Um die anderen Arten von Veröffentlichungen zu diesem Thema anzuzeigen, folgen Sie diesem Link: Thermoregulation of the human body.

Dissertationen zum Thema „Thermoregulation of the human body“

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit Top-50 Dissertationen für die Forschung zum Thema "Thermoregulation of the human body" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Sehen Sie die Dissertationen für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.

1

Heuvel, Cameron J. van den. „The role of melatonin in human thermoregulation and sleep /“. Title page, contents and abstract only, 1998. http://web4.library.adelaide.edu.au/theses/09PH/09phv2272.pdf.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Simmons, Grant H. „Cutaneous vasodilation at simulated high altitude : impacts on human thermoregulation and vasoconstrictor function/“. Connect to title online (Scholars' Bank) Connect to title online (ProQuest), 2008. http://hdl.handle.net/1794/9495.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Payne, Stephanie. „Phenotypic variation and thermoregulation of the human hand“. Thesis, University of Cambridge, 2018. https://www.repository.cam.ac.uk/handle/1810/285561.

Der volle Inhalt der Quelle
Annotation:
The hand has the highest surface area-to-volume ratio of any body part. This property offers the potential for the hand to serve an important function in thermoregulation through radiative heat loss. Theoretically, the capacity for heat loss may be influenced by hand and digit proportions, but the extent to which these proportions influence the hand's radiative properties remains under-investigated. Although hand morphology is highly constrained by both integration and functional dexterity, phenotypic variation in hand and digit proportions across human populations shows broad ecogeographic patterns. These patterns have been associated with climate adaptation. However, the theory linking climate adaptation to such ecogeographic patterns is based on underlying assumptions relating to thermodynamic principles, which have not been tested in vivo. This study sought to determine the influence of hand and digit proportions on heat loss from the hands directly, the additional anthropometric factors that may affect this relationship, and the impact of variation in hand proportions on dexterity in the cold. The relationship between hand proportions and thermoregulation was tested through both laboratory-based investigation and a field study. The laboratory investigation assessed the relationship between hand proportions and heat loss, the influence of body size and composition on this relationship, and the effect of morphological variation on manual dexterity. Participants (N=114; 18-50 years of age), underwent a 3-minute ice-water hand-immersion. Thermal imaging analysis was used to quantify heat loss. Hand and digit proportions were quantified using 2D and 3D scanning techniques; body size and composition were measured using established anthropometric methods and bio-impedance analysis. After accounting for body size, hand width, digit-to-palm length ratio, and skeletal muscle mass were significant predictors of heat loss from the hand, whilsthand length and fat mass were not. A separate set of participants (N=40) performed a Purdue pegboard dexterity test before and after the immersion test, which demonstrated that digit width alone negatively correlated with dexterity. The field study tested whether phenotypic variation in upper limb proportions could be attributed to cold adaptation or selection for dexterity in living populations exposed to significant energetic stress. Upper limb segment lengths were obtained from participants (N=254; 18-59 years of age), from highland and lowland regions of the Nepalese Himalayas using established anthropometric methods, and relative hand proportions were assessed in relation to severe energetic stress associated with life at high altitude. Relative to height, hand length and hand width were not reduced with altitude stress, whilst ulna length was. This indicates that cold adaptation is not shaping hand proportions in this case, although phenotypic variation in other limb segments may be attributed to cold adaptation or a thrifty phenotype mechanism. The current study provides empirical evidence to support the link between surface area-to-volume ratio, thermodynamic principles and ecogeographical patterns in human hand morphology. However, this research also demonstrates the complexity of the hand's role in thermoregulation; not only do other factors such as muscularity affect heat loss from the hand, but hand morphology is also highly constrained by integration and dexterity.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Bolster, Douglas R. „The effects of precooling on thermoregulation during subsequent exercise in the heat“. Virtual Press, 1997. http://liblink.bsu.edu/uhtbin/catkey/1041903.

Der volle Inhalt der Quelle
Annotation:
The purpose of this study was to lower body core temperature prior to a simulated portion of a triathlon (swim-15min; bike-45min) and examine whether precooling could attenuate thermal strain and increase subjective exercise tolerance in the heat. Six endurance trained triathletes (mean ± SE, 28 ± 2 yr, 8.2 ± 1.7 % body fat) completed two randomly-assigned trials, one week apart. The precooling trial (PC) involved lowering body core temperature (-0.5°C) in water prior to swimming and cycling. The control trial (CON) was identical except no precooling was performed. Water temperature and environmental conditions were maintained at -25.6°C and -26.6°C/60% RH respectively, throughout all testing. Mean time to precool was 31:37 ± 8:03 and average time to reach baseline temperature during cycling was 9:35 ± 7:60. Oxygen consumption (VO2), heart rate (HR), rate of perceived exertion (RPE), thermal sensation (TS), and skin (Tsk) and core (Ta) temperatures were recorded following the swim segment and throughout cycling. No significant differences in mean body (TO or Tsk were noted between PC and CON, but a significant difference (P<0.05) in T, between treatments was noted through the early phases of cycling. No significant differences were reported in HR, V02, RPE, TS or sweat rate (SR) between treatments. Body heat storage (S) was negative following swimming in both PC (92 ± 6 W/m2) and CON (66 ± 9 W/m2). A greater increase in S occurred in PC (109 ± 6 W/m2) vs. CON (79 ±4 W/m2) during cycling (P<0.05) . Precooling attenuated the rise in T,, but this effect was transient. Based on the results from this study, precooling is not recommended prior to endurance exercise in the heat.
School of Physical Education
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Amoros, Claire. „Influences de la charge thermique et de l'etat de vigilance sur la reponse sudorale a des stimulations thermiques locales“. Université Louis Pasteur (Strasbourg) (1971-2008), 1987. http://www.theses.fr/1987STR13062.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

El, Kadri Mohamad. „Modèle thermo-neurophysiologique du corps humain pour l'étude du confort thermique en conditions climatiques hétérogènes et instationnaires“. Thesis, La Rochelle, 2020. http://www.theses.fr/2020LAROS006.

Der volle Inhalt der Quelle
Annotation:
Dans ces travaux de thèse, nous avons développé un nouveau modèle de thermorégulation du corps humain basé sur la neurophysiologie et nommé Neuro Human Thermal Model (NHTM). Il est dédié à prédire les variables physiologiques dans des environnements instationnaires et hétérogènes. De plus, ce modèle est couplé au modèle de confort thermique de Zhang pour prédire la sensation et le niveau de confort thermique des occupants dans les espaces intérieurs. Le système passif du modèle NHTM est basé sur celui du modèle de Wissler. Ce système est couplé à un système actif basé sur les signaux des thermorécepteurs. Le système passif consiste en 21 cylindres représentants les segments du corps humain. Chaque élément est divisé en 21 couches dont 15 pour les tissus et 6 pour les vêtements. Puis, chaque couche est divisée en 12 secteurs angulaires. Le modèle NHTM calcule la production de chaleur par le métabolisme, le transfert de chaleur par conduction entre les tissus et les échanges de chaleur par convection et rayonnement entre le corps et l’environnement. Le système actif calcule les mécanismes physiologiques grâce aux signaux des thermorécepteurs cutanés et centraux. Ces signaux sont calculés par le modèle de Mekjavic et Morrisson qui ont développé également le modèle de frissonnement utilisé dans le modèle NHTM. Le débit sanguin cutané est calculé par le modèle de Kingma. Par manque de données expérimentales, le modèle de sudation est basé sur l’approche du signal d’erreur des températures cutanée et centrale. Une comparaison a été effectuée entre le modèle de sudation de Wissler et celui de Fiala et al. Au vu des résultats obtenus, ce dernier a été retenu. Le modèle NHTM est en capacité de pouvoir simuler plusieurs types de populations. Pour ce faire, une analyse de sensibilité a été effectuée, grâce à la méthode de Morris, sur les paramètres des systèmes passif et actif pour déterminer les paramètres les plus influents. Ensuite, afin d’optimiser le modèle NHTM, un algorithme génétique a été utilisé pour déterminer le vecteur des paramètres qui correspond à la population des expérimentations de Munir et al. Les résultats ainsi obtenus ont été comparés aux modèles développés par différents auteurs et ont montré que le modèle NHTM est le plus performant dans la très grande majorité des cas. Le modèle NHTM a été couplé au modèle de Zhang pour pouvoir calculer la sensation et le confort thermique. Le modèle de Zhang a été choisi pour sa capacité à calculer les sensations et les niveaux de confort thermique locaux qui correspondent aux segments du corps humain dans des environnements hétérogènes. Il est aussi capable de calculer ces réponses lors des transitions thermiques. Ce modèle effectue le calcul grâce aux sorties du modèle NHTM à savoir les températures cutanées et de l’œsophage
In this thesis, we have developed a new thermoregulation model of the human body based on neurophysiology called Neuro Human Thermal Model (NHTM). It is dedicated to predict physiological variables in asymmetric transient environments. In addition, it is coupled with Zhang’s thermal comfort model to predict the sensation and the thermal comfort of the occupants in indoor spaces.The passive system of the NHTM model is based on that of the Wissler model. This passive system is coupled to an active system based on the signals of thermoreceptors. The passive system is segmented into 21 cylinders which represent the segments of the human body. Each element is divided into 21 layers, in which 15 for tissues and 6 for clothing. Then, each layer is divided into 12 angular sectors. The NHTM model simulates the heat production by metabolism, heat transfer by conduction within the tissues and heat exchange by convection and radiation between the body and the surrounding. The active system simulates physiological mechanisms thanks to signals of central and peripheral thermoreceptors. These signals are calculated by the model of Mekjavic and Morrisson who also developed the shivering model. The skin blood flow is calculated by the Kingma model. We could not develop a sweating model based on the signals of thermoreceptors since experimental data are not available. A comparison was made between the sweating model of Wissler and that of Fiala et al. and the last one was chosen.The NHTM model is able to simulate several types of population. This was done by a sensitivity analysis carried out, using the Morris method, on the parameters of the passive and active systems to find the most influential parameters. Then, an optimization of the NHTM model was done to determine the vector of the parameters which corresponds to the subjects of the experiments of Munir et al. using a genetic algorithm. The obtained results were compared to the models developed by several authors and showed that the NHTM model is the most efficient in most cases.The NHTM model has been coupled to the Zhang model to assess the sensation and thermal comfort. Zhang's model was chosen for its ability to assess local sensations and thermal comfort levels in non-uniform transient environments. Zhang’s model performs the calculation using the NHTM model outputs, namely the skin and esophagus temperatures
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Stone, Graham N. „Endothermy and thermoregulation in solitary bees“. Thesis, University of Oxford, 1990. http://ora.ox.ac.uk/objects/uuid:d1e6747a-afdc-4d85-8ff8-2b0c4078cc60.

Der volle Inhalt der Quelle
Annotation:
This thesis examines the roles of endothermy and body size in the thermal biology of solitary bees (Hymenoptera: Apoidea) within the species Anthophora plumipes (Anthophoridae) Amegilla sapiens (Anthophoridae) and Creightonellafrontalis (Megachilidae), within the genus Anthophora, and over the Apoidea as a whole. The effects of body size, climate and sexual interactions on the biology of Anthophora plumipes were investigated in Oxford between 1987 and 1989. Both ambient temperature and body size had a significant effect on females' ability to forage, what time they initiated foraging in the morning, and the type and mass of provisions collected. The behaviour of males was also strongly dependent on ambient temperature, which affected not only when they emerged from their nest tunnels, but also how long they spent basking, when and where they fed, and whether they showed courtship behaviour. The activity patterns and behaviour of male and female A. plumipes over time were shown to correlate with a complex array of factors. Activity patterns of females depended on the quality of floral resources available at foraging sites, body mass, ambient temperature, the position of the female in her nest-provisioning cycle, and levels of male interference at foraging sites. Male behaviour not only depended on body size and ambient temperature, but also on which other bees (particularly male and female conspecifics) were encountered while patrolling food sources and at the nest site. Endothermy in bees is much more widespread than previously thought, and warm-up before flight was present to some degree in all the species examined. Levels of thermoregulation achieved, however, varied considerably between species. Warm-up rates in bees, and thoracic temperatures in free and tethered flight, are shown to depend on ambient temperature and body mass within a species (for temperate and tropical examples), across members of the genus Anthophora and across the Apoidea as a whole. The persistence of these relationships over a range of comparative levels suggests that they are of fundamental importance. The form of these relationships differs between families in the Apoidea, and significant patterns only emerge when a comparative technique controlling for phylogeny is applied. Furthermore, body temperatures may also depend, in at least some cases, on sex and there may be differences within a group of related species between provisioning and parasitic forms. The interaction of all these factors is complex, and the predictive value of a variable such as body mass does not always emerge unless sophisticated techniques are used to control for other variables. The errors associated with two common methods in the measurement of insect body temperatures have often been loosely discussed but rarely quantified. This thesis examines (a) the magnitude and possible effects of errors in 'grab-and-stab' measurement of body temperature, and (b) the errors in measurement of body temperature using fixed sensors linked by thermally conducting leads to measuring devices. In neither case do the demonstrated errors preclude use of the technique, but care with interpretation is required. In both cases, measurement of thoracic temperature in small bees involves the largest errors, and this is the most serious obstacle to comparisons of endothermic and thermoregulatory abilities over the full range of body sizes found in the Apoidea.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Fougères, Erin M. „Thermoregulation in bottlenose dolphins (Tursiops truncatus)“. View electronic thesis, 2008. http://dl.uncw.edu/etd/2008-1/r3/fougerese/erinfougeres.pdf.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Claessens-van, Ooijen Anne Marie Japke. „Human thermoregulation individual differences in cold induced thermogenesis /“. Maastricht : Maastricht : Universitaire Pers Maastricht ; University Library, Universiteit Maastricht [host], 2008. http://arno.unimaas.nl/show.cgi?fid=12772.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

O'Connor, Candace Sharon. „Thermoregulation in Mice under the Influence of Ethanol“. PDXScholar, 1993. https://pdxscholar.library.pdx.edu/open_access_etds/1181.

Der volle Inhalt der Quelle
Annotation:
Thermoregulation after acute ethanol, during chronic exposure and during withdrawal from ethanol dependency was studied using genetically heterogeneous (HS) mice, and lines of mice selected in replicate for smaller (HOT1, HOT2) or greater (COLD1, COLD2) decline in rectal temperature (Tre ) after intraperitoneal ethanol. First, HS mice were injected with 20% ethanol in 0.9% NaCI, or NaCI alone during sessions of behavioral thermoregulation in individual temperature gradients (9-38°C). Internal temperature (Tj ) was monitored with implanted telemetry devices. An imaging system recorded selected temperature (Tsel ) within the gradient every 5 sec. Acute 2.25 and 2.60 g ethanol/kg produced significantly lower Tj than NaCI. 2.60 g/kg also produced significantly lower Tsel than 2.25 g/kg or NaCI. 2.75 g/kg and above incapacitated mice. Comparison of responses using a thermoregulatory index indicated 2.25 or 2.60 g/kg decreased the regulated temperature. Similar methodology was followed using the selected lines and 10% ethanol (2.0, 2.25, 2.65 g/kg to COLD mice; 2.65, 2.85 g/kg to HOT mice; 3.0 g/kg to HOT2 mice) or NaCI. All responded similarly to NaCl, with transient rise in Tj After an effective ethanol dose mice manifested a regulated decrease in Tj by lowering Tsel concomitant with falling Tj . In both replicate pairs COLD mice were more sensitive than HOT, indicating that a true difference in the CNS regulator of body temperature was selected for in these animals. Photoperiod effect was characterized by quantifying thermoregulatory behavior of COLD2 mice after acute 2.60 g 7.5% ethanol/kg or NaCl, at 0400 , 0800 , 1200, 1600 , 2000 and 2400 hours , using above methodology. Baseline T₁ was significantly lower during hours of light, than during darkness. Photoperiod had little effect on thermoregulatory response to ethanol, possibly because of arousal associated with experiments. Thermoregulatory tolerance to ethanol was investigated using HS mice implanted with telemetry devices and monitored in the gradient on days 1, 2, 4, 7 and 11 of 11 consecutive days of 10% ethanol (2.75 g/kg) or NaCl injections. Dispositional, rapid and chronic tolerance developed, indicating that functional tolerance is a regulated phenomenon in mice. In a separate experiment HS mice were implanted with telemetry devices and injected with ethanol for 11 consecutive days at constant temperature; dispositional but not functional tolerance developed. To characterize thermoregulation during withdrawal, HS mice were made dependent upon ethanol using a vapor chamber; T; Tsel and activity were monitored in the gradient until 26 hours post withdrawal. Withdrawing mice showed unaltered regulated temperature, but lower Tsel than controls. This suggested increased metabolic heat production. Thermoregulation during withdrawal was similarly studied using the selected mouse lines. COLD mice responded like HS mice. Withdrawing HOT1 mice were more active than controls; withdrawing HOT2 mice showed lowest Tsel of any genotype but maintained Ti above controls. These results suggest a more severe withdrawal reaction in HOT, than in COLD mice. To investigate a possible mechanism underlying ethanol hypothermia, responses of HOT and COLD mice to intracerebroventricular serotonin were characterized. Dose-dependent decreases in Tre were measured in mice equipped with indwelling brain cannulae and held at constant temperature after injection of 0.3, 0.8, 2.0, 5.0 or 11.0 μg serotonin into the lateral brain ventricle. COLD mice were significantly more sensitive than HOT mice. Subsequently HOT1 and COLD1 mice were equipped with brain cannulae and implanted telemetry devices; thermoregulatory behavior after 11.0 μg serotonin was monitored. Both genotypes lowered Tj significantly more in the gradient than did similar mice at constant ambient temperature, indicating that decline in Tj after serotonin was a regulated phenomenon. The serotonergic system was altered during selection for differential Tre response to ethanol, indicating a role for serotonin in mediating ethanol hypothermia.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
11

Wilsmore, Bradley R. „Thermoregulation in people with spinal cord injury“. School of Health Sciences - Faculty of Health and Behavioural Sciences, 2007. http://ro.uow.edu.au/theses/85.

Der volle Inhalt der Quelle
Annotation:
Thermoafferent information is integrated at multiple levels within the central nervous system. However, due to the difficulty in differentiating thermoregulatory functions of the spinal cord from those of higher centres in humans, the role of the spinal cord in certain aspects of thermoregulation remains unclear. Subjects with spinal cord injury have unique neural changes providing an opportunity to evaluate the role of the spinal cord, independently of higher thermoregulatory centres. Subjects with (N=11) and without (N=11) spinal cord injury were studied in a series of experiments, in which a wide range of local and whole-body temperature changes and postural manipulations were imposed. During these trials, various physiological (skin temperature, core temperature, local sweat rate and sweat expulsion frequency - a measure of central sympathetic drive), and psychophysical variables (thermal sensation and discomfort) were investigated. Six key observations arose from these experiments: (i) Subjects with spinal cord injury had a lower thermoafferent capacity (secondary to neural damage) and a corresponding reduction in thermoefferent drive (sudomotor sensitivity of 4.2 versus 8.8 expulsions•min-1•C-1 in able-bodied; P=0.03). (ii) Equations used to approximate thermoafferent drive in able-bodied subjects, overestimated thermal feedback in subjects with spinal cord injury. However, this could be corrected by modifying the skin area weightings to include only the sensate areas. (iii) No subjects with physiologically-confirmed thermoefferent spinal cord injury displayed sweating from insensate skin sites, indicating that a spinal cord that has been isolated from higher centres cannot induce thermal sweating. (iv) Subjects with spinal cord injury had higher forehead sweat rates (0.77 versus 0.52 mg•cm-2•min-1; P=0.03), but an equivalent sweat sensitivity (1.24 versus 1.27 mg•cm-2•min-1•°C-1; P=0.94), indicating the presence of a peripheral adaptation to sustain thermal homeostasis, and secondary to reduced thermal afferent and efferent flow. (v) Respiratory frequency increased more for a given increase in body temperature in subjects with spinal cord injury (2.4 versus 1.1 breaths•min-1•°C-1; P=0.042), but this did not provide a thermoregulatory benefit. (vi) Subjects with spinal cord injury demonstrated greater changes in behavioural thermoregulatory indicators (thermal sensation and discomfort) in response to standardised local and whole-body thermal loads. Collectively, these observations indicate the unique nature of thermoregulation in people with spinal cord injury and the adaptive ability of the human thermoregulatory system.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
12

Dervis, Sheila. „Discerning the Influence of Total Body Weight and Pregnancy on the Contribution to Heat Balance“. Thesis, Université d'Ottawa / University of Ottawa, 2021. http://hdl.handle.net/10393/42011.

Der volle Inhalt der Quelle
Annotation:
Evidence-based Canadian physical activity guidelines established specifically for pregnant women have shown to improve maternal and fetal outcomes, including prevention of adversities such as excess gestational weight gain, preeclampsia, and gestational diabetes. Unfortunately, most pregnant women fail to meet recommended guidelines for physical activity, and in many circumstances, the prevailing motive is due to a fear of overexertion and overheating harming the fetus. These concerns stem from reports of teratogenesis related to hyperthermia in several animal studies resulting in congenital fetal malformations. Although, due to disparities in thermoregulation between humans and animals, the findings are not entirely applicable to pregnant women. During exercise, the heat produced requires a given source of heat loss (i.e., skin blood flow/sweating) to maintain thermal homeostasis and a stable core temperature, preventing a continual rise in core temperature (i.e., teratogenesis). This thesis aims to separate the influence of pregnancy and body weight on oxygen consumption, heat production, heart rate, and rating of perceived exertion at rest (Study 1) and then during exercise (Study 2). On the other side of the heat balance equation is heat loss mechanisms; currently, the limited existing literature suggests that dry and evaporative heat loss increases as pregnancy progresses. Unfortunately, these findings are also based almost exclusively on animal studies. There has not been an established understanding of physiological, perceptual/behavioural responses in heat loss in pregnant women from early to late pregnancy, and the final study in this thesis sought to map the current literature in the format of a scoping review (Study 3). The findings of this thesis provide evidence that physiological measurements of oxygen consumption, heat production and heart rate are not influenced by stage of pregnancy, the responses increases/decrease according to total body mass. Additionally, both dry and evaporative heat loss responses appear to increase from early to late pregnancy.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
13

Schwellnus, Martin Peter. „The role of the endogenous opioid system in thermoregulation during exercise“. Master's thesis, University of Cape Town, 1988. http://hdl.handle.net/11427/27169.

Der volle Inhalt der Quelle
Annotation:
In man the metabolic heat produced during physical exercise stresses the thermoregulatory system, particularly if hot, humid environmental conditions prevail. It has recently been postulated that endogenous opioids may play a role in regulating body temperature at rest and because it has also been shown that blood levels of these substances increase during exercise, the possibility exists that endogenous opioids may play a role in thermoregulation during exercise. A study was conducted in two parts to determine the thermoregulatory response during exercise with and without pharmacologic blockade of the opioid receptor. In Part I nine healthy male subjects performed 30 minutes cycling at 50 % maximal aerobic capacity in an environmentally controlled laboratory. The subjects received either placebo, 2mg or 10mg naloxone hydrochloride in a randomized double-blind crossover fashion prior to the exercise test. Rectal temperatures were recorded at one-minute intervals and cardiorespiratory parameters were measured during the test. Water loss was calculated from differences in nude body weight. In part II eight male subjects performed a graded maximal cycle ergometer test after receiving either placebo or 2mg naloxone in a randomized double-blind crossover fashion. Rectal and sublingual temperatures were recorded before and after the test and oesophageal temperature was recorded at one-minute intervals during the test. Cardiorespiratory parameters were recorded during the test. The results of Part I show that rises in rectal temperature as well as calculated water losses were similar for placebo and after the administration of both 2mg and 10mg naloxone. Similarly, during maximal exercise (Part II) the rise in rectal and oesophageal temperatures was equivalent for placebo and 2mg naloxone but sublingual temperature failed to rise during exercise following the 2mg naloxone dose. Cardiorespiratory responses did not differ between placebo and naloxone tests in both Part I and Part II of the study. These results indicate that naloxone-mediated blockade of opioid receptors does not affect rectal and oesophageal temperature responses to either submaximal or maximal exercise. Naloxone appears to selectively alter the sublingual temperature response to exercise possibly by altering local blood flow. It is concluded that insofar as naloxone induced opioid receptor blockade provides a measure of the function of the endogenous opioid system, this study suggests that the endogenous opioid system does not play a significant role in thermoregulation during exercise.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
14

Nobel, Gerard. „Effects of Motion Sickness on Human Thermoregulatory Mechanisms“. Doctoral thesis, KTH, Omgivningsfysiologi, 2010. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-26058.

Der volle Inhalt der Quelle
Annotation:
The presented studies were performed to investigate the effects of motion sickness (MS) on human autonomic and behavioural thermoregulatory mechanisms during cold stress and in a thermoneutral environment. The roles of histaminergic and cholinergic neuron systems in autonomic thermoregulation and MS-dependent dysfunction of autonomic thermoregulation were studied using a histamine-receptor blocker, dimenhydrinate (DMH), and a muscarine-receptor blocker, scopolamine (Scop). In addition, the effects of these substances on MS-induced nausea and perceptual thermoregulatory responses were studied. MS was found to lower core temperature, during cold stress by attenuation of cold-induced vasoconstriction and decreased shivering thermogenesis, and in a thermoneutral environment by inducing sweating and vasodilatation. The increased core cooling during cold stress was counteracted by DMH but not by Scop. In a thermoneutral environment, the temperature was perceived as uncomfortably warm during and after the MS provocation despite decreases in both core and skin temperature. No such effect was seen during cold-water immersion. Both pharmacologic substances had per se different effects on autonomic thermoregulatory responses during cold stress. Scop decreased heat preservation, but did not affect core cooling, while DMH reduced the rate of core cooling through increased shivering thermogenesis. Both DMH and Scop per se decreased thermal discomfort during cold-water immersion.Findings support the notion of modulating roles of histamine (H) and acetylcholine (Ach) in autonomic thermoregulation and during MS. MS activates cholinergic and histaminergic pathways, thereby increasing the levels of H and Ach in several neuro-anatomical structures. As a secondary effect, MS also elevates blood levels of several neuropeptides, which in turn would influence central and/or peripheral thermoregulatory responses.In conclusion, MS may predispose to hypothermia, by impairment of autonomic thermoregulation in both cold and thermoneutral environments and by modulation of behavioural thermoregulatory input signals. This might have significant implications for survival in maritime accidents.

Medicine doktorsexamen

APA, Harvard, Vancouver, ISO und andere Zitierweisen
15

Savic, Natasha R. „Thermoregulation and human sleep initiation : effects of evening melatonin manipulation /“. Title page and abstract only, 2000. http://web4.library.adelaide.edu.au/theses/09HS/09hss267.pdf.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
16

Moura, Ana Silvia A. M. T. „Components of growth and thermoregulation in MT-bGH transgenic mice /“. free to MU campus, to others for purchase, 1997. http://wwwlib.umi.com/cr/mo/fullcit?p9842553.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
17

O'Connor, Candace Sharon. „Effect of ethanol on thermoregulation in the goldfish, Carassius auratus“. PDXScholar, 1986. https://pdxscholar.library.pdx.edu/open_access_etds/3703.

Der volle Inhalt der Quelle
Annotation:
In an attempt to elucidate the mechanism by which ethanol affects vertebrate thermoregulation, the effect of ethanol on temperature selection was studied in the goldfish, Carassius auratus. Ethanol was administered to 10 to 15 g fish by mixing it in the water of a temperature gradient. The dose response curve was very steep between 0.5% (v/v) ethanol (no response) and 0.7% (significant lowering of selected temperature in treated fish). Fish were exposed to concentrations of ethanol as high as 1.7%, at which concentration most experimental fish lost their ability to swim upright in the water. At concentrations higher than 0.7%, the magnitude of the effect did not increase with increasing concentration of ethanol; treated animals continued to select temperatures about 2 C below temperatures selected by controls. Experiments alternating exposure to 1.0% ethanol and water showed that the rate of onset and disappearance of the ethanol effect was rapid (within 10 min). Other experiments exposing fish to 1.0% ethanol for up to 3 hr showed that the effect remained stable for this period of time. The thermoregulatory responses of fish are behavioral, and therefore relatively easy to observe and quantify. Ethanol produces a prompt, stable and reproducible depression of selected temperature in the goldfish. Because the temperature at which fish regulate is controlled by a central nervous system set point and not altered by effects on peripheral effector systems, it appears that ethanol may cause hypothermia in goldfish by directly acting to lower the set point.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
18

Haslam, Roger. „An evaluation of models of human response to hot and cold environments“. Thesis, Loughborough University, 1989. https://dspace.lboro.ac.uk/2134/7027.

Der volle Inhalt der Quelle
Annotation:
Influential models, capable of predicting human responses to hot and cold environments and potentially suitable for use in practical applications, have been identified and implemented in usable forms onto computers. Six models have been evaluated: the Gagge and Nishi 2-node model of human thermoregulation, the Stolwijk and Hardy 25-node model of human thermoregulation, the Givoni and Goldman model of rectal temperature response, the ISO/DIS 7933 analytical determination and interpretation of thermal stress using calculation of required sweat rate model, the Ringuest 25-node model of human thermoregulation, and the Wissler 225-node model of human thermoregulation. A preliminary evaluation enabled the Ringuest and Wissler models to be eliminated from further investigation. In the case of the Ringuest model this was because of its poor predictions, and for the Wissler model because of practical difficulties with its implementation and use. The remaining models were modified to quantify the insulative effects of clothing by the method considered to be most appropriate, given the current state of knowledge. The modified versions of the models were evaluated by comparing their predictions with human data published previously in the literature. Experimental data were available for a wide range of environmental conditions, with air temperatures ranging from -10 to 50 °C, and with different levels of air movement, humidity, work and clothing. Data for a total of 590 subject exposures were used. The experimental data were grouped into environment categories to enable effects such as the influence of wind or clothing, on the accuracy of the models' predictions to be examined. This categorization also enables advice to be given as to which model is likely to provide the most accurate predictions for a particular combination of environmental conditions. For the majority of environment categories, for which evaluation data were available, at least one of the models was able to predict to an accuracy comparable with the degree of variation that occurred within the data from the human subjects. It may be concluded from the evaluation that it is possible to accurately predict deep body and mean skin temperature responses to cool, neutral, warm and hot environmental conditions. The models' predictions of deep body temperature in the cold are poor. Overall, the 25-node model probably provided the most accurate predictions. The 2-node model was often accurate, but could be poor for exercise conditions. The rectal temperature model usually overestimated deep body temperature, except for very hot or heavy exercise conditions, where its predictions were reasonable. The ISO model's allowable exposure times were often acceptable, but would not have protected subjects for some exercise conditions.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
19

Lymburner, Alannah. „Differences in Thermal Quality Affect Investment in Thermoregulation by Lizards“. Thesis, Université d'Ottawa / University of Ottawa, 2019. http://hdl.handle.net/10393/39115.

Der volle Inhalt der Quelle
Annotation:
Body temperature affects physiological processes and, consequently, has a large impact on fitness. Lizards need to thermoregulate behaviourally to maintain their body temperature within a range that maximizes performance, but there are costs associated with thermoregulation. The thermal quality of an environment is a major cost of thermoregulation because it directly affects the time and energy that must be invested by an individual to achieve and maintain an optimal body temperature for performance. According to the cost-benefit model of thermoregulation, lizards should only thermoregulate when the benefits outweigh the costs of doing so. Thus, in habitats of poor thermal quality, individuals should thermoregulate less. Using two systems, an elevational gradient and a pair of habitats that vary in the amount of solar radiation they receive, I tested the hypothesis that investment in thermoregulation by lizards is dictated by the associated costs of thermoregulating. Temperature, and thus thermal quality, decreases with elevation. I found a significant positive relationship between elevation and effectiveness of thermoregulation of Yarrow’s spiny lizards (Sceloporus jarrovii). When comparing thermoregulation of ornate tree lizards (Urosaurus ornatus) living in the thermally superior open-canopy wash habitat or the closed-canopy upland habitat, I found that habitat type was a significant predictor of accuracy of body temperature. In the poorer quality habitat, lizards had smaller deviations of body temperature from their preferred temperature range. Overall, I conclude that the thermal quality of a lizards’ environment impacts their thermoregulation in the opposite direction than predicted by the cost-benefit model of thermoregulation. This suggests that the disadvantages of thermoconformity may be greater than the costs thermoregulating as habitats become more thermally challenging.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
20

Al-Armaghany, A. M. „Development of a hybrid microwave-optical system to monitor human thermoregulation“. Thesis, University College London (University of London), 2015. http://discovery.ucl.ac.uk/1462351/.

Der volle Inhalt der Quelle
Annotation:
Warming of human tissue causes vasodilation and therefore, increase in blood volume. Such thermal responses allow the assessment of hemodynamics in the tissue, providing physiological and clinically important information of the diagnosed subject. Local warming is often accomplished on the skin because of its accessibility and simplicity. To allow the investigation into deeper tissue such as the muscle, an innovative hybrid microwave-optical system has been developed. This comprises of a microwave system, an optical monitoring and cooling system. The tissue warming is induced by a novel microwave applicator, which was based on microstrip patch design operating at 2.45 GHz with a superstrate interface layer to improve the coupling of electromagnetic (EM) waves into the skin. The active cooling was introduced to reduce skin heating. While the optical sensors based on Near-Infrared Spectroscopy (NIRS), was used to measure the changes in tissue oxygenation including the muscle. This thesis demonstrates the development procedure, covering the design and operation of the entire system. Moreover, the majority of the work is based on the four developed applicators, where each design was evaluated using EM and thermal simulation based on numerical phantoms. The study evaluates the distribution of absorbed EM energy in the tissue known as the specific absorption rate (SAR). The applicators are developed in the following order: (i) Applicator I was fabricated for preliminary study for general tissue heating with the integrated optical probes. This early study provided an insight to the importance of superstrate thickness and material. (ii) Applicator II, which introduces a new approach to skin cooling based on Thermoelectric Coolers (TEC) and high thermal conductive superstrate. This design could cool the skin and monitor tissue oxygenation, skin perfusion and temperature. (iii) Applicator III was an updated model of the predecessor, resolving cooling configuration and the discrepancy in operating frequency, and was capable of minimising skin heating effectively (iv) Circularly polarized (CP) Applicator aimed at reduction of the SAR in the superficial layer, and hence skin heating. The simulated thermal study of all developed applicators was validated with exvivo (mimicked phantom) and in-vivo experimental trials. The measurements and the simulation model were in agreement, apart from the CP applicator due to the complexity of measurement. The results from the phantom and human calf indicated superficial heating was reduced by about 5.0-6.0 ° C when skin cooling was applied, while the temperature change in muscle was not significantly affected. The measurement with mimicked tissue showed the applicator was capable of elevating muscle temperature by approximately 3.0-4.0 ° C. This is a sufficient increase to cause tissue dilation, and therefore, change in the thermal response. The hybrid microwave-optical system has been developed and examined on three human calves during in-vivo physiological study. The results using Applicator II illustrated that the device can successfully stimulate and measure thermal responses in terms of oxy/deoxy/total haemoglobin concentrations changes ( HbO2/ HHb/ HbT). The slope (rate of change) of HbT curve during microwave exposure is defined as the thermal response. This parameter is essential in studying physiological responses between different subject, particularly in vascular diseases, transplanted free flaps and other conditions, including chronic spinal cord injury. Subjects with such conditions will have a distinguishable response to tissue heating than a healthy subject. The monitored haemodynamic signals of Applicator II are primarily based on superficial responses. However, measurements with Applicator III showed the potential of the applicator. The measured thermal response was 0.83 10 3×10⁻³ μM/s without skin cooling, which was dedicated by skin heating. The introduced cooling system has reduced the skin temperature and maintained the local skin micro-circulation, which was monitored with the secondary optical system based on Laser Doppler Flowmetry (LDF). This probe measures blood flow at superficial depth, and consequently, was used as a validation tool to demonstrate the cooling efficiency. The measured thermal response with skin over-cooling was -0.08 10 3×10⁻³ μM/s. The negative response indicates arterial constriction, and therefore, the skin heat was eliminated while the simulations study to indicate the muscle temperature was elevated by 3 ° C. However, the response was dominant by the superficial response. Obtaining a response from muscle only was challenging and currently being solved in numerous applicator and cooling technique, which have been presented in the thesis.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
21

Foster, Josh. „Over-the-counter drugs and non-febrile thermoregulation : is there cause for concern?“ Thesis, University of Bedfordshire, 2017. http://hdl.handle.net/10547/622541.

Der volle Inhalt der Quelle
Annotation:
Core temperature (Tc) regulation is fundamental to mammalian survival, since hypothermia (Tc ≤ 35°C) and hyperthermia (Tc ≥ 40°C) are major risk factors for health and wellbeing. The purpose of this thesis was to determine if acetaminophen, an analgesic and antipyretic drug, increased the onset of hypothermia or hyperthermia during passive cold and heat stress, respectively. It was later investigated if acetaminophen induced inhibition of cyclooxygenase mediated these side-effects. In Study 1a, the plasma acetaminophen response to a dose of 20 mg·kg-1 of lean body mass was determined through enzyme linked immunosorbent assay. In Study 1b, the effect of acetaminophen administration on internal temperature (rectal; Tre) during a passive 2-hour mild cold (20°C, 40% relative humidity) exposure was examined. Study 1a showed that the plasma response was homogenous between subjects, reaching peak concentrations between 80-100 minutes (14 ± 4 μg·ml-1). In Study 1b, acetaminophen reduced Tre in all participants compared with baseline, and the average peak reduction was 0.19 ± 0.09°C. In contrast, Tre remained stable when participants ingested a sugar placebo. Study 1 is the first experiment which confirms a hypothermic side-effect of acetaminophen in healthy humans. Study 2 investigated whether acetaminophen augmented the rate of Tre rise during exposure to passive dry (45°C, 30% r.h.) and humid (45°C, 70% r.h.) heat stress for 2-hours and 45-minutes, respectively. This study showed that the rate of Tre rise in the dry (0.005 vs 0.006°C∙min-1) and humid (0.023 vs 0.021 °C∙min-1) conditions were similar between the acetaminophen and placebo trials (p > 0.05). Study 2 is the first experiment which confirms acetaminophen has no meaningful effect on thermoregulation during passive dry or humid heat exposure. Study 3 determined how the hypothermic effect of acetaminophen changes during exposure to a thermoneutral (25°C, 40% r.h.) and cold (10°C, 40% r.h.) environment for 2-hours. In summary, there was no hypothermic effect of acetaminophen in a thermoneutral environment (p > 0.05), whereas Tre fell by 0.40 ± 0.15°C compared with baseline during cold stress (p < 0.05). Compared with the placebo, Tre was ~0.35°C lower at 120 minutes, but was significantly lower from 70-minutes. Study 3 confirmed that there is a relationship between the level of cold stress and magnitude of the hypothermic effect of acetaminophen. Study 4 determined whether ibuprofen (400 mg), a cyclooxygenase inhibitor, reduced Tre during 2-hour passive cold stress (10°C, 40% r.h.) to a level comparable with acetaminophen. Ibuprofen administration did not influence Tre, vastus medialis shivering, or energy expenditure compared with a placebo throughout the cold exposure (p > 0.05). Taken together, this renders it unlikely that cyclooxygenase activity is required for thermogenesis induced by skin cooling. Study 4 provides evidence that acetaminophen induced hypothermia is not exclusively mediated by cyclooxygenase inhibition. In Summary, this series of experiments has shown that acetaminophen has a hypothermic side effect in healthy humans, which is amplified during acute cold stress. Ibuprofen had no such effect on thermoregulation during cold exposure, so it is unlikely that cyclooxygenase inhibition mediates the hypothermic side-effect of acetaminophen.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
22

Barbieri, Michelle Marie. „Physiological and behavioral thermoregulation in bottlenose dolphins (Tursiops truncatus) in Sarasota, Florida /“. Electronic version (PDF), 2005. http://dl.uncw.edu/etd/2005/barbierim/michellebarbieri.pdf.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
23

Kean, David Jeffrey. „THE EFFECTS OF COLD AND LOWER BODY NEGATVIE PRESSURE ON CARDIOVASCULAR AND THERMOREGULATORY HOMEOSTASIS“. Kent State University / OhioLINK, 2012. http://rave.ohiolink.edu/etdc/view?acc_num=kent1333291322.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
24

Hickey, Matthew Sean. „Effects of opioid antagonism on thermoregulation during prolonged exercise in the heat“. Thesis, This resource online, 1990. http://scholar.lib.vt.edu/theses/available/etd-06112009-063109/.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
25

Poirier, Martin. „The Effect of Progressive Heat Acclimation on Change in Body Heat Content“. Thèse, Université d'Ottawa / University of Ottawa, 2013. http://hdl.handle.net/10393/26219.

Der volle Inhalt der Quelle
Annotation:
Heat acclimation increases the local heat loss responses of sweating and skin blood flow which is thought to persist for up to 3 weeks post-acclimation. However, the extent to which increases in local heat loss affect whole-body heat loss as a function of increasing levels of heat stress remains unresolved. Using direct calorimetry, we examined changes in whole-body evaporative heat loss (EHL) during progressive increases in metabolic heat production 1) prior to (Day 0), during (Day 7) and following a 14-day heat acclimation protocol (Day 14) – Induction phase, and; 2) at the end of a 1-week (Day 21) and 2-week decay period (Day 28) – Decay phase. Ten males performed intermittent exercise (3 x 30-min (min) bouts of cycling at 300 (Ex1), 350 (Ex2), and 400 watts•meters2 (W•m2) (Ex3) separated by 10 and 20 min rest periods, respectively). During the induction period, EHL at Day 7 was increased at each of the three exercise bouts (Ex1: + 6%; Ex2 +8%; Ex3: +13%, all p≤0.05) relative to Day 0 (EHL at Ex1: 529 W; Ex2: 625 W; Ex3: 666 W). At Day 14, EHL was increased for all three exercise bouts compared to Day 0 (Ex1: 9%; Ex2: 12%; Ex3: 18%, all p≤0.05). As a result, a lower cumulative change in body heat content (ΔHb) was measured at Day 7 (-30%, p≤0.001) and Day 14 (-47%, p≤0.001). During the decay phase, EHL at Day 21 and 28 was only reduced in Ex 3 (p≤0.05) compared to Day 14. In parallel, ΔHb increased by 39% (p=0.003) and 57% (p≤0.001) on Day 21 and Day 28 relative to Day 14, respectively. When Day 28 was compared to Day 0, EHL remained elevated in each of the exercise bouts (p≤0.05). As such, ΔHb remained significantly lower on Day 28 compared to Day 0 (-16%, p=0.042). We show that 14 days of heat acclimation increases whole-body EHL during exercise in the heat which is maintained 14 days post-acclimation.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
26

Smith, Melinda Anne. „The Role of KNDy Neurons in Estrogen Modulation of LH Release, Body Weight, and Thermoregulation“. Diss., The University of Arizona, 2012. http://hdl.handle.net/10150/223352.

Der volle Inhalt der Quelle
Annotation:
Up to 80% of menopausal women suffer from hot flushes, consisting of a coordinated activation of heat loss mechanisms (sweating, cutaneous vasodilatation, etc.). Ovarian steroid withdrawal also leads to hypersecretion of gonadotropins (LH and FSH) and changes in body fat distribution. Because gonadotropin release, thermoregulation, and energy balance are hierarchically controlled by the hypothalamus, it is likely that changes in response to estrogen withdrawal are occurring at the level of the hypothalamus. The infundibular (arcuate) nucleus of the hypothalamus contains an estrogen-sensitive population of cells that co-express kisspeptin, neurokin B (NKB), and dynorphin ("KNDy neurons"). KNDy neurons have been proposed to be a site of estrogen negative feedback on gonadotropin release in multiple species because they are estrogen sensitive and respond to estrogen withdrawal with somatic hypertrophy and significant changes in gene expression. Because KNDy neurons project to known thermoregulatory centers in the hypothalamus (such as the median preoptic nucleus, MnPO), we also hypothesized that changes in thermoregulation were also a due to changes in KNDy neurons. Ovariectomized (OVX) rats also show disorders of thermoregulation, increased serum LH and FSH, and altered weight gain. Furthermore, OVX rats exhibit KNDy gene expression changes similar to changes seen in the human, making this model ideal to study the effects of estrogen withdrawal. We used a novel neurotoxin conjugate NK₃-SAP to ablate KNDy neurons in OVX female rats. We then observed core and tail skin temperatures, serum gonadotropin levels, and weight changes before and after replacement with 17β-estradiol. Next, we ablated NK3R-expressing neurons in the MnPO and monitored the thermoregulatory axis. Rats with KNDy-ablation did not exhibit the rise in LH and profound weight gain associated with ovariectomy. Furthermore, KNDy-ablated animals did not exhibit the chronic vasodilatation observed in OVX rats, providing the first evidence that KNDy neurons play a role in vasomotion. Rats with NK₃R cell-specific MnPO lesions also exhibited decreased activation of heat loss effectors. Together, these data demonstrate an important role for arcuate KNDy neurons in estrogen modulation of LH release and body weight, and demonstrate that NKB signaling is critical for activation of heat dissipation effectors.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
27

Wan, Mingchao. „Form and Human Body“. Thesis, Virginia Tech, 2014. http://hdl.handle.net/10919/50489.

Der volle Inhalt der Quelle
Annotation:
Architectural form offers an expression and an observer receives an impression. This interaction exists at both intellectual (mind) and physical (body) levels. Through designing a sculpture pavilion in a forest, this thesis explores different means of empathetic expression in modern architectural form.
Master of Architecture
APA, Harvard, Vancouver, ISO und andere Zitierweisen
28

Marrin, Kelly. „The relationships between human pineal function and thermoregulation at rest and during exercise“. Thesis, Liverpool John Moores University, 2012. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.570700.

Der volle Inhalt der Quelle
Annotation:
The pineal gland and its secretory product, melatonin, have a fundamental role in the control of human circadian rhythms. Most studies have investigated circadian variation in Pineal function at rest, and an inverse relationship between melatonin and core temperature rhythms has been reported. Nevertheless, there is a lack of research on these relationships during exercise. Such research is important for ascertaining how much exercise 'masks' endogenous secretion of melatonin as well as for explaining how exercise itself influences the circadian system in humans. The studies in this thesis are designed to help fill this dearth of knowledge in exploring relationships between circadian variation in melatonin 'and core body temperature at- rest and during exercise Because most past studies have involved small sample sizes, meta-analytical methods were employed in study 1 to determine the precise effects of exogenous melatonin on core body temperature and explore the impact of various moderating variables on this temperature change. Following an extensive literature search, 33 studies involving a total of 193 participants and 429 separate melatonin ingestions were meta-analysed. The weighted mean (95% CI) reduction in body temperature was found to be 0.21 (0.18-0.24) DC. Gender and time of day of melatonin ingestion had negligible effects on this reduction (P>0.05). A linear, but shallow, dose- response relationship between melatonin and temperature reduction of 0.013 QC.mg-l within the dose range of 0.03 to 10 mg (P
APA, Harvard, Vancouver, ISO und andere Zitierweisen
29

Novieto, Divine Tuinese. „Adapting a human thermoregulation model for predicting the thermal response of older persons“. Thesis, De Montfort University, 2013. http://hdl.handle.net/2086/9489.

Der volle Inhalt der Quelle
Annotation:
A human thermoregulation model has been adapted for predicting the thermal response of Typical Older Persons. The model known as the Older Persons Model predicts the core body temperature and regulatory responses of the older people in environmental exposures of cold, warm and hot. The model was developed by modifying an existing dynamic human thermoregulation model using anthropometric and thermo-physical properties of older people. The Model defines the body as two interrelating systems of the body structure (passive system) and the control system of the central nervous system (active system). The Older person's passive system of the model was developed by meticulously extracting relevant experimental data from selected published research works relating to anthropometric and thermo-physical properties of older people. The resultant body structure (passive system) is a multi-segmented representation of a Typical Older Person. The active system (central nervous system) was developed by the application of a novel optimization method based on the working principles of Genetic Algorithms. The use of Genetic Algorithm enables the complex characteristics of the central nervous system of the older persons to be well represented and evaluated based on available data. Active system control signal coefficients for sweating, shivering, vasodilation and vasoconstriction were explicitly derived based on experimental data sourced from literature. The Older Persons Model has been validated using independent experimental data and its results show good agreement with measured data. Furthermore, the Older Persons Model has been applied to several test cases extracted from published literature and its results show good agreement with published findings on the thermal behaviour of older persons. An interview study conducted as part of this research revealed that, professionals (built environment specialists) found the Older Persons Model useful in assisting to further understand the thermal response of the older persons. In conclusion, the adaptation of an existing human thermoregulation model has resulted in a new model, which allows improved prediction of heat and cold strain of the older person although there exist limitations.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
30

Simmons, Grant H. 1981. „Cutaneous vasodilation at simulated high altitude: Impacts on human thermoregulation and vasoconstrictor function“. Thesis, University of Oregon, 2008. http://hdl.handle.net/1794/9495.

Der volle Inhalt der Quelle
Annotation:
xvii, 174 p. : ill. A print copy of this thesis is available through the UO Libraries. Search the library catalog for the location and call number.
During acute altitude exposure, humans maintain higher skin temperature and lower core body temperature. However, the role of cutaneous vascular regulation in these thermoregulatory differences is unclear. Therefore, the purpose of these studies was to investigate the impact of altitude exposure on reflex control of skin blood flow and core temperature during cold exposure. In Chapter IV, the effects of hypoxia and hypocapnia on cutaneous vasoconstriction during mild cold exposure were investigated. We found that hypoxia stimulates cutaneous vasodilation in men whereas skin blood flow is unaltered in women. However, during whole body cooling skin blood flow is upward shifted in both sexes. The development of hypocapnia does not affect the vascular response to hypoxia in either sex, but reduces the magnitude of cutaneous vasoconstriction during cold exposure by 50% in women. In Chapter V, we studied the timecourse of α-adrenergic blockade by yohimbine in the cutaneous circulation and how the duration of cold exposure modulates cotransmitter-mediated vasoconstriction during cold stress. We found that yohimbine produces functional α-adrenergic blockade within 30 minutes of initial delivery and completely abolishes reflex cutaneous vasoconstriction during mild cold stress. This latter finding was surprising, and an additional protocol demonstrated that cotransmitter-mediated vasoconstriction only participates in the vascular response to cold stress when the exposure is more prolonged. In Chapter VI, the effects of hypoxia on cutaneous vasoconstrictor mechanisms and core cooling rate were tested during more prolonged and severe cold stress. In contrast to our findings during brief cold exposure, we showed that cutaneous vasoconstriction during prolonged cold stress is potentiated by hypoxia and abolishes hypoxic vasodilation. Moreover, increased cotransmitter-mediated vasoconstriction appears to account for this response. Hypoxia had no effect on core cooling rate during severe cold exposure. The selective potentiation of cotransmitter-mediated vasoconstriction observed during hypoxia in Chapter VI provided the basis for Chapter VII. This study was designed to test the effect of hypoxia on cutaneous vascular responsiveness to peripherally stimulated sympathetic vasoconstriction. The results demonstrated that α-adrenergic vasoconstrictor transduction is not affected by hypoxia, and that stimulation of adrenergic nerves with tyramine does not elicit cotransmitter-mediated vasoconstriction in skin.
Adviser: John R. Halliwill
APA, Harvard, Vancouver, ISO und andere Zitierweisen
31

Lynn, Aaron. „The Influence of Osmoreceptors and Baroreceptors on Heat Loss Responses during a Whole-body Passive Heat Stress“. Thèse, Université d'Ottawa / University of Ottawa, 2011. http://hdl.handle.net/10393/20361.

Der volle Inhalt der Quelle
Annotation:
Exercise and/or heat-induced dehydration is associated with decreases in plasma volume (hypovolemia) and increases in plasma osmolality (hyperosmolality), which are thought to stimulate peripheral baroreceptors and central osmoreceptors respectively. Independently, plasma hyperosmolality and baroreceptor unloading have been shown to attenuate sweating and cutaneous vasodilation during heat stress, and therefore, negatively impact body temperature regulation. However, to date little is known regarding the combined influence of plasma hyperosmolality and baroreceptor unloading on thermoefferent activity. Therefore, we evaluated the separate and combined effects of baroreceptor unloading (via lower body negative pressure, LBNP) and plasma hyperosmolality (via infusion of 3% NaCl saline) on heat loss responses of sweating and cutaneous vascular conductance (CVC) during progressive whole-body heating. We show that the combined nonthermal influences of plasma hyperosmolality and baroreceptor unloading additively delay the onset threshold for CVC, relative to their independent effects. In contrast, baroreceptor unloading has no influence on the sweating response regardless of osmotic state. These divergent roles of plasma hyperosmolality and the baroreflex on heat loss responses might serve to enhance blood pressure and body core temperature regulation during dehydration and heat stress.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
32

Bain, Anthony R. „Body Heat Storage, Sweating and Skin Blood Flow Responses Following Cold and Warm Water Ingestion during Exercise“. Thesis, Université d'Ottawa / University of Ottawa, 2012. http://hdl.handle.net/10393/20583.

Der volle Inhalt der Quelle
Annotation:
Ingestion of cold (<10°C) compared to warm (>37°C) fluid has been suggested to attenuate heat storage levels during exercise. However, modulations in sweat output may yield differences in evaporative heat loss that are greater than differences in heat transfer with the ingested fluid. The purpose of the thesis was to evaluate thermoregulatory control and human heat balance, and compare thermometrically derived values of heat storage with those derived from partitional calorimetry following water ingestion of varying temperature during exercise. We found that water ingestion of 50°C compared to 1.5°C decreases heat storage in thermoneutral environments, and further exacerbates the error of thermometric heat storage estimations. Differences in heat storage were attributed exclusively to disproportionate reductions in whole-body and local sweat output and thus evaporative heat loss potential. Ingested fluid temperature only minimally altered skin blood flow and did not influence dry heat exchange with the ambient environment.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
33

Gagnon, Daniel. „Sex-related Differences in Local and Whole-body Heat Loss Responses: Physical or Physiological?“ Thèse, Université d'Ottawa / University of Ottawa, 2012. http://hdl.handle.net/10393/23284.

Der volle Inhalt der Quelle
Annotation:
The current thesis examined whether sex-differences in local and whole-body heat loss are evident after accounting for confounding differences in physical characteristics and rate of metabolic heat production. Three experimental studies were performed: the first examined whole-body heat loss in males and females matched for body mass and surface area during exercise at a fixed rate of metabolic heat production; the second examined local and whole-body heat loss responses between sexes during exercise at increasing requirements for heat loss; the third examined sex-differences in local sweating and cutaneous vasodilation to given doses of pharmacological agonists, as well as during passive heating. The first study demonstrates that females exhibit a lower whole-body sudomotor thermosensitivity (553 ± 77 vs. 795 ± 85 W•°C-1, p=0.05) during exercise performed at a fixed rate of metabolic heat production. The second study shows that whole-body sudomotor thermosensitivity is similar between sexes at a requirement for heat loss of 250 W•m-2 (496 ± 139 vs. 483 ± 185 W•m-2•°C-1, p=0.91) and 300 W•m-2 (283 ± 70 vs. 211 ± 66 W•m-2•°C-1, p=0.17), only becoming greater in males at a requirement for heat loss of 350 W•m-2 (197 ± 61 vs. 82 ± 27 W•m-2•°C-1, p=0.007). In the third study, a lower sweat rate to the highest concentration of acetylcholine (0.27 ± 0.08 vs. 0.48 ± 0.13 mg•min-1•cm-2, p=0.02) and methylcholine (0.41 ± 0.09 vs. 0.57 ± 0.11 mg•min-1•cm-2, p=0.04) employed was evidenced in females, with no differences in cholinergic sensitivity. Taken together, the results of the current thesis show that sex itself can modulate sudomotor activity, specifically the thermosensitivity of the response, during both exercise and passive heat stress. Furthermore, the results of the third study point towards a peripheral modulation of the sweat gland as a mechanism responsible for the lower sudomotor thermosensitivity in females.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
34

Zhang, Xiao. „Data-driven human body morphing“. Thesis, Texas A&M University, 2005. http://hdl.handle.net/1969.1/2655.

Der volle Inhalt der Quelle
Annotation:
This thesis presents an efficient and biologically informed 3D human body morphing technique through data-driven alteration of standardized 3D models. The anthropometric data is derived from a large empirical database and processed using principal component analysis (PCA). Although techniques using PCA are relatively commonplace in computer graphics, they are mainly used for scientific visualizations and animation. Here we focus on uncovering the underlying mathematical structure of anthropometric data and using it to build an intuitive interface that allows the interactive manipulation of body shape within the normal range of human variation. We achieve weight/gender based body morphing by using PCA. First we calculate the principal vector space of the original data. The data then are transformed into a new orthogonal multidimensional space. Next, we reduce the dimension of the data by only keeping the components of the most significant principal vectors. We then fit a curve through the original data points and are able to generate a new human body shape by inversely transforming the data from principal vector space back to the original measuring data space. Finally, we sort the original data by the body weight, calculating males and females separately. This enables us to use weight and gender as two intuitive controls for body morphing. The Deformer program is implemented using the programming language C++ with OPENGL and FLTK API. 3D and human body models are created using Alias MayaTm.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
35

Hakl, Henry. „Computer-controlled human body coordination“. Thesis, Stellenbosch : Stellenbosch University, 2003. http://hdl.handle.net/10019.1/49756.

Der volle Inhalt der Quelle
Annotation:
Thesis (MSc) -- University of Stellenbosch, 2003.
ENGLISH ABSTRACT: A need for intelligent robotic machines is identified. Research and experiments have focussed on stable, or relatively stable, dynamic simulated systems to demonstrate the feasibility of embedding advanced AI into dynamic physical systems. This thesis presents an attempt to scale the techniques to a dynamically highly unstable system - the coordination of movements in a humanoid model. Environmental simulation, articulated systems and artificial intelligence methods are identified as three essential layers for a complete and unified approach to embedding AI into robotic machinery. The history of the physics subsystem for this project is discussed, leading to the adoption of the Open Dynamics Engine as the physics simulator of choice. An approach to articulated systems is presented along with the EBNF of a hierarchical articulated system that was used to describe the model. A revised form of evolution is presented and justified. An AI model that makes use of this new evolutionary paradigm is introduced. A variety of AI variants are defined and simulated. The results of these simulations are presented and analysed. Based on these results recommendations for future work are made.
AFRIKAANSE OPSOMMING: Die beheer van dinamiese masjiene, soos intelligente robotte, is tans beperk tot fisies stabilie - of relatief stabiele - sisteme. In hierdie tesis word die tegnieke van kunsmatige intelligensie (KI) toegepas op die kontrole en beheer van 'n dinamies hoogs onstabiele sisteem: 'n Humanoïede model. Fisiese simulasie, geartikuleerde sisteme en kunmatige intelligensie metodes word geïdentifiseer as drie noodsaaklike vereistes vir 'n volledige en eenvormige benadering tot KI beheer in robotte. Die implementasie van 'n fisiese simulator word beskryf, en 'n motivering vir die gebruik van die sogenaamde "Open Dynamics Engine" as fisiese simulator word gegee. 'n Benadering tot geartikuleerde sisteme word beskryf, tesame met die EBNF van 'n hierargiese geartikuleerde sisteem wat gebruik is om die model te beskryf. 'n Nuwe interpretasie vir evolusie word voorgestel, wat die basis vorm van 'n KI model wat in die tesis gebruik word. 'n Verskeidenheid van KI variasies word gedefineer en gesimuleer, en die resultate word beskryf en ontleed. Voorstelle vir verdere navorsing word gemaak.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
36

Mufti, H. (Haseeb). „Human body communication performance simulations“. Master's thesis, University of Oulu, 2016. http://urn.fi/URN:NBN:fi:oulu-201606092482.

Der volle Inhalt der Quelle
Annotation:
Human Body Communication (HBC) is a novel communication method between devices which use human body as a transmission medium. This idea is mostly based on the concept of wireless biomedical monitoring system. The on-body sensor nodes can monitor vital signs of a human body and use the body as a transmission medium. This technology is convenient for long durations of clinical monitoring with the option of more mobility and freedom for the user. In this thesis, IEEE 802.15.6-2012 physical (PHY) layer for the HBC was simulated. Simulation model is following the standard’s requirements and processes. The human body was taken as a transmission medium and simulations, which follow the HBC standard, have been carried out. For the purpose of simulations, MATLAB is used as a platform to test and run the simulations. The constants and variables used in the simulations are taken from the IEEE 802.15 working group for wireless personal area networks (WPANs). The transmitter model and the receiver model have been taken from the standard, with changes done in it for performing the simulations on the PHY layer only. The simulations were done keeping in mind the dielectric properties of the outer layer of a human body, i.e., the dielectric values for human skin are noted and their corresponding values were used in the mathematical calculations. The work done here presents a transmitter and receiver architecture for the human body communication. The minimum data rate being 164 kbps and the transmitter being designed around the 21 MHz center frequency has achieved some outputs which are worth looking. The channel models used in this simulator are HBC channel and AWGN (additive white Gaussian noise) channel. It was observed that when signal was passed through AWGN channel, noise was added uniformly over the signal, while in the HBC channel signal strength is directly proportional to the transceiver ground sizes. In conclusion, the size of the ground terminals plays a critical role for the signal quality in the HBC simulator. The results in this thesis show that pathloss has certain linearity with the distance. The pathloss is calculated for different parts of the body with higher loss for structure with higher amount of bone, and vice versa. It is observed that in the HBC channel there are four factors with high impact on the system. These are the distances between the transceiver in air and on body while the other two are the sizes of the transceiver grounds. The size of the transmitter ground has been deemed very significant for the HBC from the simulations results. The four factors show high impact on the HBC channel. The signal strength is highly effected with the change in these four characteristics. From the simulation results it is evident that the HBC channel show a 15 to 20 dB deviation when compared to AWGN channel. The Eb⁄N0 for BER level at 10^(-3) for AWGN channel is 10 to 11 dB while for HBC it is around 27 dB showing a significant difference in the results.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
37

Blouin-Demers, Gabriel. „Thermoregulation and habitat use by black rat snakes (Elaphe obsoleta obsoleta) at the northern extreme of their distribution“. Thesis, National Library of Canada = Bibliothèque nationale du Canada, 2001. http://www.collectionscanada.ca/obj/s4/f2/dsk3/ftp04/NQ60951.pdf.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
38

Morris, Nathan B. „Do Peripheral Thermoreceptors in the Abdomen Modify Human Sudomotor Responses?“ Thèse, Université d'Ottawa / University of Ottawa, 2014. http://hdl.handle.net/10393/30374.

Der volle Inhalt der Quelle
Annotation:
Previous research has demonstrated that ingesting fluid of different temperatures results in different whole-body sweat losses (WBSL) and transient changes in local sweat rate (LSR) without any parallel differences in core or skin temperatures. The purpose of this thesis was to determine the potential location and relative contribution of gastrointestinal thermoreceptors that modify sudomotor activity. Eight participants cycled for 75 min while cold (1.5°C) and warm (50°C) water was either swilled in the mouth, or delivered directly to the stomach bypassing the mouth using a nasogastric tube, after 15, 30 and 45-min of exercise. Mouth-swilling warm or cold water did not alter sudomotor output, however delivering warm or cold water directly into the stomach led to a temperature-dependent change in sudomotor output, despite similar core and skin temperatures. These data indicate that thermoreceptors independently modulating sudomotor output probably reside within the abdominal area, but not the mouth.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
39

Classen, Constance 1957. „Inca cosmology and the human body“. Thesis, McGill University, 1990. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=74329.

Der volle Inhalt der Quelle
Annotation:
In the Inca Empire, the human body served as a symbol and mediator of cosmic structures and processes through its own structures and processes. The structures of the body with cosmological relevance included the duality of right and left and the integrated unity of the body as a whole, while the processes of the body included reproduction, illness and sensory perception. Inca myths and rituals both expressed and enacted this corporeal and cosmic order.
With the arrival of the Spanish, the Incas were confronted with a radically different image of the body and the cosmos. The clash between the Spanish and Inca orders was experienced by the Incas as a disordering of the human and cosmic bodies. While the Spanish Conquest destroyed the Inca empire and imposed a new culture on its former inhabitants, however, many of the principles which ordered and interrelated the body and the cosmos in Inca cosmology have survived in the Andes to the present day.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
40

Suau, Cuadros Xavier. „Human body analysis using depth data“. Doctoral thesis, Universitat Politècnica de Catalunya, 2013. http://hdl.handle.net/10803/134801.

Der volle Inhalt der Quelle
Annotation:
Human body analysis is one of the broadest areas within the computer vision field. Researchers have put a strong effort in the human body analysis area, specially over the last decade, due to the technological improvements in both video cameras and processing power. Human body analysis covers topics such as person detection and segmentation, human motion tracking or action and behavior recognition. Even if human beings perform all these tasks naturally, they build-up a challenging problem from a computer vision point of view. Adverse situations such as viewing perspective, clutter and occlusions, lighting conditions or variability of behavior amongst persons may turn human body analysis into an arduous task. In the computer vision field, the evolution of research works is usually tightly related to the technological progress of camera sensors and computer processing power. Traditional human body analysis methods are based on color cameras. Thus, the information is extracted from the raw color data, strongly limiting the proposals. An interesting quality leap was achieved by introducing the multiview concept. That is to say, having multiple color cameras recording a single scene at the same time. With multiview approaches, 3D information is available by means of stereo matching algorithms. The fact of having 3D information is a key aspect in human motion analysis, since the human body moves in a three-dimensional space. Thus, problems such as occlusion and clutter may be overcome with 3D information. The appearance of commercial depth cameras has supposed a second leap in the human body analysis field. While traditional multiview approaches required a cumbersome and expensive setup, as well as a fine camera calibration; novel depth cameras directly provide 3D information with a single camera sensor. Furthermore, depth cameras may be rapidly installed in a wide range of situations, enlarging the range of applications with respect to multiview approaches. Moreover, since depth cameras are based on infra-red light, they do not suffer from illumination variations. In this thesis, we focus on the study of depth data applied to the human body analysis problem. We propose novel ways of describing depth data through specific descriptors, so that they emphasize helpful characteristics of the scene for further body analysis. These descriptors exploit the special 3D structure of depth data to outperform generalist 3D descriptors or color based ones. We also study the problem of person detection, proposing a highly robust and fast method to detect heads. Such method is extended to a hand tracker, which is used throughout the thesis as a helpful tool to enable further research. In the remainder of this dissertation, we focus on the hand analysis problem as a subarea of human body analysis. Given the recent appearance of depth cameras, there is a lack of public datasets. We contribute with a dataset for hand gesture recognition and fingertip localization using depth data. This dataset acts as a starting point of two proposals for hand gesture recognition and fingertip localization based on classification techniques. In these methods, we also exploit the above mentioned descriptor proposals to finely adapt to the nature of depth data.%, and enhance the results in front of traditional color-based methods.
L’anàlisi del cos humà és una de les àrees més àmplies del camp de la visió per computador. Els investigadors han posat un gran esforç en el camp de l’anàlisi del cos humà, sobretot durant la darrera dècada, degut als grans avenços tecnològics, tant pel que fa a les càmeres com a la potencia de càlcul. L’anàlisi del cos humà engloba varis temes com la detecció i segmentació de persones, el seguiment del moviment del cos, o el reconeixement d'accions. Tot i que els essers humans duen a terme aquestes tasques d'una manera natural, es converteixen en un difícil problema quan s'ataca des de l’òptica de la visió per computador. Situacions adverses, com poden ser la perspectiva del punt de vista, les oclusions, les condicions d’il•luminació o la variabilitat de comportament entre persones, converteixen l’anàlisi del cos humà en una tasca complicada. En el camp de la visió per computador, l’evolució de la recerca va sovint lligada al progrés tecnològic, tant dels sensors com de la potencia de càlcul dels ordinadors. Els mètodes tradicionals d’anàlisi del cos humà estan basats en càmeres de color. Això limita molt els enfocaments, ja que la informació disponible prové únicament de les dades de color. El concepte multivista va suposar salt de qualitat important. En els enfocaments multivista es tenen múltiples càmeres gravant una mateixa escena simultàniament, permetent utilitzar informació 3D gràcies a algorismes de combinació estèreo. El fet de disposar d’informació 3D es un punt clau, ja que el cos humà es mou en un espai tri-dimensional. Això doncs, problemes com les oclusions es poden apaivagar si es disposa de informació 3D. L’aparició de les càmeres de profunditat comercials ha suposat un segon salt en el camp de l’anàlisi del cos humà. Mentre els mètodes multivista tradicionals requereixen un muntatge pesat i car, i una celebració precisa de totes les càmeres; les noves càmeres de profunditat ofereixen informació 3D de forma directa amb un sol sensor. Aquestes càmeres es poden instal•lar ràpidament en una gran varietat d'entorns, ampliant enormement l'espectre d'aplicacions, que era molt reduït amb enfocaments multivista. A més a més, com que les càmeres de profunditat estan basades en llum infraroja, no pateixen problemes relacionats amb canvis d’il•luminació. En aquesta tesi, ens centrem en l'estudi de la informació que ofereixen les càmeres de profunditat, i la seva aplicació al problema d’anàlisi del cos humà. Proposem noves vies per descriure les dades de profunditat mitjançant descriptors específics, capaços d'emfatitzar característiques de l'escena que seran útils de cara a una posterior anàlisi del cos humà. Aquests descriptors exploten l'estructura 3D de les dades de profunditat per superar descriptors 3D generalistes o basats en color. També estudiem el problema de detecció de persones, proposant un mètode per detectar caps robust i ràpid. Ampliem aquest mètode per obtenir un algorisme de seguiment de mans que ha estat utilitzat al llarg de la tesi. En la part final del document, ens centrem en l’anàlisi de les mans com a subàrea de l’anàlisi del cos humà. Degut a la recent aparició de les càmeres de profunditat, hi ha una manca de bases de dades públiques. Contribuïm amb una base de dades pensada per la localització de dits i el reconeixement de gestos utilitzant dades de profunditat. Aquesta base de dades és el punt de partida de dues contribucions sobre localització de dits i reconeixement de gestos basades en tècniques de classificació. En aquests mètodes, també explotem les ja mencionades propostes de descriptors per millor adaptar-nos a la naturalesa de les dades de profunditat.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
41

Bernhardt, D. „Emotion inference from human body motion“. Thesis, University of Cambridge, 2010. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.596592.

Der volle Inhalt der Quelle
Annotation:
Most efforts to recognise emotions from the human body have focused on expressive gestures which are archetypal and exaggerated expressions of emotions. The principal contribution of this dissertation is the influence of emotional states from everyday actions such as walking, knocking and throwing. The implementation of the system draws inspiration from a variety of disciplines including psychology, character animation and speech recognition. Complex actions are modelled using Hidden Markov Models and motion primitives. This dissertation describes a holistic approach which models emotional, action and personal influences in order to maximise the discriminability of different emotion classes. A pipeline is developed which incrementally removes the biases introduced by different action contexts and individual differences. The resulting signal is described in terms of posture and dynamic features and classified into one of several emotion classes using statistically trained Support Vector Machines. The system also goes beyond isolated expressions and is able to classify natural action sequences. I use Level Building to segment action sequences and combine component classifications using an incremental voting scheme which is suitable for online applications. The system is comprehensively evaluated along a number of dimensions using a corpus of motion-captured actions. For isolated actions I evaluate the generalisation performance to new subjects. For action sequences I study the effects of reusing models trained on the isolated cases vs. adapting models to connected samples. The dissertation also evaluates the role of modelling the influence of individual user differences.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
42

Häggmark, Anna. „Neuroproteomic profiling of human body fluids“. Doctoral thesis, KTH, Proteomik och nanobioteknologi, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-158944.

Der volle Inhalt der Quelle
Annotation:
This thesis provides results from affinity based studies where human body fluids were profiled to find markers for neurological diseases. Both proteins and autoantibodies were analysed using microarray technologies that can profile hundreds of analytes and hundreds of samples in parallel using small sample volumes. A central element in this work was to develop and apply new methods to study cerebrospinal fluid (CSF), which is the fluid in direct contact with the brain. CSF contains proteins reflecting the physiological state of the central nervous system and therefore offers a unique insight into proteins associated to neurological disorders. As a complement to CSF, bloodderived samples such as serum and plasma, were also investigated as these represent potential sources of disease related proteins. The work presented here summarises the development of assay protocols to study protein and autoantibodies in CSF and blood using planar and bead-based microarrays. In Paper I, an antibody-based protocol was developed to enable multiplexed protein profiling in CSF. The protocol was then applied for a first analysis within multiple sclerosis (MS) patients. In Paper II, the results were further evaluated in additional CSF as well as plasma samples. Based on the CSF analysis we found two proteins associated to MS; GAP43, a protein related to disease progression and SERPINA3, a protein involved in inflammation. In addition, four other proteins; IRF8, METTL14, IL7 and SLC30A7, were found to have altered plasma levels between the patient groups. The expression of these proteins were further investigated by immunofluorescent staining of human brain tissue, revealing differential localisation of proteins in diseased and healthy brain. In Paper III, a study on extensive protein profiling of plasma in the context of another neurodegenerative disorder, amyotrophic lateral sclerosis (ALS), is described. The levels of three proteins, namely NEFM, RGS18 and SCL25A20, were found to be elevated in ALS patients compared to controls. Among these, NEFM also indicated association to disease subtype as the levels were elevated in patients with definite compared to suspected diagnosis. In addition to antibodies, we also utilised antigens on microarrays to screen for the presence of autoantibodies in body fluids. In Paper IV, a strategy for this analysis was developed using protein fragments and two types of microarrays. This strategy was then applied for profiling of the autoantibody repertoire of MS patients, revealing 51 protein fragments with potential disease relevance. Interestingly, comparison of plasma and CSF samples obtained from the same patients indicated high concordance of antibodies between the two body fluids. In Paper V, a similar strategy was applied to narcolepsy, another neurological disorder. Our investigation of antibodies in serum revealed higher reactivity towards METTL22, NT5C1A and TMEM134 compared to controls in two independent sample materials. In conclusion, the presented work constitutes a framework of proteomic assays for enhanced exploration of proteins and autoantibodies in neuroscience. Moreover, we have reported identification of several potential disease markers to be further investigated within neurological disorders.

QC 20150116

APA, Harvard, Vancouver, ISO und andere Zitierweisen
43

Peelen, Marius Vincent. „Body selectivity in human visual cortex“. Thesis, Bangor University, 2006. https://research.bangor.ac.uk/portal/en/theses/body-selectivity-in-human-visual-cortex(4091f96c-dee2-42ec-9a32-c0a8cf17b288).html.

Der volle Inhalt der Quelle
Annotation:
Perceiving other people is a seemingly effortless process. Yet within a few hundred milliseconds we are aware of who we are looking at, what this person is doing, and even what this person feels. We derive this information from the form and motion of the face and body. Faces may be particularly important for some aspects of person perception (e. g., identity recognition), whereas bodies may be more important for others (e. g., action recognition). Furthermore, information from the body is important in cases where it is not possible to perceive the details of the face, for instance when the face is occluded, or when we see someone from a distance. In most cases, however, it is likely that information from both the face and the body are perceived in parallel and are integrated at an early stage. Previous research on person perception has mostly focused on the brain mechanisms underlying face perception. Much less research has focused on the brain mechanismsu nderlying body perception,w hich is the topic of this thesis. Using functional magnetic resonance imaging (fMRI) I provide evidence for a previously unknown body-selective visual area that overlaps a face-selective area. By employing novel analysis techniques that take into account patterns of activation across voxels I show that body- and face-selective areas can be functionally dissociated. Finally, I show that, in contrast to frontal and parietal action-recognition areas, visual body-selective areasd o not contain a dynamic representationo f observeda ctions. Together, thesef indings increaseo ur understandingo f the brain mechanismsu nderlying body, face and action perception, by showing both similarities and dissimilarities in the brain structures involved in these processes.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
44

Feng, Weinan. „Multiple Human Body Detection in Crowds“. Thesis, Högskolan i Gävle, Avdelningen för Industriell utveckling, IT och Samhällsbyggnad, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:hig:diva-12352.

Der volle Inhalt der Quelle
Annotation:
The objective of this project is to use digital imaging devices to monitor a delineated area of the public space and to register statistics about people moving across this area. A feasible detecting approach, which is based on background subtraction, has been developed and has been tested on 39 images. Individual pedestrians in images can be detected and counted. The approach is suitably used to detect and count pedestrians without overlapping. Accuracy rate of detection is higher than 80%.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
45

Kubbinga, Chris. „The transient body, an investigation of the human body through design“. Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1997. http://www.collectionscanada.ca/obj/s4/f2/dsk2/ftp03/MQ26768.pdf.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
46

Bao, Guanqun. „On Simultaneous Localization and Mapping inside the Human Body (Body-SLAM)“. Digital WPI, 2014. https://digitalcommons.wpi.edu/etd-dissertations/206.

Der volle Inhalt der Quelle
Annotation:
Wireless capsule endoscopy (WCE) offers a patient-friendly, non-invasive and painless investigation of the entire small intestine, where other conventional wired endoscopic instruments can barely reach. As a critical component of the capsule endoscopic examination, physicians need to know the precise position of the endoscopic capsule in order to identify the position of intestinal disease after it is detected by the video source. To define the position of the endoscopic capsule, we need to have a map of inside the human body. However, since the shape of the small intestine is extremely complex and the RF signal propagates differently in the non-homogeneous body tissues, accurate mapping and localization inside small intestine is very challenging. In this dissertation, we present an in-body simultaneous localization and mapping technique (Body-SLAM) to enhance the positioning accuracy of the WCE inside the small intestine and reconstruct the trajectory the capsule has traveled. In this way, the positions of the intestinal diseases can be accurately located on the map of inside human body, therefore, facilitates the following up therapeutic operations. The proposed approach takes advantage of data fusion from two sources that come with the WCE: image sequences captured by the WCE's embedded camera and the RF signal emitted by the capsule. This approach estimates the speed and orientation of the endoscopic capsule by analyzing displacements of feature points between consecutive images. Then, it integrates this motion information with the RF measurements by employing a Kalman filter to smooth the localization results and generate the route that the WCE has traveled. The performance of the proposed motion tracking algorithm is validated using empirical data from the patients and this motion model is later imported into a virtual testbed to test the performance of the alternative Body-SLAM algorithms. Experimental results show that the proposed Body-SLAM technique is able to provide accurate tracking of the WCE with average error of less than 2.3cm.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
47

Cronjé, Thomas Frederick. „A plethysmographic device for determining human body volume and body density“. Master's thesis, University of Cape Town, 1992. http://hdl.handle.net/11427/27150.

Der volle Inhalt der Quelle
Annotation:
The measurement of total body volume (V) (excluding lung volume) together with total body mass (m) is required in order to determine body density (d = m/V). From this, and using certain simplifying assumptions, it is possible to derive body composition in terms of fat mass (FM) and fat free mass (FFM) for the two-compartment model. The standard method for determining body volume (and hence body composition) is the densitometric (underwater weighing) technique based on Archimedes' principle. Three variables, notably residual lung volume (RV), total body mass (m) and submerged body mass are measured. RV is normally determined using a gas dilution technique while total body mass is simply measured using an accurate weighing scale. The submerged body mass is measured while the subject is totally submerged in a tank of water. This method, although relatively accurate, requires substantial apparatus and is time consuming. An alternative method, based on a polytropic thermodynamic process, is described for body volume measurement and thereby for body composition assessment. Previous use of this method by Taylor, et al. (1985) and Gundlach and Visscher (1986) were successful, but complex in terms of operating system. The described system comprises of a Perspex, sealed chamber. A cycling piston communicates with the chamber and imposes a minute sinusoidal pressure variation which is then measured. With a subject situated inside the chamber an increased pressure variation, caused by the decreased chamber volume, is then measured and processed to yield the displaced, or body volume. Subject comfort, above all, is greatly enhanced, in comparison to the underwater weighing method. A substantial advantage of the method appears to be that RV need no longer be measured. Variables such as a rise of temperature and humidity caused by the subject, as well as pressure variations due to respiration, were expected and found. These were analyzed both theoretically and experimentally and where necessary the data were modified to account for these variables using a personal computer. Calibration and preliminary validation of the instrument has been carried out using underwater weighing, bioimpedance and skinfold analyses and the error of measurement assessed. It appears that the described plethysmographic method is capable of measuring body volume and thus compares favourably to the underwater weighing method. Even though other groups have succeeded in employing similar principles, a substantially simpler mechanism has been used here.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
48

Topcu, Hasan Huseyin. „Human Body Part Detection And Multi-human Tracking Insurveillance Videos“. Master's thesis, METU, 2012. http://etd.lib.metu.edu.tr/upload/12614308/index.pdf.

Der volle Inhalt der Quelle
Annotation:
With the recent developments in Computer Vision and Pattern Recognition, surveillance applications are equipped with the capabilities of event/activity understanding and interpretation which usually require recognizing humans in real world scenes. Real world scenes such as airports, streets and train stations are complex because they involve many people, complicated occlusions and cluttered backgrounds. Although complex real world scenes exist, human detectors have the capability to locate pedestrians accurately even in complex scenes and visual trackers have the capability to track targets in cluttered environments. The integration of visual object detection and tracking, which are the fundamental features of available surveillance applications, is one of the solutions for multi-human tracking problem in crowded scenes which is studied in this thesis. In this thesis, human body part detectors, which are capable of detecting human heads and human upper body parts, are trained with Support Vector Machines (SVM) by using Histogram of Oriented Gradients (HOG), which is one of the state-of-the-art descriptor for human detection. The training process is elaborated by investigating the effects of the parameters of the HOG descriptor. The human heads and upper body parts are searched in the region of interests (ROI) computed by detecting motion. In addition, these human body part detectors are integrated with a multi-human tracker which solves the data association problem with the Multi Scan Markov Chain Monte Carlo Data Association (MCMCDA) algorithm. Associated measurements of human upper body part locations are used for state correction for each track. State estimation is done through Kalman Filter. The performance of detectors are evaluated using MIT Pedestrian dataset and INRIA Human dataset.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
49

Varol, Gül. „Learning human body and human action representations from visual data“. Thesis, Paris Sciences et Lettres (ComUE), 2019. http://www.theses.fr/2019PSLEE029.

Der volle Inhalt der Quelle
Annotation:
Le contenu visuel se concentre souvent sur les humains. L’analyse automatique des humains à partir de données visuelles revêt donc une grande importance pour de nombreuses applications. Le but de cette thèse est d’apprendre des représentations visuelles pour l’analyse des humains. Un accent particulier est mis sur deux domaines étroitement liés de la vision artificielle : l’analyse du corps humain et la reconnaissance des actions. En résumé, nos contributions sont les suivantes : (i) nous générons des données synthétiques photoréalistes de personnes permettant l’entraînement de CNNs pour l’analyse du corps humain, (ii) nous proposons une architecture multitâche permettant d’obtenir une représentation volumétrique du corps à partir d’une seule image, (iii) nous étudions les avantages des convolutions temporelles à long terme pour la reconnaissance de l’action humaine à l’aide de CNNs 3D, (iv) nous incorporons une fonction de coût de similarité des vidéos multi-vues pour concevoir des représentations invariantes au changement de vue
The focus of visual content is often people. Automatic analysis of people from visual data is therefore of great importance for numerous applications in content search, autonomous driving, surveillance, health care, and entertainment. The goal of this thesis is to learn visual representations for human understanding. Particular emphasis is given to two closely related areas of computer vision: human body analysis and human action recognition. In summary, our contributions are the following: (i) we generate photo-realistic synthetic data for people that allows training CNNs for human body analysis, (ii) we propose a multi-task architecture to recover a volumetric body shape from a single image, (iii) we study the benefits of long-term temporal convolutions for human action recognition using 3D CNNs, (iv) we incorporate similarity training in multi-view videos to design view-independent representations for action recognition
APA, Harvard, Vancouver, ISO und andere Zitierweisen
50

Faulkner, Steve H. „Body temperature manipulation and exercise performance in athletically trained males“. Thesis, Loughborough University, 2012. https://dspace.lboro.ac.uk/2134/10884.

Der volle Inhalt der Quelle
Annotation:
Exercise or activity in high ambient temperatures offers a particular challenge to the thermoregulatory system. It is likely that mechanisms such as sweat evaporation alone are not sufficient for maintaining body temperature within a safe limit (~36.5-38.5˚C) and below 40˚C, which may result in impaired physiological function and performance. Exogenous cooling may be of benefit prior to, during and after events that place increased thermal strain due to increased metabolic heat production and elevated environmental temperatures upon the thermoregulatory system. Conversely, in situations where it is not possible to maintain body temperature via either continued physical activity or elevated ambient temperatures, exogenous heating may be required in order to allow optimal physiological performance. Few studies have directly aligned cooling devices with data detailing effective target regions for cooling to allow a pre-cooling garment to be of minimal weight but maximal cooling efficiency. Conversely, no study has considered the effect of muscle temperature maintenance during rest periods on subsequent power-based activities. The aim of this thesis was to determine ways in which body temperature manipulation is capable of improving exercise performance in both power and endurance-based events. It was hypothesised that the manipulation of body temperature will result in subsequent changes in body temperature that would improve performance. Specifically, the use of pre-cooling would result in a reduction of body temperature and improve endurance exercise performance. Conversely, maintaining Tm following warm up completion would have a beneficial effect on sprint and power related performance. Study one set out to determine differences in regional body heat loss in 12 individual anatomical zones using a water perfused suit. Data obtained from this initial study allowed for the specific targeting of regions that were identified as having high rates of heat loss in subsequent studies that focused on pre-cooling and performance. The anatomical regions identified as having high potential affinity for heat exchange with the surrounding environment and cooling devices were the hands, forearms, upper and lower back and torso. Subsequent studies demonstrated that cooling of these areas was capable of lowering thermal sensation and improving thermal comfort prior to and during exercise in moderate environmental conditions (24˚C, 50% RH). In these moderate conditions, there was no statistically significant improvement in treadmill based self-paced 5000m running performance. However, in hot conditions (35˚C 50% RH), the use of a cooling vest and sleeves did yield a significant improvement in cycling time trial performance, which equated to 4.8%. This leads to the suggestion that there may be a threshold ambient temperature, above which pre-cooling becomes an important tool in maximizing performance potential. A parallel area of investigation, on the other side of the temperature spectrum, was the effect of muscle temperature manipulation on power-based exercise performance. The relationship between increased muscle temperature and power output is well established, however little is known about the effect of enforced rest or recovery between two bouts of exercise. Therefore, two studies were conducted to establish what affect a delay between warm up completion and exercise has on muscle temperature and subsequent sprint cycling performance. It was shown that with 30-minutes of rest between exercise bouts wearing tracksuit trousers, muscle temperature declined significantly (~1-1.5˚C). This decline was attenuated with the use of external passive electrical heating during the recovery compared to recovery completed in tracksuit trousers alone. The attenuated decline in muscle temperature following the use of the heated trousers resulted in an improvement in sprint cycling performance (~9%), with the use of insulated trousers having no effect on any variables measured, all relative to wearing tracksuit trousers in the rest period. In a follow-up study, the effect of implementing the heated trousers during the warm up and in addition to the rest period had on muscle temperature increase and sprint performance. A secondary area of investigation in this study was to determine the linearity of muscle temperature decline following warm up cessation. This study demonstrated that there was no additional benefit of combining passive heating with an active warm up on either muscle temperature elevations or subsequent sprint performance compared to the active warm up alone. It was shown that when the no heating was used at any stage, muscle temperature declined exponentially. However, when the heated trousers were used during recovery and/or during warm up, muscle temperature levelled off at a higher value towards the end of the recovery period. This study was also able to show significant improvements in absolute, relative and mean power output following the use of the heated trousers in the warm up and recovery, or the recovery alone. This thesis has identified ways in which body temperature may be manipulated in order to benefit both sprint and endurance exercise performance, using both pre-cooling and active heating. A novel concept for minimizing muscle temperature decline during periods of inactivity between different rounds of competition was shown to maximize sprint performance yielding significant improvements in peak and mean power outputs.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Wir bieten Rabatte auf alle Premium-Pläne für Autoren, deren Werke in thematische Literatursammlungen aufgenommen wurden. Kontaktieren Sie uns, um einen einzigartigen Promo-Code zu erhalten!