Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „THz emission sources“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "THz emission sources" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "THz emission sources"
Andronov, A. A., A. V. Ikonnikov, K. V. Maremianin, V. I. Pozdnjakova, Y. N. Nozdrin, A. A. Marmalyuk, A. A. Padalitsa et al. „THz stimulated emission from simple superlattice in positive differential conductivity region“. Физика и техника полупроводников 52, Nr. 4 (2018): 463. http://dx.doi.org/10.21883/ftp.2018.04.45812.01.
Der volle Inhalt der QuelleWang, Maorong, Yifan Zhang, Leilei Guo, Mengqi Lv, Peng Wang und Xia Wang. „Spintronics Based Terahertz Sources“. Crystals 12, Nr. 11 (18.11.2022): 1661. http://dx.doi.org/10.3390/cryst12111661.
Der volle Inhalt der QuelleHu, Qing. „Generation of Terahertz Emission Based on Intersubband Transitions“. International Journal of High Speed Electronics and Systems 12, Nr. 04 (Dezember 2002): 995–1024. http://dx.doi.org/10.1142/s0129156402001897.
Der volle Inhalt der QuelleWang, Suyun. „Terahertz Emission Modeling of Lunar Regolith“. Remote Sensing 16, Nr. 21 (30.10.2024): 4037. http://dx.doi.org/10.3390/rs16214037.
Der volle Inhalt der QuelleMinkevičius, Linas, Liang Qi, Agnieszka Siemion, Domas Jokubauskis, Aleksander Sešek, Andrej Švigelj, Janez Trontelj, Dalius Seliuta, Irmantas Kašalynas und Gintaras Valušis. „Titanium-Based Microbolometers: Control of Spatial Profile of Terahertz Emission in Weak Power Sources“. Applied Sciences 10, Nr. 10 (14.05.2020): 3400. http://dx.doi.org/10.3390/app10103400.
Der volle Inhalt der QuelleChen, Yuxuan, Yuhang He, Liyuan Liu, Zhen Tian, Jianming Dai und Xi-Cheng Zhang. „Backward THz Emission from Two-Color Laser Field-Induced Air Plasma Filament“. Sensors 23, Nr. 10 (10.05.2023): 4630. http://dx.doi.org/10.3390/s23104630.
Der volle Inhalt der QuelleHuang, Hsin-hui, Takeshi Nagashima, Wei-hung Hsu, Saulius Juodkazis und Koji Hatanaka. „Dual THz Wave and X-ray Generation from a Water Film under Femtosecond Laser Excitation“. Nanomaterials 8, Nr. 7 (13.07.2018): 523. http://dx.doi.org/10.3390/nano8070523.
Der volle Inhalt der QuelleHawecker, J., E. Rongione, A. Markou, S. Krishnia, F. Godel, S. Collin, R. Lebrun et al. „Spintronic THz emitters based on transition metals and semi-metals/Pt multilayers“. Applied Physics Letters 120, Nr. 12 (21.03.2022): 122406. http://dx.doi.org/10.1063/5.0079955.
Der volle Inhalt der QuelleLange, Simon Jappe, Matthias C. Hoffmann und Peter Uhd Jepsen. „Lightwave-driven electron emission for polarity-sensitive terahertz beam profiling“. APL Photonics 8, Nr. 1 (01.01.2023): 016105. http://dx.doi.org/10.1063/5.0125947.
Der volle Inhalt der QuelleConsolino, Luigi, Malik Nafa, Michele De Regis, Francesco Cappelli, Saverio Bartalini, Akio Ito, Masahiro Hitaka et al. „Direct Observation of Terahertz Frequency Comb Generation in Difference-Frequency Quantum Cascade Lasers“. Applied Sciences 11, Nr. 4 (04.02.2021): 1416. http://dx.doi.org/10.3390/app11041416.
Der volle Inhalt der QuelleDissertationen zum Thema "THz emission sources"
Abdul, Hadi Zeinab. „Terahertz emission spectroscopy of multiferroic bismuth ferrite : insights into ultrafast currents and phonon dynamics“. Electronic Thesis or Diss., Le Mans, 2024. http://www.theses.fr/2024LEMA1030.
Der volle Inhalt der QuelleTerahertz (THz) technologies have attracted significant interest in the scientific community due to their unique position in the electromagnetic spectrum, bridging the gap between the microwave and infrared regions. This radiation is non-ionizing and can penetrate various materials without causing damage, making it highly attractive for numerous potential applications. Recent advances in ultrafast laser technology have expanded the exploration of THz radiation into a wide range of exciting technologies. It’s now being used in fields like medicine for new imaging techniques, in spectroscopy for analyzing materials, in information and communication technology for faster data transfer, and even in security, agriculture, quality control and fundamental material science. Consequently, the development of efficient and tunable THz sources has become a major focus within the THz community to expand these applications further, motivating the exploration of new materials and emission mechanisms. In my PhD project, I have explored a promising new THz emitter: the well-known multiferroic material ‘Bismuth Ferrite’ (BiFeO3). This multiferroic material is particularly interesting due to its distinctive multiferroic properties. BiFeO3 exhibits both a large ferroelectric polarization and a antiferromagnetic order at room temperature offering a unique interplay of ferroelectric and magnetic orders and making this material a promising candidate for THz generation. Using a THz emission spectroscopy setup that I constructed, with its electro-optical sampling detection, I examine THz emission from three distinct BiFeO3 samples. First one with in-plane polarization, another with out-of-plane polarization, and a third presenting striped domains with two orientations of polarization. This technique allows for the direct observation and analysis of THz radiation emitted by these samples upon above gap laser excitation. The experimental investigation involves a detailed study of the THz transient signals emitted from the BiFeO3 samples under varying experimental conditions. By varying the pump wavelengths, sample orientations, directions of pump light polarization, and pump power levels, we can explore how these factors influence the THz emission. Following this, we extract the carrier dynamics (ultrafast current) and lattice vibrations (optical phonons) contributions to this THz transient. And finally, by analyzing their response to experimental parameters changes, we can have a deeper understanding of the physical mechanisms contributing to these ultrafast dynamics and THz emission in BiFeO3
Ayoub, Anas. „Sources laser ultrarapides performantes dans le moyen IR et le Tz“. Thesis, Normandie, 2020. http://www.theses.fr/2020NORMR044.
Der volle Inhalt der QuelleThe atome probe tomography is an instrument for analyzing matter in three dimensions with atomic resolution. This instrument relies on the effect of an electric field generated at the end of a sample cut into the shape of a nanoscale needle to evaporate the surface atoms which are collected by a two-dimensional detector. The measurement of the time of flight of the ions whose evaporation is triggered by an electrical or optical pulse makes it possible to measure the chemical composition in addition to the 3D localization of the atoms. In current atome probes, atomic evaporation is triggered by a high-speed laser emitting in the UV. However, the interaction of UV light with matter induces thermal heating which limits the mass resolution of the instrument and prevents its use for the analysis of fragile materials such as biocompatible components. This thesis work aims to study solutions to promote rapid evaporation while inhibiting unwanted thermal effects of the laser in atome probe. Our approach consists in exploiting ultrashort pulses in the mid-infrared or THz domain due to their high ponderomotive energy associated with low photon energy. This manuscript reports on the development of a bench for the generation and characterization of intense THz pulses. Coupling these radiations with a negatively polarized metallic nanotip has made it possible to characterize the near field induced at the surface of the nanotip, which is strongly modified by the antenna effect. The second part reports on the development of an ultra-fast laser source tunable in the mid-infrared around 3 mm using fluoride glass fibers
Copperwheat, C. M. „The optical emission from ultraluminous X-ray sources“. Thesis, University College London (University of London), 2007. http://discovery.ucl.ac.uk/1445395/.
Der volle Inhalt der QuelleXiu, Meng. „Evaluating the emission of air pollutants from different sources“. Thesis, Queensland University of Technology, 2022. https://eprints.qut.edu.au/235386/1/Meng%2BXiu%2BThesis%284%29.pdf.
Der volle Inhalt der QuelleDomański, Grzegorz. „The contribution of different sources to the total CO2 emission from soils /“. Stuttgart : Inst. für Bodenkunde und Standortslehre, 2003. http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&doc_number=012802754&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA.
Der volle Inhalt der QuelleLohmann, Rainer. „Studies on the atmospheric sources, fate and behaviour of dioxins and furans“. Thesis, Lancaster University, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.322093.
Der volle Inhalt der QuelleHolt, Joanna. „An observational study of the emission line systems in compact radio sources“. Thesis, University of Sheffield, 2005. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.419256.
Der volle Inhalt der QuelleHunter, Gillian C. „The behaviour of plumes from point sources in stratified flows“. Thesis, Open University, 1992. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.315334.
Der volle Inhalt der QuelleUrsini, Francesco. „Constraining the high energy emission sources in the environment of supermassive black holes“. Thesis, Université Grenoble Alpes (ComUE), 2016. http://www.theses.fr/2016GREAY062/document.
Der volle Inhalt der QuelleSupermassive black holes of several hundred million solar masses lie at the centre of most massive galaxies. In 90% of cases, these black holes are in quiescent, very low luminous states. Nevertheless, in the remaining 10%, extremely violent processes are seen, with the liberation of huge amounts of energy especially in the UV, X-ray and gamma-ray bands. We also sometimes observe powerful jets, extending up to several hundred kpc scales. The cores of these galaxies are called Active Galactic Nuclei (AGNs). These are among the most luminous objects in the Universe. The accretion of surrounding matter onto the central supermassive black hole is generally considered as the most likely energy source to explain the extraordinary observed luminosity. The gravitational energy would be partly liberated into an accretion disc as thermal radiation peaking in the optical/UV band, and partly radiated in the X-ray/gamma-ray band by a corona of hot plasma lying in the environment close to the black hole.However, several phenomena are still poorly understood and a number of questions lacks satisfactory answers: what are the dynamics and the structure of the accretion and ejection flows in AGNs? What are the radiative processes producing the UV/X-ray radiation? What is the origin of the different spectral components present in those energy bands? The goal of this thesis is to derive new observational constraints to better answer to these questions. Its originality resides in the development and application of realistic models of thermal Comptonization, allowing on the one hand to better constrain the physical and geometrical properties of the UV and X-ray-emitting regions, and on the other hand to better understand the origin of the different observed spectral components. In particular, we studied the excess of the soft (<2 keV) X-ray emission, seen in a great number of AGNs, and whose origin is still unknown.This work is structured along two main branches. One is the detailed spectral analysis of long, multiwavelength observational campaigns on three Seyfert galaxies (NGC 5548, NGC 7213 and NGC 4593). The quality of the data permitted to reveal the geometrical and physical parameters (in particular the temperature and optical depth) of the thermal corona producing the X-ray continuum. The second branch is based on the analysis of archival data (from the XMM-newton satellite) of a large sample of Seyfert galaxies. This allowed us to derive more general constraints on the high-energy emission processes observed in these objects. These two approaches have shown, in particular, that the soft X-ray emission excess may arise in the warm upper layers of the accretion disc, suggesting a more effective heating of the surface rather than the inner regions
Falcetelli, Francesco. „Modelling of Pencil-Lead Break Acoustic Emission Sources using the Time Reversal Technique“. Master's thesis, Alma Mater Studiorum - Università di Bologna, 2018. http://amslaurea.unibo.it/16554/.
Der volle Inhalt der QuelleBücher zum Thema "THz emission sources"
California Environmental Protection Agency. Air Resources Board. Stationary Source Division., California Environmental Protection Agency. Air Resources Board. Mobile Source Division. und California Environmental Protection Agency. Air Resources Board., Hrsg. Mobile source emission reduction credits: Guidelines for the generation and use of mobile source emission reduction credits. [Sacamento]: State of California, California Environmental Protection Agency, Air Resources Board, 1993.
Den vollen Inhalt der Quelle findenF, Jones B., und United States. National Aeronautics and Space Administration., Hrsg. Optical spectroscopy of IRAS sources with the infrared emission bands. [Washington, DC: National Aeronautics and Space Administration, 1987.
Den vollen Inhalt der Quelle findenUnited States. Environmental Protection Agency. Office of Air Quality Planning and Standards. Technical Support Division und Atmospheric Research and Exposure Assessment Laboratory (U.S.). Quality Assurance Division, Hrsg. Protocol for the field validation of emission concentrations from stationary sources. Research Triangle Park, NC: Technical Support Division, Office of Air Quality Planning and Standards and Quality Assurance Division, Atmospheric Research and Exposure Assessment Laboratory, U.S. Environmental Protection Agency, 1991.
Den vollen Inhalt der Quelle findenDaywitt, William C. 10-60 GHz G/T measurements using the sun as a source: A preliminary study. [Washington, D.C.]: National Bureau of Standards, Dept. of Commerce, 1986.
Den vollen Inhalt der Quelle findenDaywitt, William C. 10-60 GHz G/T measurements using the sun as a source: A preliminary study. [Washington, D.C.]: National Bureau of Standards, Dept. of Commerce, 1986.
Den vollen Inhalt der Quelle findenDaywitt, William C. 10-60 GHz G/T measurements using the sun as a source: A preliminary study. [Washington, D.C.]: National Bureau of Standards, Dept. of Commerce, 1986.
Den vollen Inhalt der Quelle findenDaywitt, William C. 10-60 GHz G/T measurements using the sun as a source: A preliminary study. [Washington, D.C.]: National Bureau of Standards, Dept. of Commerce, 1986.
Den vollen Inhalt der Quelle findenKananaskis Centre for Environmental Research. Results of the emission source surveys: Emission inventory of sulphur oxides and nitrogen oxides in Alberta. S.l: s.n, 1987.
Den vollen Inhalt der Quelle findenAnuradha, Koratkar, und United States. National Aeronautics and Space Administration., Hrsg. The nature of the energy source in LINERs. [Washington, DC: National Aeronautics and Space Administration, 1996.
Den vollen Inhalt der Quelle findenInternational Vacuum Electron Sources Conference (5th 2004 Beijing, China). IVESC2004: The 5th International Vacuum Electron Sources Conference : proceedings : September 6-10, 2004, the Media Center Hotel, Beijing, China. Piscataway, N.J: IEEE, 2004.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "THz emission sources"
Zaman, M., K. Kleineidam, L. Bakken, J. Berendt, C. Bracken, K. Butterbach-Bahl, Z. Cai et al. „Methane Production in Ruminant Animals“. In Measuring Emission of Agricultural Greenhouse Gases and Developing Mitigation Options using Nuclear and Related Techniques, 177–211. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-55396-8_6.
Der volle Inhalt der QuelleBikam, Peter Bitta. „Technology Innovations in Green Transport“. In Green Economy in the Transport Sector, 37–49. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-86178-0_4.
Der volle Inhalt der QuelleZaman, M., K. Kleineidam, L. Bakken, J. Berendt, C. Bracken, K. Butterbach-Bahl, Z. Cai et al. „Greenhouse Gases from Agriculture“. In Measuring Emission of Agricultural Greenhouse Gases and Developing Mitigation Options using Nuclear and Related Techniques, 1–10. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-55396-8_1.
Der volle Inhalt der QuelleGoodrick, Scott L., Leland W. Tarnay, Bret A. Anderson, Janice L. Coen, James H. Furman, Rodman R. Linn, Philip J. Riggan und Christopher C. Schmidt. „Fire Behavior and Heat Release as Source Conditions for Smoke Modeling“. In Wildland Fire Smoke in the United States, 51–81. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-87045-4_3.
Der volle Inhalt der QuelleBrunetti, G., G. Setti und A. Comastri. „On the X-Ray Emission from the Powerful Radio Galaxies“. In Extragalactic Radio Sources, 407–8. Dordrecht: Springer Netherlands, 1996. http://dx.doi.org/10.1007/978-94-009-0295-4_145.
Der volle Inhalt der QuelleCarvalho, Joel C. „On the Age of GPS Radio Sources“. In Multi-Wavelength Continuum Emission of AGN, 424. Dordrecht: Springer Netherlands, 1994. http://dx.doi.org/10.1007/978-94-010-9537-2_134.
Der volle Inhalt der QuelleRuijing, Shi, Ren Peng, Fan Xiaochao und Wang Jianglei. „Study on Optimization Operation of Micro-energy Network Considering Electro-ammonia Conversion“. In Proceedings of the 10th Hydrogen Technology Convention, Volume 1, 452–64. Singapore: Springer Nature Singapore, 2024. http://dx.doi.org/10.1007/978-981-99-8631-6_44.
Der volle Inhalt der QuelleRöttgering, Huub. „Distant Radio Galaxies: The Strong Link between the Radio and Optical Emission“. In Extragalactic Radio Sources, 583–84. Dordrecht: Springer Netherlands, 1996. http://dx.doi.org/10.1007/978-94-009-0295-4_208.
Der volle Inhalt der QuelleBicknell, G. V., M. A. Dopita und C. P. O’dea. „Shock Excitation of Emission Lines and the Relation to GPS Sources“. In Extragalactic Radio Sources, 469–70. Dordrecht: Springer Netherlands, 1996. http://dx.doi.org/10.1007/978-94-009-0295-4_169.
Der volle Inhalt der QuelleMeyer, Henry J., und Robert R. Alfano. „Conical Emission Produced from Femtosecond Laser Pulses“. In The Supercontinuum Laser Source, 445–56. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-06197-4_11.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "THz emission sources"
Oqbi, Manar Y., und Dhabia M. Al-Mohannadi. „Deciphering the Policy-Technology Nexus: Enabling Effective and Transparent Carbon Capture Utilization and Storage Supply Chains“. In Foundations of Computer-Aided Process Design, 844–52. Hamilton, Canada: PSE Press, 2024. http://dx.doi.org/10.69997/sct.185903.
Der volle Inhalt der QuelleKunkel, William M., Christopher P. Donahue, Dominic T. Altamura, Cameron Dudiak, Benjamin Moscona-Remnitz, Nelson C. Goldsworth, Brandon Kennedy und Michael J. Thorpe. „Aerial Gas Mapping Lidar for Methane Emission Source Localization, Quantification, and Large-Scale Statistical Characterization“. In CLEO: Applications and Technology, ATh1E.6. Washington, D.C.: Optica Publishing Group, 2024. http://dx.doi.org/10.1364/cleo_at.2024.ath1e.6.
Der volle Inhalt der QuelleTANI, Masahiko, Masayoshi TONOUCHI, Kiyomi SAKAI, Zhen WANG, Noriaki ONODERA, Masanori HANGYO, Yoshishige MURAKAMI und Shin-ichi NAKASHIMA. „Emission Properties of YBCO-Film Photo-Switches as THz Radiation Sources“. In 1996 International Conference on Solid State Devices and Materials. The Japan Society of Applied Physics, 1996. http://dx.doi.org/10.7567/ssdm.1996.d-5-5.
Der volle Inhalt der QuelleManohara, Harish, Wei Lien Dang, Peter H. Siegel, Michael Hoenk, Ali Husain und Axel Scherer. „Field emission testing of carbon nanotubes for THz frequency vacuum microtube sources“. In Micromachining and Microfabrication, herausgegeben von Danelle M. Tanner und Rajeshuni Ramesham. SPIE, 2004. http://dx.doi.org/10.1117/12.531403.
Der volle Inhalt der QuelleKlimov, A. S. „THE SYNTHESIS OF BULK CERAMIC PRODUCTS USING FOREVACUUM PLASMA ELECTRON SOURCE“. In Plasma emission electronics. Buryat Scientific Center of SB RAS Press, 2018. http://dx.doi.org/10.31554/978-5-7925-0524-7-2018-139-142.
Der volle Inhalt der QuelleBaldanov, B. B., A. P. Semenov und Ts V. Ranzhurov. „SURROUND THE SOURCE OF THE PLASMA JET ON THE BASIS OF LOW-VOLTAGE NONSTATIONARY DISCHARGE“. In Plasma emission electronics. Buryat Scientific Center of SB RAS Press, 2018. http://dx.doi.org/10.31554/978-5-7925-0524-7-2018-92-97.
Der volle Inhalt der QuelleKoval, T. V., V. I. Shin, M. S. Vorobyev, P. V. Moskvin, V. N. Devyatkov und N. N. Koval. „CONDITIONS FOR ENSURING MINIMAL INHOMOGENEITY OF THE ELECTRON BEAM ON THE COLLECTOR IN SOURCES WITH A GRID PLASMA CATHODE“. In Plasma emission electronics. Buryat Scientific Center of SB RAS Press, 2023. http://dx.doi.org/10.31554/978-5-7925-0655-8-2023-71-76.
Der volle Inhalt der QuelleMamedov, N. V., M. S. Lobov, I. M. Mamedov, A. Yu Presnyakov und N. N. Shchitov. „CALCULATION OF THE VAC OF A PENNING ION SOURCE FOR A MINIATURE LINEAR ACCELERATOR“. In Plasma emission electronics. Buryat Scientific Center of SB RAS Press, 2023. http://dx.doi.org/10.31554/978-5-7925-0655-8-2023-77-82.
Der volle Inhalt der QuelleShin, V. I., M. S. Vorobyev, P. V. Moskvin, V. N. Devyatkov und N. N. Koval. „COMBINED CONTROL OF THE ELECTRON BEAM CURRENT IN A SOURCE WITH A GRID PLASMA CATHODE“. In Plasma emission electronics. Buryat Scientific Center of SB RAS Press, 2023. http://dx.doi.org/10.31554/978-5-7925-0655-8-2023-97-100.
Der volle Inhalt der QuelleMoiseenko, I. „Waveguide Modes in the AKR Source“. In Planetary Radio Emissions VII. Vienna: Austrian Academy of Sciences Press, 2011. http://dx.doi.org/10.1553/pre7s253.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "THz emission sources"
Panek, Jeffrey, Adrian Huth, James McCarthy und Alan Krol. PR-312-18208-E01 Statistical Technique for Estimating NOx Emissions from Infrequently Operated Units. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), Juni 2020. http://dx.doi.org/10.55274/r0011681.
Der volle Inhalt der QuelleChepeliev, Maksym. Development of the Air Pollution Database for the GTAP 10A Data Base. GTAP Research Memoranda, Juni 2020. http://dx.doi.org/10.21642/gtap.rm33.
Der volle Inhalt der QuelleChepeliev, Maksym. Development of the Non-CO2 GHG Emissions Database for the GTAP 10A Data Base. GTAP Research Memoranda, März 2020. http://dx.doi.org/10.21642/gtap.rm32.
Der volle Inhalt der QuelleMcGrath, Tom, Wendy Coulson und James McCarthy. PR-312-18209-E01 Methane Emissions from Compressors in Transmission and Storage Subpart W Sources. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), November 2019. http://dx.doi.org/10.55274/r0011630.
Der volle Inhalt der QuelleCoulson, Wendy, Tom McGrath und James McCarthy. PR-312-16202-R03 Methane Emissions from Transmission and Storage Subpart W Sources. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), September 2019. http://dx.doi.org/10.55274/r0011619.
Der volle Inhalt der QuelleMcGrath, Panek und McCarthy. L52356 Nomenclature for Natural Gas Transmission and Storage Greenhouse Gas Emissions. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), Mai 2012. http://dx.doi.org/10.55274/r0010015.
Der volle Inhalt der QuelleMcCarthy, James. PR-312-18209-E05 Compressor and Facility Leak EFs for T and S - Clarifying Different Program Approaches. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), Januar 2024. http://dx.doi.org/10.55274/r0000050.
Der volle Inhalt der QuelleCoulson, Wendy, und James McCarthy. PR-312-16202-R02 GHG Emission Factor Development for Natural Gas Compressors. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), Mai 2018. http://dx.doi.org/10.55274/r0011488.
Der volle Inhalt der QuelleStulen. L51628 A Transient Far-Field Model of the Acoustic Emission in Buried Pipelines. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), Januar 1986. http://dx.doi.org/10.55274/r0011317.
Der volle Inhalt der QuelleCrocker, Raju und Yang. L51796 Document CEM Experience in Natural Gas Transmission Industry. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), März 1999. http://dx.doi.org/10.55274/r0010426.
Der volle Inhalt der Quelle