Um die anderen Arten von Veröffentlichungen zu diesem Thema anzuzeigen, folgen Sie diesem Link: THz frequency range.

Zeitschriftenartikel zum Thema „THz frequency range“

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit Top-50 Zeitschriftenartikel für die Forschung zum Thema "THz frequency range" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Sehen Sie die Zeitschriftenartikel für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.

1

Kleine-Ostmann, Thomas, Christian Jastrow, Kai Baaske, Bernd Heinen, Michael Schwerdtfeger, Uwe Karst, Henning Hintzsche, Helga Stopper, Martin Koch und Thorsten Schrader. „Field Exposure and Dosimetry in the THz Frequency Range“. IEEE Transactions on Terahertz Science and Technology 4, Nr. 1 (Januar 2014): 12–25. http://dx.doi.org/10.1109/tthz.2013.2293115.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Nazarov, Maxim, O. P. Cherkasova und A. P. Shkurinov. „Spectroscopy of solutions in the low frequency extended THz frequency range“. EPJ Web of Conferences 195 (2018): 10008. http://dx.doi.org/10.1051/epjconf/201819510008.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Yashchyshyn, Yevhen, und Konrad Godziszewski. „A New Method for Dielectric Characterization in Sub-THz Frequency Range“. IEEE Transactions on Terahertz Science and Technology 8, Nr. 1 (Januar 2018): 19–26. http://dx.doi.org/10.1109/tthz.2017.2771309.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Puc, Uroš, Andreja Abina, Anton Jeglič, Aleksander Zidanšek, Irmantas Kašalynas, Rimvydas Venckevičius und Gintaras Valušis. „Spectroscopic Analysis of Melatonin in the Terahertz Frequency Range“. Sensors 18, Nr. 12 (23.11.2018): 4098. http://dx.doi.org/10.3390/s18124098.

Der volle Inhalt der Quelle
Annotation:
There is a need for fast and reliable quality and authenticity control tools of pharmaceutical ingredients. Among others, hormone containing drugs and foods are subject to scrutiny. In this study, terahertz (THz) spectroscopy and THz imaging are applied for the first time to analyze melatonin and its pharmaceutical product Circadin. Melatonin is a hormone found naturally in the human body, which is responsible for the regulation of sleep-wake cycles. In the THz frequency region between 1.5 THz and 4.5 THz, characteristic melatonin spectral features at 3.21 THz, and a weaker one at 4.20 THz, are observed allowing for a quantitative analysis within the final products. Spectroscopic THz imaging of different concentrations of Circadin and melatonin as an active pharmaceutical ingredient in prepared pellets is also performed, which permits spatial recognition of these different substances. These results indicate that THz spectroscopy and imaging can be an indispensable tool, complementing Raman and Fourier transform infrared spectroscopies, in order to provide quality control of dietary supplements and other pharmaceutical products.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Cherkasova, O., M. Nazarov und A. Shkurinov. „Properties of aqueous solutions in THz frequency range“. Journal of Physics: Conference Series 793 (Januar 2017): 012005. http://dx.doi.org/10.1088/1742-6596/793/1/012005.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Färber, E., N. Bachar, H. Castro, E. Zhukova und B. Gorshunov. „Ca Doped YBCO Films in THz Frequency range“. Journal of Physics: Conference Series 400, Nr. 2 (17.12.2012): 022018. http://dx.doi.org/10.1088/1742-6596/400/2/022018.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Indrisiunas, Simonas, Evaldas Svirplys, Heiko Richter, Andrzej Urbanowicz, Gediminas Raciukaitis, Till Hagelschuer, Heinz-Wilhelm Hubers und Irmantas Kasalynas. „Laser-Ablated Silicon in the Frequency Range From 0.1 to 4.7 THz“. IEEE Transactions on Terahertz Science and Technology 9, Nr. 6 (November 2019): 581–86. http://dx.doi.org/10.1109/tthz.2019.2939554.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Montofre, Daniel Arturo, Rocio Molina, Andrey Khudchenko, Ronald Hesper, Andrey M. Baryshev, Nicolas Reyes und Fausto Patricio Mena. „High-Performance Smooth-Walled Horn Antennas for THz Frequency Range: Design and Evaluation“. IEEE Transactions on Terahertz Science and Technology 9, Nr. 6 (November 2019): 587–97. http://dx.doi.org/10.1109/tthz.2019.2938985.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Guseva, Victoria, Sviatoslav Gusev, Petr Demchenko, Egor Sedykh und Mikhail Khodzitsky. „Optical properties of human nails in THz frequency range“. Journal of Biomedical Photonics & Engineering 2, Nr. 4 (31.12.2016): 040306. http://dx.doi.org/10.18287/jbpe16.02.040306.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Vaks, Vladimir L. „High precision spectroscopy and imaging in THz frequency range“. Journal of Physics: Conference Series 486 (18.03.2014): 012002. http://dx.doi.org/10.1088/1742-6596/486/1/012002.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
11

Farid, A., N. J. Laurita, B. Tehrani, J. G. Hester, M. M. Tentzeris und N. P. Armitage. „Inkjet Printed Wire-Grid Polarizers for the THz Frequency Range“. Journal of Infrared, Millimeter, and Terahertz Waves 38, Nr. 3 (04.11.2016): 276–82. http://dx.doi.org/10.1007/s10762-016-0330-5.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
12

Naumenko, G., A. Aryshev, A. Potylitsyn, M. Shevelev, L. Sukhikh, N. Terunuma und J. Urakawa. „Monochromatic coherent grating transition radiation in sub-THz frequency range“. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 402 (Juli 2017): 153–56. http://dx.doi.org/10.1016/j.nimb.2017.02.057.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
13

Katyba, G. M., I. N. Dolganova, K. I. Zaytsev und V. N. Kulrov. „Sapphire Single-Crystal Waveguides and Fibers for Thz Frequency Range“. Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques 14, Nr. 3 (Mai 2020): 437–39. http://dx.doi.org/10.1134/s1027451020030064.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
14

Knap, W., D. B. But, D. Couquillat, N. Dyakonova, M. Sypek, J. Suszek, E. Domracheva et al. „Imaging and Gas Spectroscopy for Health Protection in Sub-THz Frequency Range“. International Journal of High Speed Electronics and Systems 25, Nr. 03n04 (September 2016): 1640017. http://dx.doi.org/10.1142/s0129156416400176.

Der volle Inhalt der Quelle
Annotation:
An overview of main results concerning THz detection related to plasma nonlinearities in nanometer field effect transistors is presented. In particular the physical limits of the responsivity, speed and the dynamic range of these detectors are discussed. As a conclusion, we will present applications of the FET THz detectors for construction of focal plane arrays. These arrays, together with in purpose developed diffractive 3D printed optics lead to construction of the demonstrators of the fast postal security imagers and nondestructive industrial quality control systems. We will show also first results of FET based imaging that uses for contrast not only usual THz radiation amplitude, but also the degree of its circular polarization. Sub-THz high resolution gas spectroscopy is shown to be a powerful means to diagnose various diseases via exhaled breath analysis.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
15

Dyukov, D. I., A. G. Fefelov, A. V. Korotkov, D. G. Pavelyev, V. A. Kozlov, E. S. Obolenskaya, A. S. Ivanov und S. V. Obolensky. „Comparison of the Efficiency of Promising Heterostructure Frequency-Multiplier Diodes of the THz-Frequency Range“. Semiconductors 54, Nr. 10 (Oktober 2020): 1360–64. http://dx.doi.org/10.1134/s1063782620100073.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
16

GUSEV Sviatoslav Igorevich, GUSEV Sviatoslav Igorevich, DEMCHENKO Petr S. DEMCHENKO Petr S, CHERKASOVA Olga P. CHERKASOVA Olga P, FEDOROV Vyacheslav I. FEDOROV Vyacheslav I und KHODZITSKY Mikhail K. KHODZITSKY Mikhail K. „Influence of glucose concentration on blood optical properties in THz frequency range“. Chinese Optics 11, Nr. 2 (2018): 182–89. http://dx.doi.org/10.3788/co.20181102.0182.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
17

Priebe, S., D. M. Britz, M. Jacob, S. Sarkozy, Kevin M. K. H. Leong, Jennifer E. Logan, B. S. Gorospe und T. Kurner. „Interference Investigations of Active Communications and Passive Earth Exploration Services in the THz Frequency Range“. IEEE Transactions on Terahertz Science and Technology 2, Nr. 5 (September 2012): 525–37. http://dx.doi.org/10.1109/tthz.2012.2208191.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
18

Indrišiūnas, Simonas, Heiko Richter, Ignas Grigelionis, Vytautas Janonis, Linas Minkevičius, Gintaras Valušis, Gediminas Račiukaitis, Till Hagelschuer, Heinz-Wilhelm Hübers und Irmantas Kašalynas. „Laser-processed diffractive lenses for the frequency range of 47 THz“. Optics Letters 44, Nr. 5 (26.02.2019): 1210. http://dx.doi.org/10.1364/ol.44.001210.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
19

Busch, Stefan F., Enrique Castro-Camus, Felipe Beltran-Mejia, Jan C. Balzer und Martin Koch. „3D Printed Prisms with Tunable Dispersion for the THz Frequency Range“. Journal of Infrared, Millimeter, and Terahertz Waves 39, Nr. 6 (18.04.2018): 553–60. http://dx.doi.org/10.1007/s10762-018-0488-0.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
20

Jastrow, C., T. Kleine-Ostmann und T. Schrader. „Numerical dosimetric calculations for in vitro field expositions in the THz frequency range“. Advances in Radio Science 8 (30.09.2010): 1–5. http://dx.doi.org/10.5194/ars-8-1-2010.

Der volle Inhalt der Quelle
Annotation:
Abstract. Field exposition experiments have been initiated by the German Federal Office for Radiation Protection (Bundesamt für Strahlenschutz – BfS) to examine genotoxic effects of THz radiation in vitro. Two different human skin cell types are exposed to continuous-wave radiation at six distinct frequencies between 100 GHz and 2.52 THz originating from different sources of THz radiation under defined environmental conditions. The cell containers are irradiated with free space power flux densities between 0.1 mW/cm2 and 2 mW/cm2 measured traceable to the SI units. For meaningful results, dosimetric calculations using the finite differences time-domain method have been performed in order to access the fields and consequently the specific absorption rate (SAR) in the cell layer.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
21

Mukherjee, Sankha S., und Syed S. Islam. „A novel double quantum well device for THz range frequency detection“. Superlattices and Microstructures 41, Nr. 1 (Januar 2007): 56–61. http://dx.doi.org/10.1016/j.spmi.2006.11.003.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
22

Makhalov, Petr, Dmitri Lioubtchenko und Joachim Oberhammer. „Semiconductor–Metal-Grating Slow Wave Amplifier for Sub-THz Frequency Range“. IEEE Transactions on Electron Devices 66, Nr. 10 (Oktober 2019): 4413–18. http://dx.doi.org/10.1109/ted.2019.2935312.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
23

Chiang, Pei-Yuan, Zheng Wang, Omeed Momeni und Payam Heydari. „A Silicon-Based 0.3 THz Frequency Synthesizer With Wide Locking Range“. IEEE Journal of Solid-State Circuits 49, Nr. 12 (Dezember 2014): 2951–63. http://dx.doi.org/10.1109/jssc.2014.2360385.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
24

Jeon, Tae-In, Geun-Ju Kim, Hyun-Jung Lee, Ju-Yul Lee und Yung Woo Park. „Electrical and optical properties of polyacetylene film in THz frequency range“. Current Applied Physics 5, Nr. 3 (März 2005): 289–92. http://dx.doi.org/10.1016/j.cap.2004.01.014.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
25

Pandey, Girijesh Narayan, Bhuveneshwer Suthar, Narendra Kumar und Khem Bahadur Thapa. „Omnidirectional Reflectance of Superconductor-Dielectric Photonic Crystal in THz Frequency Range“. Journal of Superconductivity and Novel Magnetism 34, Nr. 8 (14.07.2021): 2031–39. http://dx.doi.org/10.1007/s10948-021-05962-3.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
26

Kato, Tomoyuki, Shigeki Watanabe, Takahito Tanimura, Thomas Richter, Robert Elschner, Carsten Schmidt-Langhorst, Colja Schubert und Takeshi Hoshida. „THz-Range Optical Frequency Shifter for Dual Polarization WDM Signals Using Frequency Conversion in Fiber“. Journal of Lightwave Technology 35, Nr. 6 (15.03.2017): 1267–73. http://dx.doi.org/10.1109/jlt.2017.2649566.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
27

Kosiak, O. S., V. I. Bezborodov und P. K. Nesterov. „WIDEBAND QUASI-OPTICAL POLARIZATION PHASE SHIFTER OPERATING IN THE THz FREQUENCY RANGE“. Telecommunications and Radio Engineering 76, Nr. 3 (2017): 227–36. http://dx.doi.org/10.1615/telecomradeng.v76.i3.30.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
28

Volz, Sebastian, und Bernard Perrin. „Si crystal thermal conductance in the THz frequency range by molecular dynamics“. Physica B: Condensed Matter 316-317 (Mai 2002): 286–88. http://dx.doi.org/10.1016/s0921-4526(02)00487-8.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
29

Liakhov, E., O. Smolyanskaya, A. Popov, E. Odlyanitskiy, N. Balbekin und M. Khodzitsky. „Fabrication and characterization of biotissue-mimicking phantoms in the THz frequency range“. Journal of Physics: Conference Series 735 (August 2016): 012080. http://dx.doi.org/10.1088/1742-6596/735/1/012080.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
30

Usanov, D. A., A. V. Skripal’, D. V. Ponomarev und M. K. Merdanov. „A Matched Load Based on Bragg Structures for the THz-Frequency Range“. Technical Physics Letters 44, Nr. 3 (März 2018): 210–12. http://dx.doi.org/10.1134/s1063785018030124.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
31

Mølster, Kjell Martin, Trygve Sørgård, Hugo Laurell, Carlota Canalias, Valdas Pasiskevicius, Fredrik Laurell und Ulf Österberg. „Time-domain spectroscopy of KTiOPO4 in the frequency range 06–70 THz“. OSA Continuum 2, Nr. 12 (12.12.2019): 3521. http://dx.doi.org/10.1364/osac.2.003521.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
32

Pi, Hailong, Tasmiat Rahman, Stuart A. Boden, Tianjun Ma, Jize Yan und Xu Fang. „Integrated vortex beam emitter in the THz frequency range: Design and simulation“. APL Photonics 5, Nr. 7 (01.07.2020): 076102. http://dx.doi.org/10.1063/5.0010546.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
33

Todorov, Y., L. Tosetto, J. Teissier, A. M. Andrews, P. Klang, R. Colombelli, I. Sagnes, G. Strasser und C. Sirtori. „Optical properties of metal-dielectric-metal microcavities in the THz frequency range“. Optics Express 18, Nr. 13 (14.06.2010): 13886. http://dx.doi.org/10.1364/oe.18.013886.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
34

Komandin, G. A., V. I. Torgashev, A. A. Volkov, O. E. Porodinkov, I. E. Spektor und A. A. Bush. „Optical properties of BiFeO3 ceramics in the frequency range 0.3–30.0 THz“. Physics of the Solid State 52, Nr. 4 (April 2010): 734–43. http://dx.doi.org/10.1134/s1063783410040104.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
35

Crowe, Thomas W. „GaAs Schottky barrier mixer diodes for the frequency range 1?10 THz“. International Journal of Infrared and Millimeter Waves 10, Nr. 7 (Juli 1989): 765–77. http://dx.doi.org/10.1007/bf01011489.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
36

Moazami, Amin, Mahdieh Hashemi und Najmeh Cheraghi Shirazi. „High Efficiency Tunable Graphene-Based Plasmonic Filter in the THz Frequency Range“. Plasmonics 14, Nr. 2 (25.07.2018): 359–63. http://dx.doi.org/10.1007/s11468-018-0812-5.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
37

Aly, Arafa H., Walied Sabra und Hussein A. Elsayed. „Cutoff frequency in metamaterials photonic crystals within Terahertz frequencies“. International Journal of Modern Physics B 31, Nr. 15 (14.03.2017): 1750123. http://dx.doi.org/10.1142/s0217979217501235.

Der volle Inhalt der Quelle
Annotation:
By employing the characteristics matrix method, we have investigated the transmission properties of one-dimensional dielectric–semiconductor metamaterial photonic crystals (PC) at Terahertz (THz) range theoretically. The numerical results show the appearance of cutoff frequency within THz range. Furthermore, the thicknesses of the constituents materials and the filling factor have a significant effect on the cutoff frequency. The proposed structure may be useful in many applications, particularly in THz frequency regions.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
38

Consolino, Luigi, Malik Nafa, Michele De Regis, Francesco Cappelli, Saverio Bartalini, Akio Ito, Masahiro Hitaka et al. „Direct Observation of Terahertz Frequency Comb Generation in Difference-Frequency Quantum Cascade Lasers“. Applied Sciences 11, Nr. 4 (04.02.2021): 1416. http://dx.doi.org/10.3390/app11041416.

Der volle Inhalt der Quelle
Annotation:
Terahertz quantum cascade laser sources based on intra-cavity difference frequency generation from mid-IR devices are an important asset for applications in rotational molecular spectroscopy and sensing, being the only electrically pumped device able to operate in the 0.6–6 THz range without the need of bulky and expensive liquid helium cooling. Here we present comb operation obtained by intra-cavity mixing of a distributed feedback laser at λ = 6.5 μm and a Fabry–Pérot device at around λ = 6.9 μm. The resulting ultra-broadband THz emission extends from 1.8 to 3.3 THz, with a total output power of 8 μW at 78 K. The THz emission has been characterized by multi-heterodyne detection with a primary frequency standard referenced THz comb, obtained by optical rectification of near infrared pulses. The down-converted beatnotes, simultaneously acquired, confirm an equally spaced THz emission down to 1 MHz accuracy. In the future, this setup can be used for Fourier transform based evaluation of the phase relation among the emitted THz modes, paving the way to room-temperature, compact, and field-deployable metrological grade THz frequency combs.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
39

Criado, A. R., C. de Dios, E. Prior, G. H. Dohler, S. Preu, S. Malzer, H. Lu, A. C. Gossard und P. Acedo. „Continuous-Wave Sub-THz Photonic Generation With Ultra-Narrow Linewidth, Ultra-High Resolution, Full Frequency Range Coverage and High Long-Term Frequency Stability“. IEEE Transactions on Terahertz Science and Technology 3, Nr. 4 (Juli 2013): 461–71. http://dx.doi.org/10.1109/tthz.2013.2260374.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
40

Spathmann, Oliver, Martin Zang, Joachim Streckert, Volkert Hansen, Mehrdad Saviz, Thomas M. Fiedler, Konstantin Statnikov, Ullrich R. Pfeiffer und Markus Clemens. „Numerical Computation of Temperature Elevation in Human Skin Due to Electromagnetic Exposure in the THz Frequency Range“. IEEE Transactions on Terahertz Science and Technology 5, Nr. 6 (November 2015): 978–89. http://dx.doi.org/10.1109/tthz.2015.2476962.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
41

Tkhorzhevskiy, Ivan L., Anton D. Zaitsev, Petr S. Demchenko, Dmitry V. Zykov, Aleksei V. Asach, Anastasiia S. Tukmakova, Elena S. Makarova, Anna V. Novotelnova, Natalya S. Kablukova und Mikhail K. Khodzitsky. „Properties of Bi and BiSb Nano-Dimensional Layers in Thz Frequency Range“. Solid State Phenomena 312 (November 2020): 206–12. http://dx.doi.org/10.4028/www.scientific.net/ssp.312.206.

Der volle Inhalt der Quelle
Annotation:
In the present paper we demonstrate and compare different properties of Bi and Bi1-xSbx thin films placed on polyimide (PI) substrate in frequency range from 0.2 to 1.0 THz. Bi films with a thickness of 40, 105 and 150 nm have been studied as well as 150 nm Bi1-xSbx solid solutions with Sb concentration of 5, 8, 12 and 15 %. An effective refractive index and permittivity of whole substrate/film structures have been derived by using terahertz time-domain spectroscopy (THz-TDS) method. These measurements have shown the positive phase shift in PI substrate with a thickness of 42 μm and revealed that it is barely transparent in studied frequency range, but the whole substrate/film structure provides the negative phase shift of terahertz wave. It was shown that the permittivity depends on mobility of charge carriers which is driven by film thickness and antimony content.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
42

Park, Junsung, Xueqing Liu, Trond Ytterdal und Michael Shur. „Carbon Nanotube Detectors and Spectrometers for the Terahertz Range“. Crystals 10, Nr. 7 (10.07.2020): 601. http://dx.doi.org/10.3390/cryst10070601.

Der volle Inhalt der Quelle
Annotation:
We present the compact unified charge control model (UCCM) for carbon nanotube field-effect transistors (CNTFETs) to enable the accurate simulation of the DC characteristics and plasmonic terahertz (THz) response in the CNTFETs. Accounting for the ambipolar nature of the carrier transport (n-type and p-type conductivity at positive and negative gate biases, respectively), we use n-type and p-type CNTFET non-linear equivalent circuits connected in parallel, representing the ambipolar conduction in the CNTFETs. This allows us to present a realistic non-linear model that is valid across the entire voltage range and is therefore suitable for the CNTFET design. The important feature of the model is that explicit equations for gate bias, current, mobility, and capacitance with smoothing parameters accurately describe the device operation near the transition from above- to below-threshold regimes, with scalability in device geometry. The DC performance in the proposed compact CNTFET model is validated by the comparison between the SPICE simulation and the experimental DC characteristics. The simulated THz response resulted from the validated CNTFET model is found to be in good agreement with the analytically calculated response and also reveals the bias and power dependent sub-THz response and relatively wide dynamic range for detection that could be suitable for THz detectors. The operation of CNTFET spectrometers in the THz frequency range is further demonstrated using the present model. The simulation exhibits that the CNT-based spectrometers can cover a broad THz frequency band from 0.1 to 3.08 THz. The model that has been incorporated into the circuit simulators enables the accurate assessment of DC performance and THz operation. Therefore, it can be used for the design and performance estimation of the CNTFETs and their integrated circuits operating in the THz regime.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
43

Consolino, Luigi, Francesco Cappelli, Mario Siciliani de Cumis und Paolo De Natale. „QCL-based frequency metrology from the mid-infrared to the THz range: a review“. Nanophotonics 8, Nr. 2 (11.10.2018): 181–204. http://dx.doi.org/10.1515/nanoph-2018-0076.

Der volle Inhalt der Quelle
Annotation:
AbstractQuantum cascade lasers (QCLs) are becoming a key tool for plenty of applications, from the mid-infrared (mid-IR) to the THz range. Progress in related areas, such as the development of ultra-low-loss crystalline microresonators, optical frequency standards, and optical fiber networks for time and frequency dissemination, is paving the way for unprecedented applications in many fields. For most demanding applications, a thorough control of QCLs emission must be achieved. In the last few years, QCLs’ unique spectral features have been unveiled, while multifrequency QCLs have been demonstrated. Ultra-narrow frequency linewidths are necessary for metrological applications, ranging from cold molecules interaction and ultra-high sensitivity spectroscopy to infrared/THz metrology. A review of the present status of research in this field is presented, with a view of perspectives and future applications.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
44

Bilyk, V. R., und K. A. Grishunin. „Complex Refractive Index of Strontium Titanate in the Terahertz Frequency Range“. Russian Technological Journal 7, Nr. 4 (11.08.2019): 71–80. http://dx.doi.org/10.32362/2500-316x-2019-7-4-71-80.

Der volle Inhalt der Quelle
Annotation:
The recent progress in terahertz time-domain spectroscopy enables the accurate and reliable measurements of dielectric properties in comparison with the traditional far-infrared spectroscopy using an incoherent light source. The broadband THz-TDS is a powerful tool to determine the real and imaginary parts of a complex dielectric constant by the transmission which allows to detect the parameters of the soft modes in ferroelectrics. In this work, the terahertz time-domain spectroscopy was used to investigate the dependence of the complex refractive index of a single-crystal quantum paraelectric strontium titanate in the terahertz frequency range from 0.3 to 2 THz. It was shown that the low-frequency terahertz response of the material is determined by the soft phonon mode TO1. The measured experimental dependences showed a good agreement with the theoretical curves obtained from the analysis of the Lorentz oscillator model for the complex dielectric constant of strontium titanate. The obtained results are necessary for understanding the principle of possibility to manipulate the order parameter in ferroelectric materials and can be used to create energy-efficient memory devices with a speed of recording information close to the theoretical limit.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
45

Qi, Xin, Houxiu Xiao, Xiaotao Han, Zhenxing Wang, Donghui Xia, Pengbo Wang und Liang Li. „A broad range frequency measurement method for continuous and pulsed THz waves“. Review of Scientific Instruments 91, Nr. 1 (01.01.2020): 014710. http://dx.doi.org/10.1063/1.5120592.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
46

Armand, Damien, Yanko Todorov, FrÉdÉric Garet, Christophe Minot und Jean-Louis Coutaz. „Study of the Transmission of Subwavelength Metallic Grids in the THz Frequency Range“. IEEE Journal of Selected Topics in Quantum Electronics 14, Nr. 2 (2008): 513–20. http://dx.doi.org/10.1109/jstqe.2007.910766.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
47

Kumar, Narinder, Pawan Singh, Khem B. Thapa und Devesh Kumar. „Electro-optical effect of the nCOOCB liquid crystal molecules under the terahertz frequency range: A theoretical approach“. Journal of Physical Science 31, Nr. 3 (25.11.2020): 113–27. http://dx.doi.org/10.21315/jps2020.31.3.9.

Der volle Inhalt der Quelle
Annotation:
The homologous series of 4-cyano-4'-phenyl-phenol-alkanoates (nCOOCB) was studied under the influence of terahertz (THz) frequency range. The nCOOCB series has a re-entrant nematic phase, which is suitable for electro-optical properties under the THz frequency. The birefringence and order parameter expresses the twisting of the nematic phase at the higher frequency range. The director angle has fluctuated at a higher frequency range. The refractive index has remained constant at a higher frequency. The ionisation potential, electron affinity and Homo-Lumo energy gap continuously decrease with an extension of alkyl chain length; however, the dipole moment increases. The Homo-Lumo energy bandgap is reciprocal to the dipole moment.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
48

Liu Yang, 刘阳, 周海京 Zhou Haijing, 周前红 Zhou Qianhong und 董志伟 Dong Zhiwei. „Numerical simulation on optical properties of subwavelength semiconductor sphere arrays in THz frequency range“. High Power Laser and Particle Beams 25, Nr. 6 (2013): 1440–44. http://dx.doi.org/10.3788/hplpb20132506.1440.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
49

Idehara, Toshitaka, und Svilen Petrov Sabchevski. „Development and Applications of High—Frequency Gyrotrons in FIR FU Covering the sub-THz to THz Range“. Journal of Infrared, Millimeter, and Terahertz Waves 33, Nr. 7 (08.01.2012): 667–94. http://dx.doi.org/10.1007/s10762-011-9862-x.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
50

Ezerskaya, A. A., M. K. Serebryakova, I. V. Nazarova und O. A. Smolyanskaya. „Scattering anisotropy of cellular cultures of leukemia lines in the THz frequency range“. Physics of Wave Phenomena 22, Nr. 3 (Juli 2014): 216–18. http://dx.doi.org/10.3103/s1541308x14030091.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Wir bieten Rabatte auf alle Premium-Pläne für Autoren, deren Werke in thematische Literatursammlungen aufgenommen wurden. Kontaktieren Sie uns, um einen einzigartigen Promo-Code zu erhalten!

Zur Bibliographie