Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Therapeutic target identification“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Therapeutic target identification" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Therapeutic target identification"
Koscielny, Gautier, Peter An, Denise Carvalho-Silva, Jennifer A. Cham, Luca Fumis, Rippa Gasparyan, Samiul Hasan et al. „Open Targets: a platform for therapeutic target identification and validation“. Nucleic Acids Research 45, Nr. D1 (29.11.2016): D985—D994. http://dx.doi.org/10.1093/nar/gkw1055.
Der volle Inhalt der QuelleBajorath, Jürgen. „Identification and validation of therapeutic target proteins“. TARGETS 1, Nr. 2 (August 2002): 45–46. http://dx.doi.org/10.1016/s1477-3627(02)02194-3.
Der volle Inhalt der QuelleHassan, Md Imtaiyaz. „Multi-omics approaches to therapeutic target identification“. Briefings in Functional Genomics 22, Nr. 2 (März 2023): 75. http://dx.doi.org/10.1093/bfgp/elac058.
Der volle Inhalt der QuelleLiao, Jianbo, Qinyu Wang, Fengxu Wu und Zunnan Huang. „In Silico Methods for Identification of Potential Active Sites of Therapeutic Targets“. Molecules 27, Nr. 20 (20.10.2022): 7103. http://dx.doi.org/10.3390/molecules27207103.
Der volle Inhalt der QuelleHu, Yang, Yinteng Wu, Fu Gan, Mingyang Jiang, Dongxu Chen, Mingjing Xie, Yiji Jike und Zhandong Bo. „Identification of Potential Therapeutic Target Genes in Osteoarthritis“. Evidence-Based Complementary and Alternative Medicine 2022 (13.08.2022): 1–15. http://dx.doi.org/10.1155/2022/8027987.
Der volle Inhalt der QuelleFrühwald, M. C., und C. Plass. „Metastatic medulloblastoma—therapeutic success through molecular target identification?“ Pharmacogenomics Journal 2, Nr. 1 (Januar 2002): 7–10. http://dx.doi.org/10.1038/sj.tpj.6500077.
Der volle Inhalt der QuelleZou, Mingjie, Haiyuan Zhou, Letian Gu, Jingzi Zhang und Lei Fang. „Therapeutic Target Identification and Drug Discovery Driven by Chemical Proteomics“. Biology 13, Nr. 8 (23.07.2024): 555. http://dx.doi.org/10.3390/biology13080555.
Der volle Inhalt der QuelleTraa, Annika, Emily Machiela, Paige D. Rudich, Sonja K. Soo, Megan M. Senchuk und Jeremy M. Van Raamsdonk. „Identification of Novel Therapeutic Targets for Polyglutamine Diseases That Target Mitochondrial Fragmentation“. International Journal of Molecular Sciences 22, Nr. 24 (14.12.2021): 13447. http://dx.doi.org/10.3390/ijms222413447.
Der volle Inhalt der QuelleKeerthana N und Koteeswaran K. „Target identification and validation in research“. World Journal of Biology Pharmacy and Health Sciences 17, Nr. 3 (30.03.2024): 107–17. http://dx.doi.org/10.30574/wjbphs.2024.17.3.0116.
Der volle Inhalt der QuelleLin, Chunsheng, Qianqian Tian, Sifan Guo, Dandan Xie, Ying Cai, Zhibo Wang, Hang Chu, Shi Qiu, Songqi Tang und Aihua Zhang. „Metabolomics for Clinical Biomarker Discovery and Therapeutic Target Identification“. Molecules 29, Nr. 10 (08.05.2024): 2198. http://dx.doi.org/10.3390/molecules29102198.
Der volle Inhalt der QuelleDissertationen zum Thema "Therapeutic target identification"
Park, Jong Kook. „Target Identification, Therapeutic Application and Maturation Mechanism of microRNAs“. The Ohio State University, 2012. http://rave.ohiolink.edu/etdc/view?acc_num=osu1331096696.
Der volle Inhalt der QuelleCheung, Chi-ho, und 張志豪. „Identification of CD47 as a novel therapeutic target for hepatocellular carcinoma“. Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2011. http://hub.hku.hk/bib/B46945374.
Der volle Inhalt der QuelleHendley, Rhiannon. „Identification of Lyn kinase as a therapeutic target for tamoxifen resistant breast cancer“. Thesis, Cardiff University, 2012. http://orca.cf.ac.uk/31462/.
Der volle Inhalt der QuellePaudel, Nirmala. „Computational analysis of biochemical networks for drug target identification and therapeutic intervention design“. Thesis, Massachusetts Institute of Technology, 2014. http://hdl.handle.net/1721.1/90152.
Der volle Inhalt der QuelleCataloged from PDF version of thesis.
Includes bibliographical references (pages 96-104).
Identification of effective drug targets to intervene, either as single agent therapy or in combination, is a critical question in drug development. As complexity of disease like cancer is revealed, it has become clear that a holistic network approach is needed to identify drug targets that are specially positioned to provide desired leverage on disease phenotypes. In this thesis we develop a computational framework to exhaustively evaluate target behaviors in biochemical network, either as single agent or combination therapies. We present our single target therapy work as a problem of identifying good places to intervene in a network. We quantify a relationship between how interventions at different places in network affect an output of interest. We use this quantitative relationship between target inhibited and output of interest as a metric to compare targets. In network analyzed here, most targets show a sub-linear behavior where a large percentage of targeted molecule needs to be inhibited to see a small change on output. The other key observation is that targets at the top of the network exerted relatively small control compared to the targets at the bottom of the network. In the combination therapy work we study how combination of drug concentrations affect network output of interest compared to when one of the drugs was given alone at equivalent concentrations. By adapting the definitions of additive, synergistic, and antagonistic combination behaviors developed by Ting Chao-Chou (Chou TC, Talalay P (1984), Advances in enzyme regulation 22: 27-55) for our system and systematically perturbing biochemical pathway, we explore the range of combination behaviors for all plausible combination targets. This holistic approach reveals that most target combinations show additive behaviors. Synergistic, and antagonistic behaviors are rare. Even when combinations are classified as synergistic or antagonistic, they show this behavior only in a small range of the inhibitor concentrations. This work is developed in a particular variant of the epidermal growth factor (EGF) receptor pathway for which a detailed mathematical model was first proposed by Schoeberl et al. Computational framework developed in this work is applicable to any biochemical network.
by Nirmala Paudel.
Ph. D.
BENINI, MONICA. „Identification of the frataxin-specific E3 ligase as a potential therapeutic target for Friedreich’s Ataxia“. Doctoral thesis, Università degli Studi di Roma "Tor Vergata", 2015. http://hdl.handle.net/2108/203003.
Der volle Inhalt der QuelleTRICARICO, PAOLA MAURA. „Mevalonate Kinase Deficiency: identification of new therapeutic target, in vitro and in vivo pathogenic study“. Doctoral thesis, Università degli Studi di Trieste, 2016. http://hdl.handle.net/11368/2908002.
Der volle Inhalt der QuelleMevalonate Kinase Deficiency (MKD) is a rare autoinflammatory autosomal recessive inborn disease, caused by mutations in MVK gene that encodes for Mevalonate Kinase (MK) an important enzyme of the mevalonate pathway. Mevalonate pathway is important for the production of cholesterol, geranylgeranyl pyrophosphate and farnesyl pyrophosphate essential for protein prenylation. MKD has heterogeneous clinical phenotypes, with a mild form, Hyper-IgD Syndrome (HIDS), and a severe one, Mevalonic Aciduria (MA). Heterogeneous symptoms including recurrent fevers, cutaneous rash, aphtae, arthralgia, abdominal pain with diarrhoea and vomiting characterize HIDS, while MA shows a more critical neurologic phenotype with psychomotor retardation, hepatopathy and cerebellar ataxia. More than 50% of MA patients die in infancy or early childhood. The correlation between MVK mutations and MKD clinical phenotype is still to be elucidated. Genotype-phenotype correlation is sometimes problematic due to the great genetic and clinical heterogeneity. MKD is also an orphan drug disease and the pathogenic mechanisms as well as the main actors involved in disease’s aetiology are still unknown; especially the pathogenesis of MA clinical manifestations has not been established. Indeed, the neuro-inflammatory mechanisms and the interactions that occur between the different cellular types in the brain have not yet been explained. The most accredited MKD pathogenetic hypothesis is based on the evidence that the mevalonate pathway block induces a decrease in isoprenoid compounds and prenylated proteins, leading to inflammatory phenotypes, caused by the activation of NALP-3 inflammasome that consequently determines IL-1β activation. Currently there is a lack of models for MKD studies. Indeed, the only model able to mimic pathologic features is a biochemical model obtained in vivo and in vitro by administration of mevalonate pathway inhibitors such as aminobisphosphonate or statin. The aim of this PhD project is to investigate the pathogenic mechanism of MKD. Special attention is given to MA, in order to evaluate the neuro-apoptotic and neuro-inflammatoy mechanisms leading to this syndrome. For all these reasons, we performed exome analyse of MKD patients in order to evaluate the presence of eventual other modifiers gene, able to modulate MKD phenotype; we investigated pathogenic mechanisms of MKD, including apoptosis, mitochondrial damage, oxidative stress and inflammation using an in vitro biochemical models (i.e., neuronal, microglia and monocytic cells); we also evaluated systemic inflammation and neuro-inflammation employing an in vivo biochemical model obtained in two different mice strains (BALB/c and C57BL/6); finally, we developed an in vitro genetic model using transient transfection of two different MKD mutations (I268T associated with HIDS, and N301T typical of MA), evaluating the molecular basis of MKD and the pathology mechanism linked to autophagy. The main specific results emerging from this PhD thesis work are: - GRID2 could be a modifier gene of MKD; - biochemical block of mevalonate pathway in neuronal cells caused a balance between apoptosis follows mitochondrial pathway (caspase-9 and caspase-3 dependent) and pyroptosis (caspase-1 dependent); - microglial activation is a direct consequence of mevalonate pathway block, which induces an additional increase of neuronal cell death; - systemic and neuronal inflammations are observed in biochemical in vivo model obtained in two different mice strains; - mevalonate pathway block induced mitochondrial damage, leading to oxidative stress and pro-inflammatory cytokines’ release, which leaded cells to final apoptosis; - MVK mutations cause an alteration in autophagic flux that leads cells to final apoptosis, in in vitro genetic model of MKD in neuronal cells. The findings obtained during the PhD enabled to formulate a new MKD pathogenic hypothesis, based on mitophagy impairment.
Hoppe, Stephanie [Verfasser], und Martin [Akademischer Betreuer] Müller. „Identification of target T cell epitopes for a therapeutic HPV16 vaccine / Stephanie Hoppe ; Betreuer: Martin Müller“. Heidelberg : Universitätsbibliothek Heidelberg, 2019. http://d-nb.info/1177043491/34.
Der volle Inhalt der QuelleSlim, Lotfi. „Detection of epistasis in genome wide association studies with machine learning methods for therapeutic target identification“. Thesis, Université Paris sciences et lettres, 2020. https://pastel.archives-ouvertes.fr/tel-02895919.
Der volle Inhalt der QuelleBy offering an unprecedented picture of the human genome, genome-wide association studies (GWAS) have been expected to fully explain the genetic background of complex diseases. So far, the results have been mitigated to say the least. This, among other things, can be partially attributed to the adopted statistical methodology, which does not often take into account interaction between genetic variants, or epistasis. The detection of epistasis through statistical models presents several challenges for which we develop in this thesis a pair of adequate tools. The first tool, epiGWAS, uses causal inference to detect epistatic interactions between a target SNP and the rest of the genome. The second tool, kernelPSI, instead uses kernel methods to model epistasis between nearby single-nucleotide polymorphisms (SNPs). It also leverages post-selection inference to jointly perform SNP-level selection and gene-level significance testing. The developed tools are -- to the best of our knowledge -- the first to extend powerful statistical learning frameworks such as causal inference and nonlinear post-selection inference to GWAS. In addition to the methodological contributions, a special emphasis was placed on biological interpretation to validate our findings in multiple sclerosis and body-mass index variations
Maule, Francesca. „Identification of Annexin 2A as a fundamental mediator of glioblastoma cell dissemination and potential therapeutic target“. Doctoral thesis, Università degli studi di Padova, 2017. http://hdl.handle.net/11577/3422285.
Der volle Inhalt der QuelleIl Glioblastoma Multiforme (GBM) è il tumore cerebrale più aggressivo, caratterizzato da una prognosi infausta e dall’inevitabile tendenza a ricadere anche in seguito ad un trattamento intensivo. Nonostante i recenti miglioramenti tecnici nella chirurgia del GBM, la sua completa rimozione rimane ad oggi uno dei maggiori problemi legati all’insuccesso terapeutico di questi pazienti. Questo studio si focalizza sulla caratterizzazione di annessina 2A (ANXA2), proteina presente in diversi compartimenti delle cellule normali e ritrovata anche sulla superficie di diversi tipi di cellule tumorali. Con lo sviluppo di questo progetto, abbiamo dimostrato che ANXA2 è espressa ad alti livelli nei gliomi di IV grado rispetto ai gliomi di grado minore e che una bassa/nulla espressione di ANXA2 identifica un sottogruppo di pazienti caratterizzati da una prognosi migliore, suggerendo come l’espressione di ANXA2 possa essere considerata un fattore prognostico indipendente nei gliomi. Successivamente, con lo scopo di analizzare i cambiamenti trascrizionali associati ai differenti livelli di espressione di ANXA2, abbiamo generato una signature trascrizionale ANXA2-dipendente utilizzando i dati provenienti dai dataset pubblici TCGA e GSE13041 e basata sul confronto tra pazienti esprimenti alti livelli di ANXA2 e pazienti esprimenti bassi livelli di questa proteina (719 geni differenzialmente espressi in comune tra le due coorti). Sono state quindi generate due signature ANXA2-dipendenti basate rispettivamente sui trascritti modulati in seguito alla neutralizzazione di ANXA2 con anticorpo specifico (855 geni differenzialmente espressi) e tramite silenziamento (3592 geni differenzialmente espressi), in colture primarie di GBM. L’analisi di gene set enrichment (GSEA) condotta sulle tre signature, ha rivelato un arricchimento negativo di geni legati ai processi di migrazione cellulare e transizione epitelio-mesenchimale. Questi dati hanno fortemente suggerito l’importante ruolo svolto da ANXA2 nel comportamento e nell’aggressività delle cellule di GBM, portandoci pertanto a programmare differenti strategie per modulare le sue funzioni e le vie di segnale intracellulare ad essa correlate. Per questo motivo, è stata condotta una serie di analisi funzionali in vitro in cellule primarie di GBM, dimostrando come ANXA2 sia un principale mediatore dell’aggressività di questo tumore attraverso la regolazione di processi quali motilità cellulare, proliferazione e differenziamento. Inoltre, basandoci sul profilo d’espressione genica di cellule di GBM in cui abbiamo inibito la funzione di ANXA2, abbiamo validato il potenziale prognostico di una signature “ANXA2down” (basata sui geni maggiormente down-regolati in cellule di GBM trattate con anticorpo neutralizzante ANXA2) in diversi dataset pubblici, dimostrando come l’espressione di geni regolati dai livelli di ANXA2 sia in grado di predire l’andamento dei pazienti. Infine, la signature precedentemente generata dai dataset TCGA e GSE13041 è stata mappata funzionalmente utilizzando il tool bioinformatico Connectivity Map con lo scopo di identificare composti in grado di revertire tale signature. I composti identificati sono stati analizzati successivamente per la loro abilità di inibire il processo di invasione in vitro in colture primarie di GBM. Inoltre, le signature ANXA2-dipendenti, ottenute dalle precedenti analisi (cellule inibite/silenziate per ANXA2), sono state applicate al tool QUADrATiC. Ciò ha permesso di approfondire i risultati grazie all’utilizzo di un database più ampio che si basa sullo studio di un numero maggiore di composti approvati in numerose linee cellulari.
Cole, Clare Louise. „Identification of OATP1B3 as a potential therapeutic target in Recessive Dystrophic Epidermolysis Bullosa Associated Squamous Cell Carcinoma“. Thesis, University of Dundee, 2011. https://discovery.dundee.ac.uk/en/studentTheses/20729995-be96-4f29-80b8-53da131c6fd8.
Der volle Inhalt der QuelleBücher zum Thema "Therapeutic target identification"
Hallczuk, Howard. Therapeutic Target Identification : Validation and Drug Discovery for Traumatic Brain Injury: Mild Traumatic Brain Injury. Independently Published, 2021.
Den vollen Inhalt der Quelle findenPopescu, Bogdan Florin Gh, Yong Guo und Claudia Francesca Lucchinetti. Multiple Sclerosis: Pathology. Oxford University Press, 2017. http://dx.doi.org/10.1093/med/9780199937837.003.0081.
Der volle Inhalt der QuelleDrouin-Ouellet, Janelle, und Roger A. Barker. Disease-Modifying Therapies in Neurodegenerative Disorders. Oxford University Press, 2016. http://dx.doi.org/10.1093/med/9780190233563.003.0016.
Der volle Inhalt der QuelleModern CNS Drug Discovery : Novel Therapeutics for Psychiatric and Neurological Diseases: From Target Identification to Regulatory Approval. Springer International Publishing AG, 2024.
Den vollen Inhalt der Quelle findenLazarov, Amit, Adva Segal und Yair Bar-Haim. Cognitive Training and Technology in the Treatment of Children and Adolescents. Herausgegeben von Thomas H. Ollendick, Susan W. White und Bradley A. White. Oxford University Press, 2018. http://dx.doi.org/10.1093/oxfordhb/9780190634841.013.47.
Der volle Inhalt der QuelleHwang, Young-Hwan, und York Pei. Autosomal dominant polycystic kidney disease management. Herausgegeben von Neil Turner. Oxford University Press, 2018. http://dx.doi.org/10.1093/med/9780199592548.003.0309_update_001.
Der volle Inhalt der QuelleBeyer, Chad E., und Stephen M. Stahl, Hrsg. Next Generation Antidepressants. Cambridge University Press, 2010. http://dx.doi.org/10.1017/9780511778414.
Der volle Inhalt der QuelleBuchteile zum Thema "Therapeutic target identification"
Zhou, Yu, und James D. Marks. „Identification of Target and Function Specific Antibodies for Effective Drug Delivery“. In Therapeutic Antibodies, 145–60. Totowa, NJ: Humana Press, 2008. http://dx.doi.org/10.1007/978-1-59745-554-1_7.
Der volle Inhalt der QuelleVinci, Maria, Carol Box, Miriam Zimmermann und Suzanne A. Eccles. „Tumor Spheroid-Based Migration Assays for Evaluation of Therapeutic Agents“. In Target Identification and Validation in Drug Discovery, 253–66. Totowa, NJ: Humana Press, 2013. http://dx.doi.org/10.1007/978-1-62703-311-4_16.
Der volle Inhalt der QuelleCheung, Atwood K., und Feng Cong. „Finding a Needle in a Haystack. Identification of Tankyrase, a Novel Therapeutic Target of the Wnt Pathway Using Chemical Genetics“. In Concepts and Case Studies in Chemical Biology, 249–64. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2014. http://dx.doi.org/10.1002/9783527687503.ch17.
Der volle Inhalt der QuelleGarg, Aakriti, Ruchika Sharma, Santanu Kaity und Anoop Kumar. „Identification of Bioactive Lipid Drug Targets by Computational Techniques“. In Therapeutic Platform of Bioactive Lipids, 143–62. New York: Apple Academic Press, 2023. http://dx.doi.org/10.1201/9781003301608-10.
Der volle Inhalt der QuelleWatson, Geoffrey Alan, Kirsty Taylor und Lillian L. Siu. „Innovation and Advances in Precision Medicine in Head and Neck Cancer“. In Critical Issues in Head and Neck Oncology, 355–73. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-63234-2_24.
Der volle Inhalt der QuelleCalabretta, Raffaella, und Marcus Hacker. „Cardiotoxicity of Targeted Therapies: Imaging of Heart Does Matter“. In Beyond Becquerel and Biology to Precision Radiomolecular Oncology: Festschrift in Honor of Richard P. Baum, 139–45. Cham: Springer International Publishing, 2024. http://dx.doi.org/10.1007/978-3-031-33533-4_12.
Der volle Inhalt der QuelleSingh, Ankita, Shafaque Zahra, Simran Arora, Fiza Hamid und Shailesh Kumar. „In Silico Identification of tRNA Fragments, Novel Candidates for Cancer Biomarkers, and Therapeutic Targets“. In Methods in Molecular Biology, 379–92. New York, NY: Springer US, 2024. http://dx.doi.org/10.1007/978-1-0716-3886-6_21.
Der volle Inhalt der QuelleMathie, Alistair, Samuel R. Bourne, Rachel Forfar, Walter E. Perfect und Emma L. Veale. „The Contribution of Genetic Sequencing Information to the Identification and Functional Characterization of Two-Pore Domain Potassium (K2P) Channels as Viable Therapeutic Targets“. In Ion Channels as Targets in Drug Discovery, 199–220. Cham: Springer International Publishing, 2024. http://dx.doi.org/10.1007/978-3-031-52197-3_6.
Der volle Inhalt der QuelleWild, G. E., J. Hasan, M. J. Ropeleski, K. A. Waschke, C. Cossette, L. Dufresne, B. Q. H. Le und A. B. R. Thomson. „Application of recombinant DNA technology to the identification of novel therapeutic targets in inflammatory bowel disease“. In Trends in Inflammatory Bowel Disease Therapy 1999, 234–51. Dordrecht: Springer Netherlands, 2000. http://dx.doi.org/10.1007/978-94-011-4002-7_24.
Der volle Inhalt der QuelleAoki, Masahiro, und Makoto Mark Taketo. „Use of Genetically Engineered Mouse Models in Identification and Validation of Therapeutic Targets for Colon Cancer“. In Targeting the Wnt Pathway in Cancer, 143–63. New York, NY: Springer New York, 2010. http://dx.doi.org/10.1007/978-1-4419-8023-6_7.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Therapeutic target identification"
Loscalzo, Joseph. „Network Approach to Drug Target Identification and Drug Combinations: Implications for cGMP-based Therapeutics“. In cGMP: Generators, Effectors and Therapeutic Implications. ScienceOpen, 2024. http://dx.doi.org/10.14293/cgmp.24000049.v1.
Der volle Inhalt der QuelleEnfield, Katey S. S., Erin A. Marshall, Christine Anderson, Kevin W. Ng, Sara Rahmati, Zhaolin Xu, Calum E. MacAulay et al. „Abstract A26: Identification of a novel therapeutic target in lung adenocarcinoma“. In Abstracts: Fifth AACR-IASLC International Joint Conference: Lung Cancer Translational Science from the Bench to the Clinic; January 8-11, 2018; San Diego, CA. American Association for Cancer Research, 2018. http://dx.doi.org/10.1158/1557-3265.aacriaslc18-a26.
Der volle Inhalt der QuelleChengzhang, Li, und Xu Jiucheng. „Identification of Potentially Therapeutic Target Genes in Ovarian Cancer via Bioinformatic Approach“. In 2021 IEEE 9th International Conference on Bioinformatics and Computational Biology (ICBCB). IEEE, 2021. http://dx.doi.org/10.1109/icbcb52223.2021.9459203.
Der volle Inhalt der QuelleTomioka, Y., Y. Hagihara, K. Tanigawa, T. Suetsugu, K. Mizuno, N. Seki und H. Inoue. „Identification of Therapeutic Target Molecules for Lung Adenocarcinoma Based on MicroRNA Analysis“. In American Thoracic Society 2024 International Conference, May 17-22, 2024 - San Diego, CA. American Thoracic Society, 2024. http://dx.doi.org/10.1164/ajrccm-conference.2024.209.1_meetingabstracts.a4941.
Der volle Inhalt der QuelleT, Suresh, S. Kaliappan, H. Mohammed Ali und Bura Vijay Kumar. „AI - Driven Drug Discovery and Therapeutic Target Identification for Rare Genetic Diseases“. In 2024 International Conference on Advancements in Smart, Secure and Intelligent Computing (ASSIC). IEEE, 2024. http://dx.doi.org/10.1109/assic60049.2024.10507989.
Der volle Inhalt der QuelleHoppe, Stephanie, Jan Winter, Renata Blatnik, Julia Schessner, Lisa Dressler, Alina Steinbach, Hadeel Khallouf, Martin Wuehl, Alexandra Klevenz und Angelika B. Riemer. „Abstract B31: Identification of target T cell epitopes for a therapeutic HPV16 vaccine“. In Abstracts: AACR Special Conference: Tumor Immunology and Immunotherapy: A New Chapter; December 1-4, 2014; Orlando, FL. American Association for Cancer Research, 2015. http://dx.doi.org/10.1158/2326-6074.tumimm14-b31.
Der volle Inhalt der QuelleGreenblatt, Sarah M., Pierre-Jacques J. Hamard, Takashi Asai, Na Man, Concepcion Martinez-Caja, Fan Liu und Stephen Nimer. „Abstract 3340: Identification of CARM1/PRMT4 as a novel therapeutic target for AML“. In Proceedings: AACR Annual Meeting 2017; April 1-5, 2017; Washington, DC. American Association for Cancer Research, 2017. http://dx.doi.org/10.1158/1538-7445.am2017-3340.
Der volle Inhalt der QuelleSilvestre, David C., Amelie Brisson, Bérengère Marty-Prouvost, David Gentien, Damarys Loew, Florent Dingli, Virginie Maire et al. „Abstract B164: Identification and validation of PRMT1 as a therapeutic target in breast cancer“. In Abstracts: AACR-NCI-EORTC International Conference: Molecular Targets and Cancer Therapeutics; November 5-9, 2015; Boston, MA. American Association for Cancer Research, 2015. http://dx.doi.org/10.1158/1535-7163.targ-15-b164.
Der volle Inhalt der QuelleWu, Pei-Yu, Tong-You Wade Wei, Ting-Jung Wu und Ming-Daw Tsai. „Abstract 3123: Identification of TIFA as a novel therapeutic target in acute myeloid leukemia“. In Proceedings: AACR Annual Meeting 2017; April 1-5, 2017; Washington, DC. American Association for Cancer Research, 2017. http://dx.doi.org/10.1158/1538-7445.am2017-3123.
Der volle Inhalt der QuelleBuchner, Maike V., Eugene Park, Lars Klemm, Huimin Geng, Dragana Kopanja, Pradip Raychaudhuri und Markus Müschen. „Abstract 484: Identification of FOXM1 as therapeutic target in Philadelphia chromosome-positive acute lymphoblastic leukemia“. In Proceedings: AACR Annual Meeting 2014; April 5-9, 2014; San Diego, CA. American Association for Cancer Research, 2014. http://dx.doi.org/10.1158/1538-7445.am2014-484.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Therapeutic target identification"
Hong, Waun K., und David J. Stewart. PROSPECT (Profiling of Resistance Patterns & Oncogenic Signaling Pathways in Evaluation of Cancers of the Thorax and Therapeutic Target Identification). Fort Belvoir, VA: Defense Technical Information Center, Juni 2008. http://dx.doi.org/10.21236/ada488128.
Der volle Inhalt der QuelleHong, Wuan K. PROSPECT (Profiling of Resistance Patterns & Oncogenic Signaling Pathways in Evaluation of Cancers of the Thorax and Therapeutic Target Identification. Fort Belvoir, VA: Defense Technical Information Center, Juni 2009. http://dx.doi.org/10.21236/ada509995.
Der volle Inhalt der QuelleHong, Wuan K. PROSPECT: Profiling of Resistance Patterns & Oncogenic Signaling Pathways in Evaluation of Cancers of the Thorax and Therapeutic Target Identification. Fort Belvoir, VA: Defense Technical Information Center, Juni 2012. http://dx.doi.org/10.21236/ada581682.
Der volle Inhalt der QuelleAllen, J. Rapid Computational Identification of Therapeutic Targets for Pathogens. Office of Scientific and Technical Information (OSTI), März 2023. http://dx.doi.org/10.2172/1961765.
Der volle Inhalt der QuelleShiang, Christine. Identification of Novel Therapeutic Targets for Triple-Negative Breast Cancer. Fort Belvoir, VA: Defense Technical Information Center, Dezember 2012. http://dx.doi.org/10.21236/ada571316.
Der volle Inhalt der QuelleJongens, Thomas A. Examination of the mGluR-mTOR Pathway for the Identification of Potential Therapeutic Targets to Treat Fragile X. Fort Belvoir, VA: Defense Technical Information Center, Oktober 2014. http://dx.doi.org/10.21236/ada612771.
Der volle Inhalt der QuelleShpigel, Nahum Y., Ynte Schukken und Ilan Rosenshine. Identification of genes involved in virulence of Escherichia coli mastitis by signature tagged mutagenesis. United States Department of Agriculture, Januar 2014. http://dx.doi.org/10.32747/2014.7699853.bard.
Der volle Inhalt der QuelleMatthews, Lisa, Guanming Wu, Robin Haw, Timothy Brunson, Nasim Sanati, Solomon Shorser, Deidre Beavers, Patrick Conley, Lincoln Stein und Peter D'Eustachio. Illuminating Dark Proteins using Reactome Pathways. Reactome, Oktober 2022. http://dx.doi.org/10.3180/poster/20221027matthews.
Der volle Inhalt der Quelle