Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Thermoplastic composite“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Thermoplastic composite" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Thermoplastic composite"
Periasamy, Kailashbalan, Everson Kandare, Raj Das, Maryam Darouie und Akbar A. Khatibi. „Interfacial Engineering Methods in Thermoplastic Composites: An Overview“. Polymers 15, Nr. 2 (12.01.2023): 415. http://dx.doi.org/10.3390/polym15020415.
Der volle Inhalt der QuelleBona, Anna. „Theoretical and Experimental Review of Applied Mechanical Tests for Carbon Composites with Thermoplastic Polymer Matrix“. Transactions on Aerospace Research 2019, Nr. 4 (01.12.2019): 55–65. http://dx.doi.org/10.2478/tar-2019-0023.
Der volle Inhalt der QuelleMat Rasat, Mohd Sukhairi, Razak Wahab, Amran Shafie, Ahmad Mohd Yunus AG., Mahani Yusoff, Sitti Fatimah Mhd. Ramle und Zulhisyam A.K. „Effect of Wood-Fiber Geometry Size on Mechanical Properties of Wood-Fiber from Neolamarckia Cadamba Species Reinforced Polypropylene Composites“. Journal of Tropical Resources and Sustainable Science (JTRSS) 1, Nr. 1 (15.08.2021): 42–50. http://dx.doi.org/10.47253/jtrss.v1i1.669.
Der volle Inhalt der QuelleRodriguez, Patrick A., und Donald W. Radford. „A DMA-Based Approach to Quality Evaluation of Digitally Manufactured Continuous Fiber-Reinforced Composites from Thermoplastic Commingled Tow“. Journal of Composites Science 6, Nr. 2 (18.02.2022): 61. http://dx.doi.org/10.3390/jcs6020061.
Der volle Inhalt der QuelleKhamidullaevna, Alimova Zebo, und Dauletbaeva Hulkar Ilkhomzhonovna. „RESEARCH OF POLYMER COMPOSITE MATERIALS BASED ON THERMOPLASTICS“. European International Journal of Multidisciplinary Research and Management Studies 02, Nr. 06 (01.06.2022): 170–73. http://dx.doi.org/10.55640/eijmrms-02-06-33.
Der volle Inhalt der QuellePerrin, Henri, Masoud Bodaghi, Vincent Berthé, Sébastien Klein und Régis Vaudemont. „On the Hot-Plate Welding of Reactively Compatibilized Acrylic-Based Composites/Polyamide (PA)-12“. Materials 16, Nr. 2 (10.01.2023): 691. http://dx.doi.org/10.3390/ma16020691.
Der volle Inhalt der QuelleMihu, Georgel, Sebastian-Marian Draghici, Vasile Bria, Adrian Circiumaru und Iulian-Gabriel Birsan. „Mechanical Properties of Some Epoxy-PMMA Blends“. Materiale Plastice 58, Nr. 2 (05.07.2021): 220–28. http://dx.doi.org/10.37358/mp.21.2.5494.
Der volle Inhalt der QuelleÖztekin, Hilal Filiz, Mustafa Gür, Serkan Erdem und Mete Onur Kaman. „Effect of fiber type and thickness on mechanical behavior of thermoplastic composite plates reinforced with fabric plies“. Journal of Structural Engineering & Applied Mechanics 5, Nr. 3 (30.09.2022): 161–69. http://dx.doi.org/10.31462/jseam.2022.03161169.
Der volle Inhalt der QuelleVellguth, Natalie, Tanja Rudeck, Madina Shamsuyeva, Franz Renz und Hans Josef Endres. „Thermal Stability of Natural Fibers via Thermoset Coating for Application in Engineering Thermoplastics“. Key Engineering Materials 809 (Juni 2019): 433–38. http://dx.doi.org/10.4028/www.scientific.net/kem.809.433.
Der volle Inhalt der QuelleWongpreedee, Thapanee, und Nanthaya Kengkhetkit. „Effect of Rice Flour Types on the Properties of Nonwoven Pineapple Leaf Fiber and Thermoplastic Rice Starch Composites“. Key Engineering Materials 904 (22.11.2021): 221–25. http://dx.doi.org/10.4028/www.scientific.net/kem.904.221.
Der volle Inhalt der QuelleDissertationen zum Thema "Thermoplastic composite"
Li, Min-Chung. „Thermoplastic composite consolidation“. Diss., Virginia Tech, 1993. http://hdl.handle.net/10919/40036.
Der volle Inhalt der QuellePh. D.
Wu, Xiang. „Thermoforming continuous fiber reinforced thermoplastic composites“. Diss., Georgia Institute of Technology, 1990. http://hdl.handle.net/1853/9383.
Der volle Inhalt der QuelleYang, Heechun. „Modeling the processing science of thermoplastic composite tow prepreg materials“. Diss., Georgia Institute of Technology, 1992. http://hdl.handle.net/1853/17217.
Der volle Inhalt der QuelleNorpoth, Lawrence R. „Processing parameters for the consolidation of thermoplastic composites“. Thesis, Georgia Institute of Technology, 1990. http://hdl.handle.net/1853/19099.
Der volle Inhalt der QuelleABDU, ALINE AMARAL QUINTELLA. „ELONGATIONAL BEHAVIOR OF COMPOSITE THERMOPLASTIC MATERIALS“. PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 2007. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=11520@1.
Der volle Inhalt der QuelleOs materiais termoplásticos compósitos, tais como o polipropileno reforçado com fibras de vidro curtas, são usados cada vez mais em diversos setores industriais. O reforço da fibra de vidro é uma forma utilizada para melhorar as propriedades mecânicas dos termoplásticos, devido ao elevado módulo das fibras e à melhor adesão entre as fibras e a matriz polimérica. No entanto, há poucas informações referentes às propriedades desses fluidos na literatura. No presente trabalho, um estudo das propriedades cisalhantes e elongacionais do polipropileno reforçado com fibras de vidros curtas é apresentado. As viscosidades cisalhantes e elongacionais foram obtidas em um reômetro capilar através da medição da queda de pressão na entrada convergente de um capilar axissimétrico. Utilizaram-se duas geometrias diferentes na entrada do capilar, para a obtenção dos dados experimentais: as geometrias semi-hiperbólica convergente e cônica convergente. Neste último, a viscosidade elongacional foi obtida a partir da queda de pressão na entrada, utilizando as análises de Cogswell e Binding. Simulações numéricas foram realizadas com o objetivo de investigar o comportamento do polipropileno em um processo de extrusão. As equações de conservação de massa e quantidade de movimento foram resolvidas utilizando o método dos elementos finitos a partir do programa comercial Polyflow (Ansys). Para modelar o comportamento da mecânico viscoelástico do polipropileno foram utilizados os modelos de Maxwell, Oldroyd-B e Phan-Thien Tanner (PTT), no entanto a comparação entre os resultados numéricos e os experimentais obtidos no reômetro capilar não apresentaram concordância satisfatória.
Composite thermoplastic materials, like glass fiber reforced polypropropylene, are used increasingly in several industries. In particular, glass fiber reinforcement is used to improve the mechanical properties of thermoplastics, due to the high fiber modulous and to the better adesion between the fibers and the polymeric matrix. However, few data of material properties of these fluids are avaiable in the literature. In this work, a study of shear and elongational properties of a commercial short glass fiber reinforced polypropylene is presented. The shear and elongational viscosities were obtained using the pressure drop measured at a capillary rheometer, with axisymmetric converging dies. Two different die geometries were used: semihyperbolically convergent dies and conical convergent dies. In the last case, the elongational viscosity was obtained using the Cogswell and Binding analysis. Numerical simulations were also performed, to investigate the flow field through the extrusion die process, and to evaluate the pressure drop and elongational viscosity. The conservation equations of mass and momentum were solved via the finite element method, using the commercial program POLYFLOW (Ansys). The Maxwell, Oldroyd B and Phan Thien-Tanner (PTT) constitutive equations were used to model the viscoelastic mechanical behavior of Polypropylene, but the comparison between numerical results and experimental data obtained from the capillary rheometer did not show good agreement.
Sandusky, Donald Allan. „Fabrication of thermoplastic polymer composite ribbon“. W&M ScholarWorks, 1995. https://scholarworks.wm.edu/etd/1539616840.
Der volle Inhalt der QuelleSong, Xiaolan. „Modeling of Thermoplastic Composite Filament Winding“. Thesis, Virginia Tech, 2000. http://hdl.handle.net/10919/35370.
Der volle Inhalt der QuelleThermoplastic composite filament winding is an on-line consolidation process, where the composite experiences a complex temperature history and undergoes a number of temperature history affected microstructural changes that influence the structure's subsequent properties. These changes include melting, crystallization, void formation, degradation and consolidation. In the present study, models of the thermoplastic filament winding process were developed to identify and understand the relationships between process variables and the structure quality. These include models that describe the heat transfer, consolidation and crystallization processes that occur during fabrication of a filament wound composites structure.
A comprehensive thermal model of the thermoplastic filament winding process was developed to calculate the temperature profiles in the composite substrate and the towpreg temperature before entering the nippoint. A two-dimensional finite element heat transfer analysis for the composite-mandrel assembly was formulated in the polar coordinate system, which facilitates the description of the geometry and the boundary conditions. A four-node 'sector element' was used to describe the domain of interest. Sector elements were selected to give a better representation of the curved boundary shape which should improve accuracy with fewer elements compared to a finite element solution in the Cartesian-coordinate system. Hence the computational cost will be reduced. The second thermal analysis was a two-dimensional, Cartesian coordinate, finite element model of the towpreg as it enters the nippoint. The results show that the calculated temperature distribution in the composite substrate compared well with temperature data measured during winding and consolidation. The analysis also agrees with the experimental observation that the melt region is formed on the surface of the incoming towpreg in the nippoint and not on the substrate.
Incorporated with the heat transfer analysis were the consolidation and crystallization models. These models were used to calculate the degree of interply bonding and the crystallinity achieved during composite manufacture. Bonding and crystallinity developments during the winding process were investigated using the model. It is concluded that lower winding speed, higher hot-air heater nozzle temperature, and higher substrate preheating temperature yield higher nippoint temperature, better consolidation and a higher degree of crystallization. Complete consolidation and higher matrix crystallization will result in higher interlaminar strength of the wound composite structure.
Master of Science
Rohm, Kristen Nicole. „Thermoplastic Polyurethane: A Complex Composite System“. Case Western Reserve University School of Graduate Studies / OhioLINK, 2021. http://rave.ohiolink.edu/etdc/view?acc_num=case1625604511143102.
Der volle Inhalt der QuelleTalbot, Edith. „Manufacturing process modelling of thermoplastic composite resistance welding“. Thesis, McGill University, 2005. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=83934.
Der volle Inhalt der QuellePeterson, Nels Royal. „Wood-thermoplastic composites manufactured using beetle-killed spruce from Alaska's Kenai Peninsula“. Online access for everyone, 2008. http://www.dissertations.wsu.edu/Thesis/Summer2008/N_Peterson_060508.pdf.
Der volle Inhalt der QuelleBücher zum Thema "Thermoplastic composite"
Dara, Philip H. Thermoplastic matrix composite processing model. Blacksburg, Va: Virginia Polytechnic Institute and State University, 1985.
Den vollen Inhalt der Quelle findenNewaz, GM, Hrsg. Advances in Thermoplastic Matrix Composite Materials. 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959: ASTM International, 1989. http://dx.doi.org/10.1520/stp1044-eb.
Der volle Inhalt der QuelleRopers, Steffen. Bending Behavior of Thermoplastic Composite Sheets. Wiesbaden: Springer Fachmedien Wiesbaden, 2017. http://dx.doi.org/10.1007/978-3-658-17594-8.
Der volle Inhalt der Quelle1954-, Newaz Golam M., und ASTM Committee D-30 on High Modulus Fibers and Their Composites., Hrsg. Advances in thermoplastic matrix composite materials. Philadelphia, PA: ASTM, 1989.
Den vollen Inhalt der Quelle findenKo, Henry Y. S. Reconsolidation pressure effects when healing delaminated thermoplastic composite structures. [Downsview, Ont.]: Dept. of Aerospace Studies and Engineering, 1989.
Den vollen Inhalt der Quelle findenSun, C. T. Characterization of elastic-plastic properties of AS4/APC-2 thermoplastic composite. Hampton, Va: Langley Research Center, 1988.
Den vollen Inhalt der Quelle findenInternational Conference on Woodfiber-Plastic Composites (6th 2001 Madison, Wis.). Sixth International Conference on Woodfiber-Plastic Composites: May 15-16, 2001, the Madison Concourse Hotel, Madison, Wisconsin. Madison, WI: Forest Products Society, 2002.
Den vollen Inhalt der Quelle findenInternational Conference on Woodfiber-Plastic Composites (5th 1999 Madison, Wis.). Fifth International Conference on Woodfiber-Plastic Composites: May 26-27, 1999, the Madison Concourse Hotel, Madison, Wisconsin. Madison, Wis: Forest Products Society, 1999.
Den vollen Inhalt der Quelle findenT, Sun C. Orthotropic elasto-plastic behavior of AS4/APC-2 thermoplastic composite in compression. [Washington, D.C.?: National Aeronautics and Space Administration, 1990.
Den vollen Inhalt der Quelle findenSun, C. T. Orthotropic elasto-plastic behavior of AS4/APC-2 thermoplastic composite in compression. [Washington, D.C.?: National Aeronautics and Space Administration, 1990.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Thermoplastic composite"
Pilato, Louis A., und Michael J. Michno. „Thermoplastic Composites“. In Advanced Composite Materials, 144–56. Berlin, Heidelberg: Springer Berlin Heidelberg, 1994. http://dx.doi.org/10.1007/978-3-662-35356-1_10.
Der volle Inhalt der QuelleRopers, Steffen. „Thermoplastic Prepregs“. In Bending Behavior of Thermoplastic Composite Sheets, 5–20. Wiesbaden: Springer Fachmedien Wiesbaden, 2017. http://dx.doi.org/10.1007/978-3-658-17594-8_2.
Der volle Inhalt der QuelleLoos, Alfred C., und Min-Chung Li. „Consolidation during Thermoplastic Composite Processing“. In Processing of Composites, 208–38. München: Carl Hanser Verlag GmbH & Co. KG, 2000. http://dx.doi.org/10.3139/9783446401778.007.
Der volle Inhalt der QuelleRegnier, Gilles, und Steven Le Corre. „Modeling of Thermoplastic Welding“. In Heat Transfer in Polymer Composite Materials, 235–68. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2016. http://dx.doi.org/10.1002/9781119116288.ch8.
Der volle Inhalt der QuelleRopers, Steffen. „Draping Simulation of Thermoplastic Prepregs“. In Bending Behavior of Thermoplastic Composite Sheets, 21–29. Wiesbaden: Springer Fachmedien Wiesbaden, 2017. http://dx.doi.org/10.1007/978-3-658-17594-8_3.
Der volle Inhalt der QuelleThomason, J. L., und A. A. van Rooyen. „The Transcrystallised Interphase in Thermoplastic Composites“. In Controlled Interphases in Composite Materials, 423–30. Dordrecht: Springer Netherlands, 1990. http://dx.doi.org/10.1007/978-94-011-7816-7_41.
Der volle Inhalt der QuelleSingh, Narinder, Rupinder Singh und I. P. S. Ahuja. „Metal Matrix Composite from Thermoplastic Waste“. In Additive Manufacturing, 187–210. First edition. | Boca Raton, FL : CRC Press/Taylor & Francis Group, 2018.: CRC Press, 2018. http://dx.doi.org/10.1201/b22179-5.
Der volle Inhalt der QuelleKhan, Ashraf Nawaz, Ganesh Jogur und R. Alagirusamy. „Flexible Towpreg Structure and Composite Properties“. In Flexible Towpregs and Their Thermoplastic Composites, 303–40. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003049715-11.
Der volle Inhalt der QuelleRopers, Steffen. „Bending Characterization of Textile Composites“. In Bending Behavior of Thermoplastic Composite Sheets, 31–59. Wiesbaden: Springer Fachmedien Wiesbaden, 2017. http://dx.doi.org/10.1007/978-3-658-17594-8_4.
Der volle Inhalt der QuelleRopers, Steffen. „Introduction“. In Bending Behavior of Thermoplastic Composite Sheets, 1–4. Wiesbaden: Springer Fachmedien Wiesbaden, 2017. http://dx.doi.org/10.1007/978-3-658-17594-8_1.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Thermoplastic composite"
Tijs, B., A. Turon und C. Bisagni. „Failure of Thermoplastic Composite Welded Joints“. In VIII Conference on Mechanical Response of Composites. CIMNE, 2021. http://dx.doi.org/10.23967/composites.2021.043.
Der volle Inhalt der QuelleEchtermeyer, Andreas, und Bart Steuten. „Thermoplastic Composite Riser Guidance Note“. In Offshore Technology Conference. Offshore Technology Conference, 2013. http://dx.doi.org/10.4043/24095-ms.
Der volle Inhalt der QuelleWilkins, Jonathan. „Qualification of Thermoplastic Composite Pipes“. In ASME 2018 37th International Conference on Ocean, Offshore and Arctic Engineering. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/omae2018-77014.
Der volle Inhalt der QuelleHaldar, Amit Kumar, Satnam Singh und Prince. „Vibration Characteristics of Thermoplastic Composite“. In REVIEW OF PROGRESS IN QUANTITATIVE NONDESTRUCTIVE EVALUATION: Proceedings of the 35th Annual Review of Progress in Quantitative Nondestructive Evaluation. American Institute of Physics, 2011. http://dx.doi.org/10.1063/1.3669958.
Der volle Inhalt der QuelleSebaey, Tamer A., und Noel O’Dowd. „On the Manufacturing Defects of Thermoplastic Carbon/Epoxy Composites Manufactured by Automated Tape Placement“. In ASME 2020 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2020. http://dx.doi.org/10.1115/imece2020-23144.
Der volle Inhalt der QuelleOtheguy, M., A. G. Gibson und A. M. Robinson. „Towards Recyclable Composite Craft: Fusion Bonded Thermoplastic Composite T-Joints“. In Marine & Offshore Composites. RINA, 2010. http://dx.doi.org/10.3940/rina.moc10cd.2010.04.
Der volle Inhalt der QuelleKawakubo, Youichi, Masaki Nagata, Takashi Yokoyama, Yoshitaka Hayashi und Masahiro Arai. „Tribological Characteristics of Carbon Nanotube Thermoplastic Resin Composites“. In ASME/STLE 2009 International Joint Tribology Conference. ASMEDC, 2009. http://dx.doi.org/10.1115/ijtc2009-15083.
Der volle Inhalt der QuelleCasula, G., F. Lenzi, C. Vitiello, Alberto D’Amore, Domenico Acierno und Luigi Grassia. „THERMOPLASTIC COMPOSITE MATERIALS FOR AEROSPACE APPLICATIONS“. In IV INTERNATIONAL CONFERENCE TIMES OF POLYMERS (TOP) AND COMPOSITES. AIP, 2008. http://dx.doi.org/10.1063/1.2989032.
Der volle Inhalt der QuelleArakawa, Yoji. „Applying Thermoplastic Composite to Inflatable Structure“. In 54th International Astronautical Congress of the International Astronautical Federation, the International Academy of Astronautics, and the International Institute of Space Law. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2003. http://dx.doi.org/10.2514/6.iac-03-i.1.07.
Der volle Inhalt der QuelleBarrett, Alan J., Murry C. Kaufman und Michael J. Larson. „Development of a Thermoplastic Composite Kneebolster“. In International Congress & Exposition. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 1991. http://dx.doi.org/10.4271/910405.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Thermoplastic composite"
Matsen, Marc R. Energy Efficient Thermoplastic Composite Manufacturing. Office of Scientific and Technical Information (OSTI), April 2020. http://dx.doi.org/10.2172/1609100.
Der volle Inhalt der QuelleSilverman, Lee, Kaushik Mallick, Jared Stonecash und Leonard Poveromo. Thermoplastic Composite Compressed Gas Storage (CGS) Tanks. Office of Scientific and Technical Information (OSTI), Oktober 2019. http://dx.doi.org/10.2172/1568818.
Der volle Inhalt der QuelleMallick, Kaushik, Don Radford, Nate Bachman, David Snowberg, Michael Stewart und W. Scott Carron. Vertical Axis Wind Turbine (VAWT) with Thermoplastic Composite Blades. Office of Scientific and Technical Information (OSTI), November 2019. http://dx.doi.org/10.2172/1650138.
Der volle Inhalt der QuelleAl-Chaar, Ghassan, Steven Sweeney, Richard Lampo und Marion Banko. Full-scale testing of thermoplastic composite I-Beams for bridges. Construction Engineering Research Laboratory (U.S.), Juni 2017. http://dx.doi.org/10.21079/11681/22641.
Der volle Inhalt der QuelleSnowberg, David, Derek Berry, Dana Swan, Zhang Mingfu, Steve Nolet, Douglas Adams, Johnathan Goodsell, Dayakar Penumadu und Aaron Stebner. IACMI Project 4.2: Thermoplastic Composite Development for Wind Turbine Blades. Office of Scientific and Technical Information (OSTI), Dezember 2021. http://dx.doi.org/10.2172/1834393.
Der volle Inhalt der QuelleLampo, Richard G., Barry K. Myers, Karl Palutke und Darryl M. Butler. Remote Performance Monitoring of a Thermoplastic Composite Bridge at Camp Mackall, NC. Fort Belvoir, VA: Defense Technical Information Center, November 2011. http://dx.doi.org/10.21236/ada576173.
Der volle Inhalt der QuelleKunc, Vlastimil, Chad E. Duty, John M. Lindahl und Ahmed A. Hassen. The Development of High Temperature Thermoplastic Composite Materials for Additive Manufactured Autoclave Tooling. Office of Scientific and Technical Information (OSTI), August 2017. http://dx.doi.org/10.2172/1410928.
Der volle Inhalt der QuelleNaus, Dan J., James Corum, Lynn B. Klett, Mike Davenport, Rick Battiste und Jr ,. William A. Simpson. Durability-Based Design Criteria for a Quasi-Isotropic Carbon-Fiber-Reinforced Thermoplastic Automotive Composite. Office of Scientific and Technical Information (OSTI), April 2006. http://dx.doi.org/10.2172/930728.
Der volle Inhalt der QuelleNguyen, Ba Nghiep, Xiaoshi Jin, Jin Wang, Vlastimil Kunc und Charles L. Tucker III. Validation of New Process Models for Large Injection-Molded Long-Fiber Thermoplastic Composite Structures. Office of Scientific and Technical Information (OSTI), Februar 2012. http://dx.doi.org/10.2172/1035733.
Der volle Inhalt der QuelleMuehl, James H., Andrzej M. Krzysik und Poo Chow. Composite panels made with biofiber or office wastepaper bonded with thermoplastic and/or thermosetting resin. Madison, WI: U.S. Department of Agriculture, Forest Service, Forest Products Laboratory, 2004. http://dx.doi.org/10.2737/fpl-rn-294.
Der volle Inhalt der Quelle