Inhaltsverzeichnis

  1. Zeitschriftenartikel

Auswahl der wissenschaftlichen Literatur zum Thema „Thermal face images“

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Thermal face images" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Zeitschriftenartikel zum Thema "Thermal face images"

1

Mostafa, Eslam, Riad Hammoud, Asem Ali, and Aly Farag. "Face recognition in low resolution thermal images." Computer Vision and Image Understanding 117, no. 12 (2013): 1689–94. http://dx.doi.org/10.1016/j.cviu.2013.07.010.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Albar, Albar, Hendrick Hendrick, and Rahmad Hidayat. "Segmentation Method for Face Modelling in Thermal Images." Knowledge Engineering and Data Science 3, no. 2 (2020): 99. http://dx.doi.org/10.17977/um018v3i22020p99-105.

Der volle Inhalt der Quelle
Annotation:
Face detection is mostly applied in RGB images. The object detection usually applied the Deep Learning method for model creation. One method face spoofing is by using a thermal camera. The famous object detection methods are Yolo, Fast RCNN, Faster RCNN, SSD, and Mask RCNN. We proposed a segmentation Mask RCNN method to create a face model from thermal images. This model was able to locate the face area in images. The dataset was established using 1600 images. The images were created from direct capturing and collecting from the online dataset. The Mask RCNN was configured to train with 5 epochs and 131 iterations. The final model predicted and located the face correctly using the test image.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Quan, Yan Ming, Hao Xu, and Zhi Yong Ke. "Temperature Field Measurement of Turning Tool with Thermal Infrared Imager." Advanced Materials Research 305 (July 2011): 265–68. http://dx.doi.org/10.4028/www.scientific.net/amr.305.265.

Der volle Inhalt der Quelle
Annotation:
The variety of surface emissivity of carbide insert P10 against temperature raise is calibrated with antitheses. The influence of high temperature object near the carbide insert and the open measurement environment of the thermal infrared imager on the calibrated values are investigated. Then the thermal images of turning tool’s rake face are continuously captured by an infrared imager in the designed turning experiment. In the analysis of thermal images, the influence of measurement environment is taken into consideration and varied emissivity values are used to analyze the temperature in different areas of the rake face. A series of measurement results of temperature field in the rake face are achieved and they are consistent with the conventional rules of turning researches.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Kanmani, Madheswari, and Venkateswaran Narasimhan. "Optimal fusion aided face recognition from visible and thermal face images." Multimedia Tools and Applications 79, no. 25-26 (2020): 17859–83. http://dx.doi.org/10.1007/s11042-020-08628-9.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Nagumo, Kent, Tomohiro Kobayashi, Kosuke Oiwa, and Akio Nozawa. "Face Alignment in Thermal Infrared Images Using Cascaded Shape Regression." International Journal of Environmental Research and Public Health 18, no. 4 (2021): 1776. http://dx.doi.org/10.3390/ijerph18041776.

Der volle Inhalt der Quelle
Annotation:
The evaluation of physiological and psychological states using thermal infrared images is based on the skin temperature of specific regions of interest, such as the nose, mouth, and cheeks. To extract the skin temperature of the region of interest, face alignment in thermal infrared images is necessary. To date, the Active Appearance Model (AAM) has been used for face alignment in thermal infrared images. However, computation using this method is costly, and it has a low real-time performance. Conversely, face alignment of visible images using Cascaded Shape Regression (CSR) has been reported to have high real-time performance. However, no studies have been reported on face alignment in thermal infrared images using CSR. Therefore, the objective of this study was to verify the speed and robustness of face alignment in thermal infrared images using CSR. The results suggest that face alignment using CSR is more robust and computationally faster than AAM.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Chame, Kanchan P. "Face Recognition using Sketch, Thermal and Infrared Images." International Journal for Research in Applied Science and Engineering Technology 9, no. 1 (2021): 178–90. http://dx.doi.org/10.22214/ijraset.2021.32751.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Grudzień, Artur, Marcin Kowalski, and Norbert Pałka. "Thermal Face Verification through Identification." Sensors 21, no. 9 (2021): 3301. http://dx.doi.org/10.3390/s21093301.

Der volle Inhalt der Quelle
Annotation:
This paper reports on a new approach to face verification in long-wavelength infrared radiation. Two face images were combined into one double image, which was then used as an input for a classification based on neural networks. For testing, we exploited two external and one homemade thermal face databases acquired in various variants. The method is reported to achieve a true acceptance rate of about 83%. We proved that the proposed method outperforms other studied baseline methods by about 20 percentage points. We also analyzed the issue of extending the performance of algorithms. We believe that the proposed double image method can also be applied to other spectral ranges and modalities different than the face.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Hermosilla, Gabriel, José Luis Verdugo, Gonzalo Farias, Esteban Vera, Francisco Pizarro, and Margarita Machuca. "Face Recognition and Drunk Classification Using Infrared Face Images." Journal of Sensors 2018 (2018): 1–8. http://dx.doi.org/10.1155/2018/5813514.

Der volle Inhalt der Quelle
Annotation:
The aim of this study is to propose a system that is capable of recognising the identity of a person, indicating whether the person is drunk using only information extracted from thermal face images. The proposed system is divided into two stages, face recognition and classification. In the face recognition stage, test images are recognised using robust face recognition algorithms: Weber local descriptor (WLD) and local binary pattern (LBP). The classification stage uses Fisher linear discriminant to reduce the dimensionality of the features, and those features are classified using a classifier based on a Gaussian mixture model, creating a classification space for each person, extending the state-of-the-art concept of a “DrunkSpace Classifier.” The system was validated using a new drunk person database, which was specially designed for this work. The main results show that the performance of the face recognition stage was 100% with both algorithms, while the drunk identification saw a performance of 86.96%, which is a very promising result considering 46 individuals for our database in comparison with others that can be found in the literature.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Sancen-Plaza, Agustin, Luis M. Contreras-Medina, Alejandro Israel Barranco-Gutiérrez, Carlos Villaseñor-Mora, Juan J. Martínez-Nolasco, and José A. Padilla-Medina. "Facial Recognition for Drunk People Using Thermal Imaging." Mathematical Problems in Engineering 2020 (April 14, 2020): 1–9. http://dx.doi.org/10.1155/2020/1024173.

Der volle Inhalt der Quelle
Annotation:
Face recognition using thermal imaging has the main advantage of being less affected by lighting conditions compared to images in the visible spectrum. However, there are factors such as the process of human thermoregulation that cause variations in the surface temperature of the face. These variations cause recognition systems to lose effectiveness. In particular, alcohol intake causes changes in the surface temperature of the face. It is of high relevance to identify not only if a person is drunk but also their identity. In this paper, we present a technique for face recognition based on thermal face images of drunk people. For the experiments, the Pontificia Universidad Católica de Valparaíso-Drunk Thermal Face database (PUCV-DTF) was used. The recognition system was carried out by using local binary patterns (LBPs). The LBP features were obtained from the bioheat model from thermal image representation and a fusion of thermal images and a vascular network extracted from the same image. The feature vector for each image is formed by the concatenation of the LBP histogram of the thermogram with an anisotropic filter and the fused image, respectively. The proposed technique has an average percentage of 99.63% in the Rank-10 cumulative classification; this performance is superior compared to using LBP in thermal images that do not use the bioheat model.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Fitriyah, Hurriyatul, Edita Rosana Widasari, and Rekyan Regasari Mardi Putri. "Inner-Canthus Localization of Thermal Images in Face-View Invariant." International Journal on Advanced Science, Engineering and Information Technology 8, no. 6 (2018): 2570. http://dx.doi.org/10.18517/ijaseit.8.5.3903.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Mehr Quellen
Wir bieten Rabatte auf alle Premium-Pläne für Autoren, deren Werke in thematische Literatursammlungen aufgenommen wurden. Kontaktieren Sie uns, um einen einzigartigen Promo-Code zu erhalten!

Zur Bibliographie