision-making with dynamic graphs in recommender systems and biomechanics knowledge“. Molecular & Cellular Biomechanics 22, Nr. 3 (13.02.2025): 1339. https://doi.org/10.62617/mcb1339.
Der volle Inhalt der QuelleIbnu Sina, Muhammad Noer, und Erwin Budi Setiawan. „Stock Price Correlation Analysis with Twitter Sentiment Analysis Using The CNN-LSTM Method“. sinkron 8, Nr. 4 (01.10.2023): 2190–202. http://dx.doi.org/10.33395/sinkron.v8i4.12855.
Der volle Inhalt der QuelleCayme, Karl Jensen, Vince Andrei Retutal, Miguel Edwin Salubre, Philip Virgil Astillo, Luis Gerardo Cañete und Gaurav Choudhary. „Gesture Recognition of Filipino Sign Language Using Convolutional and Long Short-Term Memory Deep Neural Networks“. Knowledge 4, Nr. 3 (08.07.2024): 358–81. http://dx.doi.org/10.3390/knowledge4030020.
Der volle Inhalt der QuelleIslam, Muhammad Zubair, A. S. M. Sharifuzzaman Sagar und Hyung Seok Kim. „Enabling Pandemic-Resilient Healthcare: Edge-Computing-Assisted Real-Time Elderly Caring Monitoring System“. Applied Sciences 14, Nr. 18 (20.09.2024): 8486. http://dx.doi.org/10.3390/app14188486.
Der volle Inhalt der QuelleLi, Bing, Wei Cui, Wei Wang, Le Zhang, Zhenghua Chen und Min Wu. „Two-Stream Convolution Augmented Transformer for Human Activity Recognition“. Proceedings of the AAAI Conference on Artificial Intelligence 35, Nr. 1 (18.05.2021): 286–93. http://dx.doi.org/10.1609/aaai.v35i1.16103.
Der volle Inhalt der QuelleNam, Seung-Joo, Gwiseong Moon, Jung-Hwan Park, Yoon Kim, Yun Jeong Lim und Hyun-Soo Choi. „Deep Learning-Based Real-Time Organ Localization and Transit Time Estimation in Wireless Capsule Endoscopy“. Biomedicines 12, Nr. 8 (31.07.2024): 1704. http://dx.doi.org/10.3390/biomedicines12081704.
Der volle Inhalt der QuelleWang, Ziteng, Junfeng Li und Yonghong Yan. „Target Speaker Localization Based on the Complex Watson Mixture Model and Time-Frequency Selection Neural Network“. Applied Sciences 8, Nr. 11 (21.11.2018): 2326. http://dx.doi.org/10.3390/app8112326.
Der volle Inhalt der QuelleNair, Biji, und S. Mary Saira Bhanu. „Task Scheduling in Fog Node within the Tactical Cloud“. Defence Science Journal 72, Nr. 1 (05.01.2022): 49–55. http://dx.doi.org/10.14429/dsj.72.17039.
Der volle Inhalt der QuelleLu, Tong, Sizu Hou und Yan Xu. „Ultra-Short-Term Load Forecasting for Customer-Level Integrated Energy Systems Based on Composite VTDS Models“. Processes 11, Nr. 8 (16.08.2023): 2461. http://dx.doi.org/10.3390/pr11082461.
Der volle Inhalt der QuellePandey, Neeraj Kumar, Manoj Diwakar, Achyut Shankar, Prabhishek Singh, Mohammad R. Khosravi und Vivek Kumar. „Energy Efficiency Strategy for Big Data in Cloud Environment Using Deep Reinforcement Learning“. Mobile Information Systems 2022 (11.08.2022): 1–11. http://dx.doi.org/10.1155/2022/8716132.
Der volle Inhalt der QuelleXue, Mingfu, Junyu Zhu, Rusheng Wu, Xiayiwei Zhang und Yuan Chen. „BRP-Net: A discrete-aware network based on attention mechanisms and LSTM for birth rate prediction in prefecture-level cities“. PLOS ONE 19, Nr. 9 (12.09.2024): e0307721. http://dx.doi.org/10.1371/journal.pone.0307721.
Der volle Inhalt der QuelleDash, Debadatta, Paul Ferrari, Satwik Dutta und Jun Wang. „NeuroVAD: Real-Time Voice Activity Detection from Non-Invasive Neuromagnetic Signals“. Sensors 20, Nr. 8 (16.04.2020): 2248. http://dx.doi.org/10.3390/s20082248.
Der volle Inhalt der QuelleSidhu, Kamaljeet Kaur, Habeeb Balogun und Kazeem Oluwakemi Oseni. „"Predictive Modelling of Air Quality Index (AQI) Across Diverse Cities and States of India using Machine Learning: Investigating the Influence of Punjab's Stubble Burning on AQI Variability"“. International Journal of Managing Information Technology 16, Nr. 1 (28.02.2024): 15–35. http://dx.doi.org/10.5121/ijmit.2024.16102.
Der volle Inhalt der QuelleTariq, Usman. „Optimized Feature Selection for DDoS Attack Recognition and Mitigation in SD-VANETs“. World Electric Vehicle Journal 15, Nr. 9 (28.08.2024): 395. http://dx.doi.org/10.3390/wevj15090395.
Der volle Inhalt der QuelleWang, Chunli, Linming Xu, Hongxin Zhu und Xiaoyang Cheng. „Robustness study of speaker recognition based on ECAPA-TDNN-CIFG“. Journal of Computational Methods in Sciences and Engineering 24, Nr. 4-5 (14.08.2024): 3287–96. http://dx.doi.org/10.3233/jcm-247581.
Der volle Inhalt der QuelleKamal, Saurabh, Sahil Sharma, Vijay Kumar, Hammam Alshazly, Hany S. Hussein und Thomas Martinetz. „Trading Stocks Based on Financial News Using Attention Mechanism“. Mathematics 10, Nr. 12 (10.06.2022): 2001. http://dx.doi.org/10.3390/math10122001.
Der volle Inhalt der QuelleDo, Nhu-Tai, Soo-Hyung Kim, Hyung-Jeong Yang, Guee-Sang Lee und Soonja Yeom. „Context-Aware Emotion Recognition in the Wild Using Spatio-Temporal and Temporal-Pyramid Models“. Sensors 21, Nr. 7 (27.03.2021): 2344. http://dx.doi.org/10.3390/s21072344.
Der volle Inhalt der Quelle