Zeitschriftenartikel zum Thema „The N-end rule“

Um die anderen Arten von Veröffentlichungen zu diesem Thema anzuzeigen, folgen Sie diesem Link: The N-end rule.

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit Top-50 Zeitschriftenartikel für die Forschung zum Thema "The N-end rule" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Sehen Sie die Zeitschriftenartikel für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.

1

Varshavsky, A. „The N-end Rule“. Cold Spring Harbor Symposia on Quantitative Biology 60 (01.01.1995): 461–78. http://dx.doi.org/10.1101/sqb.1995.060.01.051.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Varshavsky, Alexander. „The N-end rule“. Cell 69, Nr. 5 (Mai 1992): 725–35. http://dx.doi.org/10.1016/0092-8674(92)90285-k.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Tasaki, Takafumi, Shashikanth M. Sriram, Kyong Soo Park und Yong Tae Kwon. „The N-End Rule Pathway“. Annual Review of Biochemistry 81, Nr. 1 (07.07.2012): 261–89. http://dx.doi.org/10.1146/annurev-biochem-051710-093308.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Kim, Jeong-Mok, und Cheol-Sang Hwang. „Crosstalk between the Arg/N-end and Ac/N-end rule“. Cell Cycle 13, Nr. 9 (03.04.2014): 1366–67. http://dx.doi.org/10.4161/cc.28751.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Tobias, J., T. Shrader, G. Rocap und A. Varshavsky. „The N-end rule in bacteria“. Science 254, Nr. 5036 (29.11.1991): 1374–77. http://dx.doi.org/10.1126/science.1962196.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Hurtley, Stella M. „Another N-end rule to add“. Science 362, Nr. 6418 (29.11.2018): 1014.11–1016. http://dx.doi.org/10.1126/science.362.6418.1014-k.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Eldeeb, Mohamed, und Richard Fahlman. „The-N-End Rule: The Beginning Determines the End“. Protein & Peptide Letters 23, Nr. 4 (01.03.2016): 343–48. http://dx.doi.org/10.2174/0929866523666160108115809.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Varshavsky, Alexander. „The N-end rule at atomic resolution“. Nature Structural & Molecular Biology 15, Nr. 12 (Dezember 2008): 1238–40. http://dx.doi.org/10.1038/nsmb1208-1238.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Wojcik, Cezary. „Dipeptides: rulers of the N-end rule“. Trends in Cell Biology 10, Nr. 9 (September 2000): 367. http://dx.doi.org/10.1016/s0962-8924(00)01827-4.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Dougan, David A., und Alexander Varshavsky. „Understanding the Pro/N-end rule pathway“. Nature Chemical Biology 14, Nr. 5 (16.04.2018): 415–16. http://dx.doi.org/10.1038/s41589-018-0045-0.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
11

Varshavsky, A. „The N-end rule: functions, mysteries, uses.“ Proceedings of the National Academy of Sciences 93, Nr. 22 (29.10.1996): 12142–49. http://dx.doi.org/10.1073/pnas.93.22.12142.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
12

Davydov, Ilia V., Debabrata Patra und Alexander Varshavsky. „The N-End Rule Pathway inXenopusEgg Extracts“. Archives of Biochemistry and Biophysics 357, Nr. 2 (September 1998): 317–25. http://dx.doi.org/10.1006/abbi.1998.0829.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
13

Eldeeb, Mohamed A., Luana C. A. Leitao und Richard P. Fahlman. „Emerging branches of the N-end rule pathways are revealing the sequence complexities of N-termini dependent protein degradation“. Biochemistry and Cell Biology 96, Nr. 3 (Juni 2018): 289–94. http://dx.doi.org/10.1139/bcb-2017-0274.

Der volle Inhalt der Quelle
Annotation:
The N-end rule links the identity of the N-terminal amino acid of a protein to its in vivo half-life, as some N-terminal residues confer metabolic instability to a protein via their recognition by the cellular machinery that targets them for degradation. Since its discovery, the N-end rule has generally been defined as set of rules of whether an N-terminal residue is stabilizing or not. However, recent studies are revealing that the N-terminal code of amino acids conferring protein instability is more complex than previously appreciated, as recent investigations are revealing that the identity of adjoining downstream residues can also influence the metabolic stability of N-end rule substrate. This is exemplified by the recent discovery of a new branch of N-end rule pathways that target proteins bearing N-terminal proline. In addition, recent investigations are demonstrating that the molecular machinery in N-termini dependent protein degradation may also target proteins for lysosomal degradation, in addition to proteasome-dependent degradation. Herein, we describe some of the recent advances in N-end rule pathways and discuss some of the implications regarding the emerging additional sequence requirements.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
14

Madura, K., R. J. Dohmen und A. Varshavsky. „N-recognin/Ubc2 interactions in the N-end rule pathway“. Journal of Biological Chemistry 268, Nr. 16 (Juni 1993): 12046–54. http://dx.doi.org/10.1016/s0021-9258(19)50306-4.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
15

Sriram, Shashikanth M., und Yong Tae Kwon. „The molecular principles of N-end rule recognition“. Nature Structural & Molecular Biology 17, Nr. 10 (Oktober 2010): 1164–65. http://dx.doi.org/10.1038/nsmb1010-1164.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
16

Varshavsky, Alexander. „The N-end rule and regulation of apoptosis“. Nature Cell Biology 5, Nr. 5 (Mai 2003): 373–76. http://dx.doi.org/10.1038/ncb0503-373.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
17

Kwon, Yong Tae, Frédéric Lévy und Alexander Varshavsky. „Bivalent Inhibitor of the N-end Rule Pathway“. Journal of Biological Chemistry 274, Nr. 25 (18.06.1999): 18135–39. http://dx.doi.org/10.1074/jbc.274.25.18135.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
18

Varshavsky, Alexander. „The N-end rule pathway of protein degradation“. Genes to Cells 2, Nr. 1 (Januar 1997): 13–28. http://dx.doi.org/10.1046/j.1365-2443.1997.1020301.x.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
19

Hurtley, Stella M. „The N-end rule finds a physiological function“. Science Signaling 8, Nr. 368 (17.03.2015): ec65-ec65. http://dx.doi.org/10.1126/scisignal.aab1180.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
20

Gonda, D. K., A. Bachmair, I. Wünning, J. W. Tobias, W. S. Lane und A. Varshavsky. „Universality and Structure of the N-end Rule“. Journal of Biological Chemistry 264, Nr. 28 (Oktober 1989): 16700–16712. http://dx.doi.org/10.1016/s0021-9258(19)84762-2.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
21

Wang, Kevin H., Giselle Roman-Hernandez, Robert A. Grant, Robert T. Sauer und Tania A. Baker. „The Molecular Basis of N-End Rule Recognition“. Molecular Cell 32, Nr. 3 (November 2008): 406–14. http://dx.doi.org/10.1016/j.molcel.2008.08.032.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
22

Hurtley, S. M. „The N-end rule finds a physiological function“. Science 347, Nr. 6227 (12.03.2015): 1213. http://dx.doi.org/10.1126/science.347.6227.1213-q.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
23

Kim, Sung Tae, Takafumi Tasaki, Adriana Zakrzewska, Young Dong Yoo, Ki Sa Sung, Su-Hyeon Kim, Hyunjoo Cha-Molstad et al. „The N-end rule proteolytic system in autophagy“. Autophagy 9, Nr. 7 (11.07.2013): 1100–1103. http://dx.doi.org/10.4161/auto.24643.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
24

VARSHAVSKY, A. „The N-end rule pathway: Functions and mechanisms“. Cell Biology International Reports 14 (September 1990): 8. http://dx.doi.org/10.1016/0309-1651(90)90142-l.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
25

Merkel, Lars, Henning S. G. Beckmann, Valentin Wittmann und Nediljko Budisa. „Efficient N-Terminal Glycoconjugation of Proteins by the N-End Rule“. ChemBioChem 9, Nr. 8 (23.05.2008): 1220–24. http://dx.doi.org/10.1002/cbic.200800050.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
26

Graciet, Emmanuelle, und Frank Wellmer. „The plant N-end rule pathway: structure and functions“. Trends in Plant Science 15, Nr. 8 (August 2010): 447–53. http://dx.doi.org/10.1016/j.tplants.2010.04.011.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
27

Dougan, D. A., K. N. Truscott und K. Zeth. „The bacterial N-end rule pathway: expect the unexpected“. Molecular Microbiology 76, Nr. 3 (30.03.2010): 545–58. http://dx.doi.org/10.1111/j.1365-2958.2010.07120.x.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
28

Yamano, Koji, und Richard J. Youle. „PINK1 is degraded through the N-end rule pathway“. Autophagy 9, Nr. 11 (03.11.2013): 1758–69. http://dx.doi.org/10.4161/auto.24633.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
29

Varshavsky, Alexander. „The N-end rule pathway and regulation by proteolysis“. Protein Science 20, Nr. 8 (07.07.2011): 1298–345. http://dx.doi.org/10.1002/pro.666.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
30

Bartel, B., I. Wünning und A. Varshavsky. „The recognition component of the N-end rule pathway.“ EMBO Journal 9, Nr. 10 (Oktober 1990): 3179–89. http://dx.doi.org/10.1002/j.1460-2075.1990.tb07516.x.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
31

Oh, Jang-Hyun, Ju-Yeon Hyun und Alexander Varshavsky. „Control of Hsp90 chaperone and its clients by N-terminal acetylation and the N-end rule pathway“. Proceedings of the National Academy of Sciences 114, Nr. 22 (17.05.2017): E4370—E4379. http://dx.doi.org/10.1073/pnas.1705898114.

Der volle Inhalt der Quelle
Annotation:
We found that the heat shock protein 90 (Hsp90) chaperone system of the yeast Saccharomyces cerevisiae is greatly impaired in naa10Δ cells, which lack the NatA Nα-terminal acetylase (Nt-acetylase) and therefore cannot N-terminally acetylate a majority of normally N-terminally acetylated proteins, including Hsp90 and most of its cochaperones. Chk1, a mitotic checkpoint kinase and a client of Hsp90, was degraded relatively slowly in wild-type cells but was rapidly destroyed in naa10Δ cells by the Arg/N-end rule pathway, which recognized a C terminus-proximal degron of Chk1. Diverse proteins (in addition to Chk1) that are shown here to be targeted for degradation by the Arg/N-end rule pathway in naa10Δ cells include Kar4, Tup1, Gpd1, Ste11, and also, remarkably, the main Hsp90 chaperone (Hsc82) itself. Protection of Chk1 by Hsp90 could be overridden not only by ablation of the NatA Nt-acetylase but also by overexpression of the Arg/N-end rule pathway in wild-type cells. Split ubiquitin-binding assays detected interactions between Hsp90 and Chk1 in wild-type cells but not in naa10Δ cells. These and related results revealed a major role of Nt-acetylation in the Hsp90-mediated protein homeostasis, a strong up-regulation of the Arg/N-end rule pathway in the absence of NatA, and showed that a number of Hsp90 clients are previously unknown substrates of the Arg/N-end rule pathway.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
32

Siepmann, Thomas J., Richard N. Bohnsack, Zeynep Tokgöz, Olga V. Baboshina und Arthur L. Haas. „Protein Interactions within the N-end Rule Ubiquitin Ligation Pathway“. Journal of Biological Chemistry 278, Nr. 11 (10.01.2003): 9448–57. http://dx.doi.org/10.1074/jbc.m211240200.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
33

Baker, R. T., und A. Varshavsky. „Inhibition of the N-end rule pathway in living cells.“ Proceedings of the National Academy of Sciences 88, Nr. 4 (15.02.1991): 1090–94. http://dx.doi.org/10.1073/pnas.88.4.1090.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
34

Madura, K., und A. Varshavsky. „Degradation of G alpha by the N-end rule pathway“. Science 265, Nr. 5177 (02.09.1994): 1454–58. http://dx.doi.org/10.1126/science.8073290.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
35

Hu, R. G., H. Wang, Z. Xia und A. Varshavsky. „The N-end rule pathway is a sensor of heme“. Proceedings of the National Academy of Sciences 105, Nr. 1 (27.12.2007): 76–81. http://dx.doi.org/10.1073/pnas.0710568105.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
36

Tasaki, Takafumi, Adriana Zakrzewska, Drew D. Dudgeon, Yonghua Jiang, John S. Lazo und Yong Tae Kwon. „The Substrate Recognition Domains of the N-end Rule Pathway“. Journal of Biological Chemistry 284, Nr. 3 (13.11.2008): 1884–95. http://dx.doi.org/10.1074/jbc.m803641200.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
37

Kim, Jeong-Mok, Ok-Hee Seok, Shinyeong Ju, Ji-Eun Heo, Jeonghun Yeom, Da-Som Kim, Joo-Yeon Yoo, Alexander Varshavsky, Cheolju Lee und Cheol-Sang Hwang. „Formyl-methionine as an N-degron of a eukaryotic N-end rule pathway“. Science 362, Nr. 6418 (08.11.2018): eaat0174. http://dx.doi.org/10.1126/science.aat0174.

Der volle Inhalt der Quelle
Annotation:
In bacteria, nascent proteins bear the pretranslationally generated N-terminal (Nt) formyl-methionine (fMet) residue. Nt-fMet of bacterial proteins is a degradation signal, termed fMet/N-degron. By contrast, proteins synthesized by cytosolic ribosomes of eukaryotes were presumed to bear unformylated Nt-Met. Here we found that the yeast formyltransferase Fmt1, although imported into mitochondria, could also produce Nt-formylated proteins in the cytosol. Nt-formylated proteins were strongly up-regulated in stationary phase or upon starvation for specific amino acids. This up-regulation strictly required the Gcn2 kinase, which phosphorylates Fmt1 and mediates its retention in the cytosol. We also found that the Nt-fMet residues of Nt-formylated proteins act as fMet/N-degrons and identified the Psh1 ubiquitin ligase as the recognition component of the eukaryotic fMet/N-end rule pathway, which destroys Nt-formylated proteins.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
38

Wang, Haiqing, Konstantin I. Piatkov, Christopher S. Brower und Alexander Varshavsky. „Glutamine-Specific N-Terminal Amidase, a Component of the N-End Rule Pathway“. Molecular Cell 34, Nr. 6 (Juni 2009): 686–95. http://dx.doi.org/10.1016/j.molcel.2009.04.032.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
39

Kwon, Yong Tae, Zanxian Xia, Ilia V. Davydov, Stewart H. Lecker und Alexander Varshavsky. „Construction and Analysis of Mouse Strains Lacking the Ubiquitin Ligase UBR1 (E3α) of the N-End Rule Pathway“. Molecular and Cellular Biology 21, Nr. 23 (01.12.2001): 8007–21. http://dx.doi.org/10.1128/mcb.21.23.8007-8021.2001.

Der volle Inhalt der Quelle
Annotation:
ABSTRACT The N-end rule relates the in vivo half-life of a protein to the identity of its N-terminal residue. In the yeast Saccharomyces cerevisiae, the UBR1-encoded ubiquitin ligase (E3) of the N-end rule pathway mediates the targeting of substrate proteins in part through binding to their destabilizing N-terminal residues. The functions of the yeast N-end rule pathway include fidelity of chromosome segregation and the regulation of peptide import. Our previous work described the cloning of cDNA and a gene encoding the 200-kDa mouse UBR1 (E3α). Here we show that mouse UBR1, in the presence of a cognate mouse ubiquitin-conjugating (E2) enzyme, can rescue the N-end rule pathway in ubr1Δ S. cerevisiae. We also constructedUBR1 −/− mouse strains that lacked the UBR1 protein. UBR1 −/− mice were viable and fertile but weighed significantly less than congenic +/+ mice. The decreased mass of UBR1 −/− mice stemmed at least in part from smaller amounts of the skeletal muscle and adipose tissues. The skeletal muscle of UBR1 −/−mice apparently lacked the N-end rule pathway and exhibited abnormal regulation of fatty acid synthase upon starvation. By contrast, and despite the absence of the UBR1 protein,UBR1 −/− fibroblasts contained the N-end rule pathway. Thus, UBR1 −/− mice are mosaics in regard to the activity of this pathway, owing to differential expression of proteins that can substitute for the ubiquitin ligase UBR1 (E3α). We consider these UBR1-like proteins and discuss the functions of the mammalian N-end rule pathway.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
40

Eldeeb, Mohamed, Richard Fahlman, Mansoore Esmaili und Mohamed Ragheb. „Regulating Apoptosis by Degradation: The N-End Rule-Mediated Regulation of Apoptotic Proteolytic Fragments in Mammalian Cells“. International Journal of Molecular Sciences 19, Nr. 11 (31.10.2018): 3414. http://dx.doi.org/10.3390/ijms19113414.

Der volle Inhalt der Quelle
Annotation:
A pivotal hallmark of some cancer cells is the evasion of apoptotic cell death. Importantly, the initiation of apoptosis often results in the activation of caspases, which, in turn, culminates in the generation of proteolytically-activated protein fragments with potentially new or altered roles. Recent investigations have revealed that the activity of a significant number of the protease-generated, activated, pro-apoptotic protein fragments can be curbed via their selective degradation by the N-end rule degradation pathways. Of note, previous work revealed that several proteolytically-generated, pro-apoptotic fragments are unstable in cells, as their destabilizing N-termini target them for proteasomal degradation via the N-end rule degradation pathways. Remarkably, previous studies also showed that the proteolytically-generated anti-apoptotic Lyn kinase protein fragment is targeted for degradation by the UBR1/UBR2 E3 ubiquitin ligases of the N-end rule pathway in chronic myeloid leukemia cells. Crucially, the degradation of cleaved fragment of Lyn by the N-end rule counters imatinib resistance in these cells, implicating a possible linkage between the N-end rule degradation pathway and imatinib resistance. Herein, we highlight recent studies on the role of the N-end rule proteolytic pathways in regulating apoptosis in mammalian cells, and also discuss some possible future directions with respect to apoptotic proteolysis signaling.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
41

Wadas, Brandon, Jimo Borjigin, Zheping Huang, Jang-Hyun Oh, Cheol-Sang Hwang und Alexander Varshavsky. „Degradation of SerotoninN-Acetyltransferase, a Circadian Regulator, by the N-end Rule Pathway“. Journal of Biological Chemistry 291, Nr. 33 (23.06.2016): 17178–96. http://dx.doi.org/10.1074/jbc.m116.734640.

Der volle Inhalt der Quelle
Annotation:
SerotoninN-acetyltransferase (AANAT) converts serotonin toN-acetylserotonin (NAS), a distinct biological regulator and the immediate precursor of melatonin, a circulating hormone that influences circadian processes, including sleep. N-terminal sequences of AANAT enzymes vary among vertebrates. Mechanisms that regulate the levels of AANAT are incompletely understood. Previous findings were consistent with the possibility that AANAT may be controlled through its degradation by the N-end rule pathway. By expressing the rat and human AANATs and their mutants not only in mammalian cells but also in the yeastSaccharomyces cerevisiae, and by taking advantage of yeast genetics, we show here that two “complementary” forms of rat AANAT are targeted for degradation by two “complementary” branches of the N-end rule pathway. Specifically, the Nα-terminally acetylated (Nt-acetylated) Ac-AANAT is destroyed through the recognition of its Nt-acetylated N-terminal Met residue by the Ac/N-end rule pathway, whereas the non-Nt-acetylated AANAT is targeted by the Arg/N-end rule pathway, which recognizes the unacetylated N-terminal Met-Leu sequence of rat AANAT. We also show, by constructing lysine-to-arginine mutants of rat AANAT, that its degradation is mediated by polyubiquitylation of its Lys residue(s). Human AANAT, whose N-terminal sequence differs from that of rodent AANATs, is longer-lived than its rat counterpart and appears to be refractory to degradation by the N-end rule pathway. Together, these and related results indicate both a major involvement of the N-end rule pathway in the control of rodent AANATs and substantial differences in the regulation of rodent and human AANATs that stem from differences in their N-terminal sequences.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
42

Nguyen, Kha The, Sang-Hyeon Mun, Chang-Seok Lee und Cheol-Sang Hwang. „Control of protein degradation by N-terminal acetylation and the N-end rule pathway“. Experimental & Molecular Medicine 50, Nr. 7 (Juli 2018): 1–8. http://dx.doi.org/10.1038/s12276-018-0097-y.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
43

Mulder, Lubbertus C. F., und Mark A. Muesing. „Degradation of HIV-1 Integrase by the N-end Rule Pathway“. Journal of Biological Chemistry 275, Nr. 38 (12.07.2000): 29749–53. http://dx.doi.org/10.1074/jbc.m004670200.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
44

Graciet, Emmanuelle, Francesca Mesiti und Frank Wellmer. „Structure and evolutionary conservation of the plant N-end rule pathway“. Plant Journal 61, Nr. 5 (März 2010): 741–51. http://dx.doi.org/10.1111/j.1365-313x.2009.04099.x.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
45

Gibbs, Daniel J., Jaume Bacardit, Andreas Bachmair und Michael J. Holdsworth. „The eukaryotic N-end rule pathway: conserved mechanisms and diverse functions“. Trends in Cell Biology 24, Nr. 10 (Oktober 2014): 603–11. http://dx.doi.org/10.1016/j.tcb.2014.05.001.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
46

Liu, Yujiao, Chao Liu, Wen Dong und Wei Li. „Physiological functions and clinical implications of the N-end rule pathway“. Frontiers of Medicine 10, Nr. 3 (September 2016): 258–70. http://dx.doi.org/10.1007/s11684-016-0458-7.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
47

Boso, Guney, Takafumi Tasaki, Yong Kwon und Nikunj V. Somia. „The N-end rule and retroviral infection: no effect on integrase“. Virology Journal 10, Nr. 1 (2013): 233. http://dx.doi.org/10.1186/1743-422x-10-233.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
48

Wang, Kevin H., Elizabeth S. C. Oakes, Robert T. Sauer und Tania A. Baker. „Tuning the Strength of a Bacterial N-end Rule Degradation Signal“. Journal of Biological Chemistry 283, Nr. 36 (11.06.2008): 24600–24607. http://dx.doi.org/10.1074/jbc.m802213200.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
49

Lin, Chih-Cheng, Ya-Ting Chao, Wan-Chieh Chen, Hsiu-Yin Ho, Mei-Yi Chou, Ya-Ru Li, Yu-Lin Wu et al. „Regulatory cascade involving transcriptional and N-end rule pathways in rice under submergence“. Proceedings of the National Academy of Sciences 116, Nr. 8 (05.02.2019): 3300–3309. http://dx.doi.org/10.1073/pnas.1818507116.

Der volle Inhalt der Quelle
Annotation:
The rice SUB1A-1 gene, which encodes a group VII ethylene response factor (ERFVII), plays a pivotal role in rice survival under flooding stress, as well as other abiotic stresses. In Arabidopsis, five ERFVII factors play roles in regulating hypoxic responses. A characteristic feature of Arabidopsis ERFVIIs is a destabilizing N terminus, which functions as an N-degron that targets them for degradation via the oxygen-dependent N-end rule pathway of proteolysis, but permits their stabilization during hypoxia for hypoxia-responsive signaling. Despite having the canonical N-degron sequence, SUB1A-1 is not under N-end rule regulation, suggesting a distinct hypoxia signaling pathway in rice during submergence. Herein we show that two other rice ERFVIIs gene, ERF66 and ERF67, are directly transcriptionally up-regulated by SUB1A-1 under submergence. In contrast to SUB1A-1, ERF66 and ERF67 are substrates of the N-end rule pathway that are stabilized under hypoxia and may be responsible for triggering a stronger transcriptional response to promote submergence survival. In support of this, overexpression of ERF66 or ERF67 leads to activation of anaerobic survival genes and enhanced submergence tolerance. Furthermore, by using structural and protein-interaction analyses, we show that the C terminus of SUB1A-1 prevents its degradation via the N-end rule and directly interacts with the SUB1A-1 N terminus, which may explain the enhanced stability of SUB1A-1 despite bearing an N-degron sequence. In summary, our results suggest that SUB1A-1, ERF66, and ERF67 form a regulatory cascade involving transcriptional and N-end rule control, which allows rice to distinguish flooding from other SUB1A-1–regulated stresses.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
50

Chui, Ashley J., Marian C. Okondo, Sahana D. Rao, Kuo Gai, Andrew R. Griswold, Darren C. Johnson, Daniel P. Ball et al. „N-terminal degradation activates the NLRP1B inflammasome“. Science 364, Nr. 6435 (14.03.2019): 82–85. http://dx.doi.org/10.1126/science.aau1208.

Der volle Inhalt der Quelle
Annotation:
Intracellular pathogens and danger signals trigger the formation of inflammasomes, which activate inflammatory caspases and induce pyroptosis. The anthrax lethal factor metalloprotease and small-molecule DPP8/9 inhibitors both activate the NLRP1B inflammasome, but the molecular mechanism of NLRP1B activation is unknown. In this study, we used genome-wide CRISPR-Cas9 knockout screens to identify genes required for NLRP1B-mediated pyroptosis. We discovered that lethal factor induces cell death via the N-end rule proteasomal degradation pathway. Lethal factor directly cleaves NLRP1B, inducing the N-end rule–mediated degradation of the NLRP1B N terminus and freeing the NLRP1B C terminus to activate caspase-1. DPP8/9 inhibitors also induce proteasomal degradation of the NLRP1B N terminus but not via the N-end rule pathway. Thus, N-terminal degradation is the common activation mechanism of this innate immune sensor.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Wir bieten Rabatte auf alle Premium-Pläne für Autoren, deren Werke in thematische Literatursammlungen aufgenommen wurden. Kontaktieren Sie uns, um einen einzigartigen Promo-Code zu erhalten!

Zur Bibliographie