Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „THz frequency range“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "THz frequency range" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "THz frequency range"
Kleine-Ostmann, Thomas, Christian Jastrow, Kai Baaske, Bernd Heinen, Michael Schwerdtfeger, Uwe Karst, Henning Hintzsche, Helga Stopper, Martin Koch und Thorsten Schrader. „Field Exposure and Dosimetry in the THz Frequency Range“. IEEE Transactions on Terahertz Science and Technology 4, Nr. 1 (Januar 2014): 12–25. http://dx.doi.org/10.1109/tthz.2013.2293115.
Der volle Inhalt der QuelleNazarov, Maxim, O. P. Cherkasova und A. P. Shkurinov. „Spectroscopy of solutions in the low frequency extended THz frequency range“. EPJ Web of Conferences 195 (2018): 10008. http://dx.doi.org/10.1051/epjconf/201819510008.
Der volle Inhalt der QuelleYashchyshyn, Yevhen, und Konrad Godziszewski. „A New Method for Dielectric Characterization in Sub-THz Frequency Range“. IEEE Transactions on Terahertz Science and Technology 8, Nr. 1 (Januar 2018): 19–26. http://dx.doi.org/10.1109/tthz.2017.2771309.
Der volle Inhalt der QuellePuc, Uroš, Andreja Abina, Anton Jeglič, Aleksander Zidanšek, Irmantas Kašalynas, Rimvydas Venckevičius und Gintaras Valušis. „Spectroscopic Analysis of Melatonin in the Terahertz Frequency Range“. Sensors 18, Nr. 12 (23.11.2018): 4098. http://dx.doi.org/10.3390/s18124098.
Der volle Inhalt der QuelleCherkasova, O., M. Nazarov und A. Shkurinov. „Properties of aqueous solutions in THz frequency range“. Journal of Physics: Conference Series 793 (Januar 2017): 012005. http://dx.doi.org/10.1088/1742-6596/793/1/012005.
Der volle Inhalt der QuelleFärber, E., N. Bachar, H. Castro, E. Zhukova und B. Gorshunov. „Ca Doped YBCO Films in THz Frequency range“. Journal of Physics: Conference Series 400, Nr. 2 (17.12.2012): 022018. http://dx.doi.org/10.1088/1742-6596/400/2/022018.
Der volle Inhalt der QuelleIndrisiunas, Simonas, Evaldas Svirplys, Heiko Richter, Andrzej Urbanowicz, Gediminas Raciukaitis, Till Hagelschuer, Heinz-Wilhelm Hubers und Irmantas Kasalynas. „Laser-Ablated Silicon in the Frequency Range From 0.1 to 4.7 THz“. IEEE Transactions on Terahertz Science and Technology 9, Nr. 6 (November 2019): 581–86. http://dx.doi.org/10.1109/tthz.2019.2939554.
Der volle Inhalt der QuelleMontofre, Daniel Arturo, Rocio Molina, Andrey Khudchenko, Ronald Hesper, Andrey M. Baryshev, Nicolas Reyes und Fausto Patricio Mena. „High-Performance Smooth-Walled Horn Antennas for THz Frequency Range: Design and Evaluation“. IEEE Transactions on Terahertz Science and Technology 9, Nr. 6 (November 2019): 587–97. http://dx.doi.org/10.1109/tthz.2019.2938985.
Der volle Inhalt der QuelleGuseva, Victoria, Sviatoslav Gusev, Petr Demchenko, Egor Sedykh und Mikhail Khodzitsky. „Optical properties of human nails in THz frequency range“. Journal of Biomedical Photonics & Engineering 2, Nr. 4 (31.12.2016): 040306. http://dx.doi.org/10.18287/jbpe16.02.040306.
Der volle Inhalt der QuelleVaks, Vladimir L. „High precision spectroscopy and imaging in THz frequency range“. Journal of Physics: Conference Series 486 (18.03.2014): 012002. http://dx.doi.org/10.1088/1742-6596/486/1/012002.
Der volle Inhalt der QuelleDissertationen zum Thema "THz frequency range"
Thoma, Petra [Verfasser]. „Ultra-fast YBa2Cu3O7-x direct detectors for the THz frequency range / Petra Thoma“. Karlsruhe : KIT Scientific Publishing, 2013. http://www.ksp.kit.edu.
Der volle Inhalt der QuelleSung, Chieh. „Interaction of a relativistic electron beam with radiation in the THz frequency range“. Diss., Restricted to subscribing institutions, 2008. http://proquest.umi.com/pqdweb?did=1679290761&sid=1&Fmt=2&clientId=1564&RQT=309&VName=PQD.
Der volle Inhalt der QuelleBeneš, Adam. „Plazmonické antény pro vysoké vlnové délky“. Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2021. http://www.nusl.cz/ntk/nusl-443226.
Der volle Inhalt der QuelleMorgan, Matthew James. „Extending the tuning range of electrostatic actuators“. Thesis, Georgia Institute of Technology, 2002. http://hdl.handle.net/1853/11016.
Der volle Inhalt der QuelleBlom, Peter. „Magneto-sensitive rubber in the audible frequency range“. Doctoral thesis, Stockholm : Royal Institute of Technology, 2006. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-4024.
Der volle Inhalt der QuelleHerron, David. „Vibration of railway bridges in the audible frequency range“. Thesis, University of Southampton, 2009. https://eprints.soton.ac.uk/151141/.
Der volle Inhalt der QuelleHoefener, Carl E., und James Stone. „THE ADVANTAGES OF APPLYING GPS FREQUENCY TRANSLATORS TO RANGE TRACKING“. International Foundation for Telemetering, 1985. http://hdl.handle.net/10150/615741.
Der volle Inhalt der QuelleWhen applying the Global Positioning System (GPS) to Time, Space, and Position Information (TSPI), the use of GPS frequency translators should be considered. The primary space positioning problem in the test and evaluation applications is trajectory reconstruction. Although this can be accomplished by flying a GPS receiver on the test vehicle and telemetering its position to the ground, there are significant advantages to translating the “L” band GPS signals to “S” band, and transmitting the broad band signal to the ground for processing. A translator-based system offers several advantages. Physical advantages include smaller size, lower weight, and lower cost. Technical advantages include: 1) ground station data aiding that provides a 6 dB advantage, 2) elimination of system bias errors, 3) computation complexity at the ground station vs. the vehicle under test, and 4) the ability to reconstruct a test scenario enabling flexibility in data analysis techniques.
Paik, Steve Sunghwan 1974. „The design and implementation of a new wide-range frequency detector“. Thesis, Massachusetts Institute of Technology, 1999. http://hdl.handle.net/1721.1/9471.
Der volle Inhalt der QuelleIncludes bibliographical references (p. 65).
In this thesis, I designed and implemented a wide range frequency detector for use in clock recovery and data retiming applications. The new detector works in conjunction with the existing "mid-range" frequency detector to accurately lock the VCO to the incoming data rate. The new detector consists of two halves: one to detect when the VCO is too fast, and one to detect when the VCO is too slow. The design and analysis of the new frequency detectors, in addition to a method for integrating it with the existing detector, is discussed. Simulation data of the new and original frequency detectors are used to support the concepts upon which the new detector is designed. Some topics for future work are suggested at the end of this thesis.
by Steve Sunghwan Paik.
M.Eng.
Green, Sean David. „Improving the range information of high frequency over-the-horizon skywave radar“. Thesis, University of Sheffield, 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.268265.
Der volle Inhalt der QuelleMackall, Dale A., Robert Sakahara und Steven E. Kremer. „THE X-33 EXTENDED FLIGHT TEST RANGE“. International Foundation for Telemetering, 1998. http://hdl.handle.net/10150/609678.
Der volle Inhalt der QuelleDevelopment of an extended test range, with range instrumentation providing continuous vehicle communications, is required to flight-test the X-33, a scaled version of a reusable launch vehicle. The extended test range provides vehicle communications coverage from California to landing at Montana or Utah. This paper provides an overview of the approaches used to meet X-33 program requirements, including using multiple ground stations, and methods to reduce problems caused by reentry plasma radio frequency blackout. The advances used to develop the extended test range show other hypersonic and access-to-space programs can benefit from the development of the extended test range.
Bücher zum Thema "THz frequency range"
Biendel, K. Development of ultrasonic standard transducers in the frequency range 1MHz-10MHz. Luxembourg: Commission of the European Communities, 1986.
Den vollen Inhalt der Quelle findenNordby, Kjetil. Between the tag and the screen: Redesigning short-range RFID as design material. Oslo: Arkitektur- og designhøgskolen i Oslo, 2011.
Den vollen Inhalt der Quelle findenFiore, Mark Steven. High power reflection amplifier design in the 8-12 GHz frequency range. Ithaca, NY: Cornell University, 1988.
Den vollen Inhalt der Quelle findenChabane, G. The detection of chromatic and achromatic patterns by mechanismsworking in the spatial frequency range. Manchester: UMIST, 1993.
Den vollen Inhalt der Quelle findenKuehner, Nathanael P. Extension of transiently evoked otoacoustic emission measurements to cover the entire audiometric frequency range. Ottawa: National Library of Canada = Bibliothèque nationale du Canada, 1999.
Den vollen Inhalt der Quelle findenHufford, G. A. Tabulations of propagation data over irregular terrain in the 75- to 8400-MHz frequency range. Boulder, Colo: U.S. Dept. of Commerce, National Telecommunications and Information Administration, 1991.
Den vollen Inhalt der Quelle findenHufford, G. A. Tabulations of propogation data over irregular terrain in the 75- to 8400-MHz frequency range. Boulder, Colo: U.S. Dept. of Commerce, National Telecommunications and Information Administration, 1991.
Den vollen Inhalt der Quelle findenSzabo, J. P. A forced vibration non-resonant method for the determination of complex modulus in the audio frequency range. Dartmouth, N.S: Defence Research Establishment Atlantic, 1992.
Den vollen Inhalt der Quelle findenDirectorate, Canada Environmental Health. Limits of human exposure to radiofrequency electromagnetic fields in the frequency range from 3 kHz to 300 GHz. [Ottawa]: Health Canada, 1999.
Den vollen Inhalt der Quelle findenStager, Robert. A121/RENO/XMONITOR: An interactive program to analyze frequency and cover monitoring data for the Bureau of Land Management : user's guide. [Nevada]: U.S. Dept. of the Interior, Bureau of Land Management, Nev. State Office, 1985.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "THz frequency range"
Vaks, V., A. Panin, S. Pripolsin und D. Paveliev. „Advancing of Methods and Technique of mm Wavelength Range to THz Frequency Range“. In NATO Science for Peace and Security Series B: Physics and Biophysics, 189–93. Dordrecht: Springer Netherlands, 2011. http://dx.doi.org/10.1007/978-94-007-0769-6_27.
Der volle Inhalt der QuelleVieweg, Nico, Christian Jansen und Martin Koch. „Liquid Crystals and their Applications in the THz Frequency Range“. In Terahertz Spectroscopy and Imaging, 301–26. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-29564-5_12.
Der volle Inhalt der QuelleClairon, A., O. Acef, C. Chardonnet und C. J. Bordé. „State-of-the-Art for High Accuracy Frequency Standards in the 28 THz Range Using Saturated Absorption Resonances of OsO4 and CO2“. In Frequency Standards and Metrology, 212–21. Berlin, Heidelberg: Springer Berlin Heidelberg, 1989. http://dx.doi.org/10.1007/978-3-642-74501-0_38.
Der volle Inhalt der QuelleSemchenko, Igor, Sergei Khakhomov, Andrey Samofalov, Maksim Podalov, Vitaliy Solodukha, Alyaxandr Pyatlitski und Natalya Kovalchuk. „Omega-Structured Substrate-Supported Metamaterial for the Transformation of Wave Polarization in THz Frequency Range“. In Advances in Intelligent Systems and Computing, 72–80. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-67459-9_10.
Der volle Inhalt der QuelleEbberg, Alfred, Jürgen Meggers, Kai Rathjen, Gerhard Fotheringham, Ivan Ndip, Florian Ohnimus, Christian Tschoban et al. „Thin Glass Characterization in the Radio Frequency Range“. In Ceramic Transactions Series, 35–50. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2014. http://dx.doi.org/10.1002/9781118771402.ch4.
Der volle Inhalt der QuelleKim, J. I., V. V. Ogurtsov, G. Bonnet, L. P. Yatsenko und K. Bergmann. „Ranging with Frequency-Shifted Feedback Lasers: From μm-Range Accuracy to MHz-Range Measurement Rate“. In Exploring the World with the Laser, 701–27. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-64346-5_38.
Der volle Inhalt der QuelleMarkov, M. S. „Dosimetry of Magnetic Fields in the Radiofrequency Range“. In Radio Frequency Radiation Dosimetry and Its Relationship to the Biological Effects of Electromagnetic Fields, 239–45. Dordrecht: Springer Netherlands, 2000. http://dx.doi.org/10.1007/978-94-011-4191-8_26.
Der volle Inhalt der QuelleNwagboso, Christopher O. „Beacon-vehicle link in the 1–10 GHz frequency range“. In Automotive Sensory Systems, 271–91. Dordrecht: Springer Netherlands, 1993. http://dx.doi.org/10.1007/978-94-011-1508-7_13.
Der volle Inhalt der QuelleWang, Weicai, Di Chen und Xiaowen Chen. „A WSN Range Method Based on the Frequency Difference Measurement“. In Recent Advances in Computer Science and Information Engineering, 219–26. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-25769-8_32.
Der volle Inhalt der QuelleEargle, John M. „Frequency Ranges of Musical Instruments and the Human Voice“. In Electroacoustical Reference Data, 324–25. Boston, MA: Springer US, 1994. http://dx.doi.org/10.1007/978-1-4615-2027-6_156.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "THz frequency range"
Huang, Yindong, Zhigang Zheng, Quan Guo, Chao Meng, Zhihui Lv, Dongwen Zhang, Jianmin Yuan und Zengxiu Zhao. „Air-Plasma characterization at THz frequency range“. In 2017 42nd International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz). IEEE, 2017. http://dx.doi.org/10.1109/irmmw-thz.2017.8067078.
Der volle Inhalt der QuellePavelyev, Dmitry, Yuri Kochurinov, Yuan Ren, Jian Rong Gao, Niels Hovenier, Darren Hayton, Andrey Baryshev und Andrey Khudchenko. „Superlattice devices applications in THz frequency range“. In 2012 37th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz 2012). IEEE, 2012. http://dx.doi.org/10.1109/irmmw-thz.2012.6380134.
Der volle Inhalt der QuelleDerntl, C., S. Schoenhuber, M. Kainz, M. Wenclawiak, B. Limbacher, J. Darmo und K. Unterrainer. „Generating and Shaping Light in the THz Frequency Range“. In 2018 43rd International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz 2018). IEEE, 2018. http://dx.doi.org/10.1109/irmmw-thz.2018.8509896.
Der volle Inhalt der QuelleDunaevskii, G. E., I. O. Dorofeev und A. V. Badin. „Anisotropy of electrical properties of rocks at THz frequency range“. In 2015 40th International Conference on Infrared, Millimeter, and Terahertz waves (IRMMW-THz). IEEE, 2015. http://dx.doi.org/10.1109/irmmw-thz.2015.7327438.
Der volle Inhalt der QuellePeskov, Nikolai Yu, Ilya V. Bandurkin, Denis E. Donets, Alim K. Kaminsky, Sergei V. Kuzikov, Elkuno A. Perelstein, Andrei V. Savilov und Sergey N. Sedykh. „Powerful broadband FEM-amplifier operating over Ka frequency range“. In 2016 41st International Conference on Infrared, Millimeter, and Terahertz waves (IRMMW-THz). IEEE, 2016. http://dx.doi.org/10.1109/irmmw-thz.2016.7758362.
Der volle Inhalt der QuellePolley, Debanjan, Animesh Patra, Anjan Barman und Rajib K. Mitra. „Modulating conductivity of Au/CNT composites in THz frequency range: A THz resistor“. In 2014 39th International Conference on Infrared, Millimeter, and Terahertz waves (IRMMW-THz). IEEE, 2014. http://dx.doi.org/10.1109/irmmw-thz.2014.6955998.
Der volle Inhalt der QuelleRutz, F., N. Krumbholz, L. Micele, G. de Portu, D. M. Mittleman und M. Koch. „Improved dielectric mirrors for the THz frequency range“. In Photonics Europe, herausgegeben von Dieter Jäger und Andreas Stöhr. SPIE, 2006. http://dx.doi.org/10.1117/12.661610.
Der volle Inhalt der QuelleMasyukov, Maxim S., Anna V. Vozianova, Kseniia V. Gubaidullina, Alexander N. Grebenchukov und Mikhail K. Khodzitsky. „Optical Activity of Graphene-Based Chiral Metasurface in THz Frequency Range“. In 2019 44th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz). IEEE, 2019. http://dx.doi.org/10.1109/irmmw-thz.2019.8874144.
Der volle Inhalt der QuelleCherkasova, O. P., M. M. Nazarov, P. M. Solyankin und A. P. Shkurinov. „The low protein concentration study in an extended THz frequency range“. In 2018 43rd International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz 2018). IEEE, 2018. http://dx.doi.org/10.1109/irmmw-thz.2018.8510288.
Der volle Inhalt der QuelleDunaevskii, G. E., V. I. Suslyaev, V. A. Zhuravlev, A. V. Badin und K. V. Dorozhkin. „Ferromagnetic resonance in hexagonal ferrite Ba3Co2Fe24O41 at the THz frequency range“. In 2016 41st International Conference on Infrared, Millimeter, and Terahertz waves (IRMMW-THz). IEEE, 2016. http://dx.doi.org/10.1109/irmmw-thz.2016.7758771.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "THz frequency range"
Lanza, Robert Jr. Experimental Limits on Gravitational Waves in the MHz frequency Range. Office of Scientific and Technical Information (OSTI), März 2015. http://dx.doi.org/10.2172/1329051.
Der volle Inhalt der QuelleKammer, Daniel C., und Aaron Nimityongskul. A Frequency Domain Approach to Pretest Analysis Model Correlation and Model Updating for the Mid-Frequency Range. Fort Belvoir, VA: Defense Technical Information Center, Februar 2009. http://dx.doi.org/10.21236/ada495365.
Der volle Inhalt der QuelleJenkins, Ruth. The Affects of Vocal Fatigue on Fundamental Frequency and Frequency Range in Actresses as Opposed to Non-Actresses. Portland State University Library, Januar 2000. http://dx.doi.org/10.15760/etd.6938.
Der volle Inhalt der QuelleHantao Ji, Russell Kulsrud, William Fox und Masaaki Yamada. An Obliquely Propagating Electromagnetic Drift Instability in the Lower Hybrid Frequency Range. Office of Scientific and Technical Information (OSTI), Juni 2005. http://dx.doi.org/10.2172/841011.
Der volle Inhalt der QuelleTaylor, G., M. G. Bell, H. Biglari, M. Bitter, N. L. Bretz, R. Budny, L. Chen et al. Ion cyclotron range of frequency heating on the Tokamak Fusion Test Reactor. Office of Scientific and Technical Information (OSTI), Juni 1993. http://dx.doi.org/10.2172/10169582.
Der volle Inhalt der QuelleDE BAAR, Jouke H. S., Richard P. DWIGHT und Hester BIJL. Fast maximum likelihood estimate of the Kriging correlation range in the frequency domain. Cogeo@oeaw-giscience, September 2011. http://dx.doi.org/10.5242/iamg.2011.0268.
Der volle Inhalt der QuelleHamill, Daniel, und Gabrielle David. Hydrologic analysis of field delineated ordinary high water marks for rivers and streams. Engineer Research and Development Center (U.S.), August 2021. http://dx.doi.org/10.21079/11681/41681.
Der volle Inhalt der QuelleRuggiero, A. G. The longitudinal coupling impedance of a toroidal vacuum chamber in the low frequency range. Office of Scientific and Technical Information (OSTI), Mai 1988. http://dx.doi.org/10.2172/1118920.
Der volle Inhalt der QuelleKim, Eun, und J. R. Johnson. Comment on "Mode Conversion of Waves In The Ion-Cyclotron Frequency Range in Magnetospheric Plasmas". Office of Scientific and Technical Information (OSTI), Februar 2014. http://dx.doi.org/10.2172/1128922.
Der volle Inhalt der QuelleLehrman, I. S., P. L. Colestock, D. H. McNeill, G. J. Greene, S. Bernabei, J. C. Hosea, M. Ono, J. L. Shohet und J. R. Wilson. Edge measurements during ICRF (ion cyclotron range of frequency) heating on the PLT (Princeton Large Torus) tokamak. Office of Scientific and Technical Information (OSTI), April 1989. http://dx.doi.org/10.2172/6211995.
Der volle Inhalt der Quelle