Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Thermal and optical stress“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Thermal and optical stress" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Thermal and optical stress"
Shiue, Sham-Tsong, und Wen-Hao Lee. „Thermal stresses in carbon-coated optical fibers at low temperature“. Journal of Materials Research 12, Nr. 9 (September 1997): 2493–98. http://dx.doi.org/10.1557/jmr.1997.0329.
Der volle Inhalt der QuelleHIGUCHI, Masaya, und Koji SHIMIZU. „Evaluation of thermal stress by optical interferometric method“. Proceedings of Autumn Conference of Tohoku Branch 2004.40 (2004): 49–50. http://dx.doi.org/10.1299/jsmetohoku.2004.40.49.
Der volle Inhalt der QuelleEvans, K. E. „Thermal stress mechanisms in optical storage thin films“. Journal of Applied Physics 63, Nr. 10 (15.05.1988): 4946–50. http://dx.doi.org/10.1063/1.340438.
Der volle Inhalt der QuelleHuang, Cai Hua, Xiao Hua Sun, Yi Hua Sun und Jun Zou. „Thermal Effects Caused by Inclusions in Optical Films Irradiated by CW Laser“. Advanced Materials Research 634-638 (Januar 2013): 2609–12. http://dx.doi.org/10.4028/www.scientific.net/amr.634-638.2609.
Der volle Inhalt der QuelleHu, Fu Kai, De Jian Zhou und Lei Cheng. „Research and Design of Optical-Fiber-Embedded Structure in Optical Printed Circuit Board under Thermal Shock“. Advanced Materials Research 763 (September 2013): 238–41. http://dx.doi.org/10.4028/www.scientific.net/amr.763.238.
Der volle Inhalt der QuelleLiu, Yueai, B. M. A. Rahman und K. T. V. Grattan. „Thermal-stress-induced birefringence in bow-tie optical fibers“. Applied Optics 33, Nr. 24 (20.08.1994): 5611. http://dx.doi.org/10.1364/ao.33.005611.
Der volle Inhalt der QuelleWong, D. „Thermal stability of intrinsic stress birefringence in optical fibers“. Journal of Lightwave Technology 8, Nr. 11 (1990): 1757–61. http://dx.doi.org/10.1109/50.60576.
Der volle Inhalt der QuelleGao, You Tang, Shuo Liu und Yuan Xu. „Analysis of Thermal Shock and Stress with Infrared Optical Domes“. Applied Mechanics and Materials 325-326 (Juni 2013): 332–35. http://dx.doi.org/10.4028/www.scientific.net/amm.325-326.332.
Der volle Inhalt der QuelleLee, Kyoungho, und Joong Seok Lee. „Optimal Design of the Flexure Mount for Optical Mirror Using Topology Optimization Considering Thermal Stress Constraint“. Journal of the Korea Institute of Military Science and Technology 25, Nr. 6 (05.12.2022): 561–71. http://dx.doi.org/10.9766/kimst.2022.25.6.561.
Der volle Inhalt der QuelleChen, Tei-Chen, Ching-Jiung Chu, Chang-Hsien Ho, Chung-Chen Wu und Cheng-Chung Lee. „Determination of stress-optical and thermal-optical coefficients of Nb2O5 thin film material“. Journal of Applied Physics 101, Nr. 4 (15.02.2007): 043513. http://dx.doi.org/10.1063/1.2435796.
Der volle Inhalt der QuelleDissertationen zum Thema "Thermal and optical stress"
Kylner, Carina. „Light scattering for analysis of thermal stress induced deformation in thin metal films“. Doctoral thesis, KTH, Fysik, 1997. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-2547.
Der volle Inhalt der QuelleNR 20140805
Amazirh, Abdelhakim. „Monitoring crops water needs at high spatio-temporal resolution by synergy of optical/thermal and radar observations“. Thesis, Toulouse 3, 2019. http://www.theses.fr/2019TOU30101.
Der volle Inhalt der QuelleOptimizing water management in agriculture is essential over semi-arid areas in order to preserve water resources which are already low and erratic due to human actions and climate change. This thesis aims to use the synergy of multispectral remote sensing observations (radar, optical and thermal data) for high spatio-temporal resolution monitoring of crops water needs. In this context, different approaches using various sensors (Landsat-7/8, Sentinel-1 and MODIS) have been developed to provide information on the crop Soil Moisture (SM) and water stress at a spatio-temporal scale relevant to irrigation management. This work fits well the REC "Root zone soil moisture Estimates at the daily and agricultural parcel scales for Crop irrigation management and water use impact: a multi-sensor remote sensing approach" (http://rec.isardsat.com/) project objectives, which aim to estimate the Root Zone Soil Moisture (RZSM) for optimizing the management of irrigation water. Innovative and promising approaches are set up to estimate evapotranspiration (ET), RZSM, land surface temperature (LST) and vegetation water stress through SM indices derived from multispectral observations with high spatio-temporal resolution. The proposed methodologies rely on image-based methods, radiative transfer modelling and water and energy balance modelling and are applied in a semi-arid climate region (central Morocco). In the frame of my PhD thesis, three axes have been investigated. In the first axis, a Landsat LST-derived RZSM index is used to estimate the ET over wheat parcels and bare soil. The ET modelling estimation is explored using a modified Penman-Monteith equation obtained by introducing a simple empirical relationship between surface resistance (rc) and a RZSM index. The later is estimated from Landsat-derived land surface temperature (LST) combined with the LST endmembers (in wet and dry conditions) simulated by a surface energy balance model driven by meteorological forcing and Landsat-derived fractional vegetation cover. The investigated method is calibrated and validated over two wheat parcels located in the same area near Marrakech City in Morocco. In the next axis, a method to retrieve near surface (0-5 cm) SM at high spatial and temporal resolution is developed from a synergy between radar (Sentinel-1) and thermal (Landsat) data and by using a soil energy balance model. The developed approach is validated over bare soil agricultural fields and gives an accurate estimates of near surface SM with a root mean square difference compared to in situ SM equal to 0.03 m3 m-3. In the final axis a new method is developed to disaggregate the 1 km resolution MODIS LST at 100 m resolution by integrating the near surface SM derived from Sentinel-1 radar data and the optical-vegetation index derived from Landsat observations. The new algorithm including the S-1 backscatter as input to the disaggregation, produces more stable and robust results during the selected year. Where, 3.35 °C and 0.75 were the lowest RMSE and the highest correlation coefficient assessed using the new algorithm
Schulze, Christopher A. [Verfasser]. „Minimizing Thermal Stress in Glass Production Processes : Model Reduction and Optimal Control / Christopher A Schulze“. Aachen : Shaker, 2007. http://d-nb.info/1166509206/34.
Der volle Inhalt der QuelleÅberg, Jonas. „On the Experimental Determination of Damping of Metals and Calculation of Thermal Stresses in Solidifying Shells“. Doctoral thesis, KTH, Materialvetenskap, 2006. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-4038.
Der volle Inhalt der QuelleQC 20100929
Lankford, Maggie E. „Measurement of Thermo-Mechanical Properties of Co-Sputtered SiO2-Ta2O5 Thin Films“. University of Dayton / OhioLINK, 2021. http://rave.ohiolink.edu/etdc/view?acc_num=dayton1627653071556618.
Der volle Inhalt der QuelleKravchenko, Grygoriy A. „Crack patterns in thin films and X-ray optics thermal deformations“. [Tampa, Fla] : University of South Florida, 2008. http://purl.fcla.edu/usf/dc/et/SFE0002770.
Der volle Inhalt der QuelleYi, Duo. „Intégration de capteurs à fibre optique par projection thermique pour des applications de contrôle de structures intelligentes“. Thesis, Belfort-Montbéliard, 2016. http://www.theses.fr/2016BELF0285/document.
Der volle Inhalt der QuelleThis paper presents the modeling, simulation, experimentation and design of a smart composite structrure for high temperature measurements (up to 300 °C). In order to achieve this goal, a high temperature resistant metal coated optical fiber was considered and integrated into alumina coating. The smart composite structure consists of a substrate, a coating and an intensity modulated optical fiber temperature sensor. Firstly, an estimation of heat flux based on a experimental thermogram was firstly carried out in order to feed a numerical modeling. Then, different modelings were built to evaluate the surface temperature levels as well as the composite stress levels. The simulation showed that the composite (substrate and coating) could be considered as a thermally thin medium, the heat propagation within the composite was fast and could be estimated at a scale of millisecond. The stresses remained relatively uniform during the heating process but intensified during the cooling process. The modeling also showed that the stresses are not symmetrical in the fiber and depend on the position of the fiber relative to the substrate. After a modeling evaluation of the thermal levels as well as the stresses that may be achieved in the composite, an experimental step integrating a optical fiber into a thermal coating was carried out. Microscopic observation of surface and cross section were conducted in order to analyze the characteristics of the integrated fiber. The mechanical strength of the integrated fiber was then measured and the optical attenuation during the integration process as well as the thermal behavior of the integrated fiber during the thermal cycling were evaluated. Finally, an intensity modulated optical fiber temperature sensor was designed and integrated into ceramic coating by thermal spraying. A temperature measuring system was designed and the first tests of the thermal response as well as thermal cycling of temperature sensor were carried out. This study demonstrates the feasibility of designing a high temperature resistant smart composite structure by integrating an intensity modulated optical fiber temperature sensor in a ceramic coating elaborated by thermal spraying
Zhang, Bufa. „Optical methods of thermal diffusivity measurement“. Thesis, London South Bank University, 1996. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.336374.
Der volle Inhalt der QuelleVuppala, Archana. „Thermal and thermal stress analyses of the state-changing tooling“. abstract and full text PDF (free order & download UNR users only), 2008. http://0-gateway.proquest.com.innopac.library.unr.edu/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqdiss&rft_dat=xri:pqdiss:1460787.
Der volle Inhalt der QuelleSun, Mengyue SUN. „Optical sensor for normal stress distribution“. University of Akron / OhioLINK, 2018. http://rave.ohiolink.edu/etdc/view?acc_num=akron1525432600494617.
Der volle Inhalt der QuelleBücher zum Thema "Thermal and optical stress"
Walid, Qaqish, und Lewis Research Center, Hrsg. Optical strain measurement system development: Final report. [Cleveland, Ohio]: National Aeronautics and Space Administration, 1987.
Den vollen Inhalt der Quelle findenWalid, Qaqish, und Lewis Research Center, Hrsg. Optical strain measurement system development: Phase I. [Cleveland, Ohio]: National Aeronautics and Space Administration, 1987.
Den vollen Inhalt der Quelle findenSaravanos, D. A. Optimal fabrication processes for unidirectional metal-matrix composites: A computational simulation. [Washington, D.C.]: NASA, 1990.
Den vollen Inhalt der Quelle findenWelch, Ashley J., und Martin J. C. van Gemert, Hrsg. Optical-Thermal Response of Laser-Irradiated Tissue. Dordrecht: Springer Netherlands, 2011. http://dx.doi.org/10.1007/978-90-481-8831-4.
Der volle Inhalt der QuelleWelch, Ashley J., und Martin J. C. Van Gemert, Hrsg. Optical-Thermal Response of Laser-Irradiated Tissue. Boston, MA: Springer US, 1995. http://dx.doi.org/10.1007/978-1-4757-6092-7.
Der volle Inhalt der QuelleGemert, Martin J. C. van und SpringerLink (Online service), Hrsg. Optical-Thermal Response of Laser-Irradiated Tissue. Dordrecht: Springer Science+Business Media B.V., 2011.
Den vollen Inhalt der Quelle findenLammel, Gerhard. Optical microscanners and microspectrometers using thermal bimorph actuators. Boston: Kluwer Academic, 2002.
Den vollen Inhalt der Quelle findenLanin, Anatoly, und Ivan Fedik. Thermal Stress Resistance of Materials. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008. http://dx.doi.org/10.1007/978-3-540-71400-2.
Der volle Inhalt der QuelleHarry, Gregory, Timothy P. Bodiya und Riccardo DeSalvo, Hrsg. Optical Coatings and Thermal Noise in Precision Measurement. Cambridge: Cambridge University Press, 2009. http://dx.doi.org/10.1017/cbo9780511762314.
Der volle Inhalt der QuelleLammel, Gerhard, Sandra Schweizer und Philippe Renaud. Optical Microscanners and Microspectrometers using Thermal Bimorph Actuators. Boston, MA: Springer US, 2002. http://dx.doi.org/10.1007/978-1-4757-6083-5.
Der volle Inhalt der QuelleBuchteile zum Thema "Thermal and optical stress"
Das, Animesh Chandra, Ryozo Noguchi und Tofael Ahamed. „An Assessment of Drought Stress in Tea Plantation Areas in Bangladesh Using Optical and Thermal Remote Sensing: A Climate Change Perspective“. In New Frontiers in Regional Science: Asian Perspectives, 23–47. Singapore: Springer Nature Singapore, 2024. http://dx.doi.org/10.1007/978-981-97-1188-8_2.
Der volle Inhalt der QuelleObata, Yoshihiro. „Optimal Design of Functionally Graded Materials“. In Encyclopedia of Thermal Stresses, 3508–19. Dordrecht: Springer Netherlands, 2014. http://dx.doi.org/10.1007/978-94-007-2739-7_232.
Der volle Inhalt der QuelleZohuri, Bahman, und Nima Fathi. „Thermal Stress“. In Thermal-Hydraulic Analysis of Nuclear Reactors, 413–32. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-17434-1_15.
Der volle Inhalt der QuelleZohuri, Bahman. „Thermal Stress“. In Thermal-Hydraulic Analysis of Nuclear Reactors, 501–22. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-53829-7_15.
Der volle Inhalt der QuelleGeilfus, Christoph-Martin. „Thermal Stress“. In Controlled Environment Horticulture, 99–111. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-23197-2_9.
Der volle Inhalt der QuelleFinucane, Edward W. „Thermal Stress“. In Concise Guide to Environmental Definitions, Conversions, and Formulae, 77–82. Boca Raton: CRC Press, 2023. http://dx.doi.org/10.1201/9781003420002-5.
Der volle Inhalt der QuelleRogalski, Antoni, und Zbigniew Bielecki. „Thermal Detectors“. In Detection of Optical Signals, 157–200. New York: CRC Press, 2022. http://dx.doi.org/10.1201/b22787-5.
Der volle Inhalt der QuelleStieglitz, Robert, und Werner Platzer. „Optical Conversion“. In Solar Thermal Energy Systems, 121–242. Cham: Springer International Publishing, 2024. http://dx.doi.org/10.1007/978-3-031-43173-9_3.
Der volle Inhalt der QuelleGooch, Jan W. „Thermal Stress Cracking“. In Encyclopedic Dictionary of Polymers, 743. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4419-6247-8_11767.
Der volle Inhalt der QuelleChanda, Pradip, und Suparna Mukhopaddhyay. „Managing Thermal Stress“. In Energy Systems in Electrical Engineering, 51–58. New Delhi: Springer India, 2016. http://dx.doi.org/10.1007/978-81-322-2722-9_5.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Thermal and optical stress"
Firth, Austin, und Uma Srinivasan. „Laser Induced Thermal Stress in Optical Thin Films“. In Optical Interference Coatings. Washington, D.C.: OSA, 2019. http://dx.doi.org/10.1364/oic.2019.thb.8.
Der volle Inhalt der QuelleCôté, Patrice, und Nichola Desnoyers. „Thermal stress failure criteria for a structural epoxy“. In SPIE Optical Engineering + Applications, herausgegeben von Alson E. Hatheway. SPIE, 2011. http://dx.doi.org/10.1117/12.893832.
Der volle Inhalt der QuelleRyaboy, Vyacheslav M. „Analysis of thermal stress and deformation in elastically bonded optics“. In Optical Engineering + Applications, herausgegeben von Alson E. Hatheway. SPIE, 2007. http://dx.doi.org/10.1117/12.732217.
Der volle Inhalt der QuelleKlein, Claude A. „Thermal stress modeling for diamond-coated optical windows“. In Boulder - DL tentative, herausgegeben von Harold E. Bennett, Lloyd L. Chase, Arthur H. Guenther, Brian E. Newnam und M. J. Soileau. SPIE, 1991. http://dx.doi.org/10.1117/12.57227.
Der volle Inhalt der QuelleGrossman, K. R., R. Kelly Frazer, R. Bamberger und Joseph A. Miragliotta. „Optical technique to sense thermal stress in sapphire“. In Aerospace/Defense Sensing, Simulation, and Controls, herausgegeben von Randal W. Tustison. SPIE, 2001. http://dx.doi.org/10.1117/12.439182.
Der volle Inhalt der QuelleThielsch, Roland, Joerg Heber, Torsten Feigl und Norbert Kaiser. „Stress, microstructure and thermal-elastic properties of evaporated thin MgF_2 - films“. In Optical Interference Coatings. Washington, D.C.: OSA, 2004. http://dx.doi.org/10.1364/oic.2004.the6.
Der volle Inhalt der QuelleFang, Weidong, Qianbo Lu, Jian Bai, Peiwen Chen und Dandan Han. „Thermal stress of MOEMS accelerometers based on grating interferometric cavity“. In Optical Design and Testing VIII, herausgegeben von Yongtian Wang, Kimio Tatsuno und Tina E. Kidger. SPIE, 2018. http://dx.doi.org/10.1117/12.2502273.
Der volle Inhalt der QuelleHsu, M. Y., W. C. Lin, M. Y. Yang, C. Y. Chan, Y. C. Lin, S. T. Chang, C. F. Ho und T. M. Huang. „The Cassegrain Telescope primary mirror isostatic mount design for thermal stress“. In SPIE Optical Engineering + Applications, herausgegeben von Philip E. Ardanuy und Jeffery J. Puschell. SPIE, 2010. http://dx.doi.org/10.1117/12.860018.
Der volle Inhalt der QuelleShuying, Shao, Shao Jianda und Fan Zhengxiu. „Effects of different thermal histories on the residual stress of ZrO_2 thin films“. In Optical Interference Coatings. Washington, D.C.: OSA, 2004. http://dx.doi.org/10.1364/oic.2004.mf5.
Der volle Inhalt der QuelleOffermann, S., C. Bissieux und J. L. Beaudoin. „Optical and thermal restoration applied to thermo-elastic stress analysis by IR thermography“. In 1998 Quantitative InfraRed Thermography. QIRT Council, 1998. http://dx.doi.org/10.21611/qirt.1998.019.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Thermal and optical stress"
Barnard, Casey Anderson. Thermal-stress modeling of an optical microphone at high temperature. Office of Scientific and Technical Information (OSTI), August 2010. http://dx.doi.org/10.2172/1005061.
Der volle Inhalt der QuellePikin A., A. Kponou und L. Snydstrup. Optical, Thermal and Stress Simulations of a 300-kwatt Electron Collector. Office of Scientific and Technical Information (OSTI), Juli 2006. http://dx.doi.org/10.2172/1061837.
Der volle Inhalt der QuelleYahav, Shlomo, John McMurtry und Isaac Plavnik. Thermotolerance Acquisition in Broiler Chickens by Temperature Conditioning Early in Life. United States Department of Agriculture, 1998. http://dx.doi.org/10.32747/1998.7580676.bard.
Der volle Inhalt der QuelleP.E. Klingsporn. Characterization of Optical Fiber Strength Under Applied Tensile Stress and Bending Stress. Office of Scientific and Technical Information (OSTI), August 2011. http://dx.doi.org/10.2172/1054754.
Der volle Inhalt der QuelleSides, Scott W. Thermal-Mechanical Stress in Semiconductor Devices. Office of Scientific and Technical Information (OSTI), September 2018. http://dx.doi.org/10.2172/1471421.
Der volle Inhalt der QuelleChochoms, Michael. Thermal Stress Awareness, Self-Study #18649. Office of Scientific and Technical Information (OSTI), November 2016. http://dx.doi.org/10.2172/1333117.
Der volle Inhalt der QuelleDai, Steve Xunhu, und Robert Chambers. Thermal mechanical stress modeling of GCtM seals. Office of Scientific and Technical Information (OSTI), September 2015. http://dx.doi.org/10.2172/1222660.
Der volle Inhalt der QuelleWemple, R. P., und D. B. Longcope. Thermal stress fracturing of magma simulant materials. Office of Scientific and Technical Information (OSTI), Oktober 1986. http://dx.doi.org/10.2172/7049178.
Der volle Inhalt der QuelleJohnson, G. L., W. Stein, S. C. Lu und R. A. Riddle. SLAC divertor channel entrance thermal stress analysis. Office of Scientific and Technical Information (OSTI), Juli 1985. http://dx.doi.org/10.2172/5381884.
Der volle Inhalt der QuelleLewis, James K. Configuration of PIPS for Thermal Stress Calculations. Fort Belvoir, VA: Defense Technical Information Center, September 2001. http://dx.doi.org/10.21236/ada626105.
Der volle Inhalt der Quelle