Dissertationen zum Thema „The hierarchical model“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit Top-50 Dissertationen für die Forschung zum Thema "The hierarchical model" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Sehen Sie die Dissertationen für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.
Kritchevski, Evgenij. „Hierarchical Anderson model“. Thesis, McGill University, 2008. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=115890.
Der volle Inhalt der QuelleBusatto, Giorgio. „An abstract model of hierarchical graphs and hierarchical graph transformation“. Oldenburg : Univ., Fachbereich Informatik, 2002. http://deposit.ddb.de/cgi-bin/dokserv?idn=967851955.
Der volle Inhalt der QuelleSodhi, Manbir Singh. „An hierarchical model for FMS control“. Diss., The University of Arizona, 1991. http://hdl.handle.net/10150/185364.
Der volle Inhalt der QuelleBlayneh, Kbenesh W. „A hierarchical size-structured population model“. Diss., The University of Arizona, 1996. http://hdl.handle.net/10150/187505.
Der volle Inhalt der QuelleBEZERRA, ROSINI ANTONIO MONTEIRO. „HIERARCHICAL NEURO-FUZZY BSP-MAMDANI MODEL“. PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 2002. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=3129@1.
Der volle Inhalt der QuelleEsta dissertação investiga a utilização de sistemas Neuro- Fuzzy Hierárquicos BSP (Binary Space Partitioning) para aplicações em classificação de padrões, previsão, sistemas de controle e extração de regras fuzzy. O objetivo é criar um modelo Neuro-Fuzzy Hierárquico BSP do tipo Mamdani a partir do modelo Neuro-Fuzzy Hierárquico BSP Class (NFHB-Class) que é capaz de criar a sua própria estrutura automaticamente e extrair conhecimento de uma base de dados através de regras fuzzy, lingüisticamente interpretáveis, que explicam a estrutura dos dados. Esta dissertação consiste de quatros etapas principais: estudo dos principais sistemas hierárquicos; análise do sistema Neuro-Fuzzy Hierárquico BSP Class, definição e implementação do modelo NFHB-Mamdani e estudo de casos. No estudo dos principais sistemas hierárquicos é efetuado um levantamento bibliográfico na área. São investigados, também, os principais modelos neuro-fuzzy utilizados em sistemas de controle - Falcon e o Nefcon. Na análise do sistema NFHB- Class, é verificado o aprendizado da estrutura, o particionamento recursivo, a possibilidade de se ter um maior número de entrada - em comparação com outros sistemas neuro-fuzzy - e regras fuzzy recursivas. O sistema NFHB- Class é um modelo desenvolvido especificamente para classificação de padrões, como possui várias saídas, não é possível utilizá-lo em aplicações em controle e em previsão. Para suprir esta deficiência, é criado um novo modelo que contém uma única saída. Na terceira etapa é definido um novo modelo Neuro-Fuzzy Hierárquico BSP com conseqüentes fuzzy (NFHB-Mamdani), cuja implementação utiliza a arquitetura do NFHBClass para a fase do aprendizado, teste e validação, porém, com os conseqüentes diferentes, modificando a estratégia de definição dos conseqüentes das regras. Além de sua utilização em classificação de padrões, previsão e controle, o sistema NFHB-Mamdani é capaz de extrair conhecimento de uma base de dados em forma de regras do tipo SE ENTÃO. No estudo de casos são utilizadas duas bases de dados típicas para aplicações em classificação: Wine e o Iris. Para previsão são utilizadas séries de cargas elétricas de seis companhias brasileiras diferentes: Copel, Cemig, Light, Cerj, Eletropaulo e Furnas. Finalmente, para testar o desempenho do sistema em controle faz-se uso de uma planta de terceira ordem como processo a controlar. Os resultados obtidos para classificação, na maioria dos casos, são superiores aos melhores resultados encontrados pelos outros modelos e algoritmos aos quais foram comparados. Para previsão de cargas elétricas, os resultados obtidos estão sempre entre os melhores resultados fornecidos por outros modelos aos quais formam comparados. Quanto à aplicação em controle, o modelo NFHB-Mamdani consegue controlar, de forma satisfatória, o processo utilizado para teste.
This paper investigates the use of Binary Space Partitioning (BSP) Hierarchical Neuro-Fuzzy Systems for applications in pattern classification, forecast, control systems and obtaining of fuzzy rules. The goal is to create a BSP Hierarchical Neuro-Fuzzy Model of the Mamdani type from the BSP Hierarchical Neuro-Fuzzy Class (NFHB-Class) which is able to create its own structure automatically and obtain knowledge from a data base through fuzzy rule, interpreted linguistically, that explain the data structure. This paper is made up of four main parts: study of the main Hierarchical Systems; analysis of the BSP Hierarchical Neuro-Fuzzy Class System, definition and implementation of the NFHB-Mamdani model, and case studies. A bibliographical survey is made in the study of the main Hierarchical Systems. The main Neuro-Fuzzy Models used in control systems - Falcon and Nefcon -are also investigated. In the NFHB-Class System, the learning of the structure is verified, as well as, the recursive partitioning, the possibility of having a greater number of inputs in comparison to other Neuro-Fuzzy systems and recursive fuzzy rules. The NFHB-Class System is a model developed specifically for pattern classification, since it has various outputs, it is not possible to use it in control application and forecast. To make up for this deficiency, a new unique output model is developed. In the third part, a new BSP Hierarchical Neuro-Fuzzy model is defined with fuzzy consequents (NFHB-Mamdani), whose implementation uses the NFHB-Class architecture for the learning, test, and validation phase, yet with the different consequents, modifying the definition strategy of the consequents of the rules. Aside from its use in pattern classification, forecast, and control, the NFHB-Mamdani system is capable of obtaining knowledge from a data base in the form of rules of the type IF THEN. Two typical data base for application in classification are used in the case studies: Wine and Iris. Electric charge series of six different Brazilian companies are used for forecasting: Copel, Cemig, Light, Cerj, Eletropaulo and Furnas. Finally, to test the performance of the system in control, a third order plant is used as a process to be controlled. The obtained results for classification, in most cases, are better than the best results found by other models and algorithms to which they were compared. For forecast of electric charges, the obtained results are always among the best supplied by other models to which they were compared. Concerning its application in control, the NFHB-Mamdani model is able to control, reasonably, the process used for test.
Li, Qie. „A Bayesian Hierarchical Model for Multiple Comparisons in Mixed Models“. Bowling Green State University / OhioLINK, 2012. http://rave.ohiolink.edu/etdc/view?acc_num=bgsu1342530994.
Der volle Inhalt der QuelleBusatto, Giorgio [Verfasser]. „An abstract model of hierarchical graphs and hierarchical graph transformation / von Giorgio Busatto“. Oldenburg : Univ., Fachbereich Informatik, 2002. http://d-nb.info/967851955/34.
Der volle Inhalt der QuelleCora, Vlad M. „Model-based active learning in hierarchical policies“. Thesis, University of British Columbia, 2008. http://hdl.handle.net/2429/737.
Der volle Inhalt der QuelleKelly, Joseph. „Advances in the Normal-Normal Hierarchical Model“. Thesis, Harvard University, 2014. http://dissertations.umi.com/gsas.harvard:11498.
Der volle Inhalt der QuelleCONTRERAS, ROXANA JIMENEZ. „TYPE-2 HIERARCHICAL NEURO-FUZZY BSP MODEL“. PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 2007. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=10862@1.
Der volle Inhalt der QuelleEste trabalho tem por objetivo criar um novo sistema de inferência fuzzy intervalar do tipo 2 para tratamento de incertezas com aprendizado automático e que proporcione um intervalo de confiança para as suas saídas defuzzificadas através do cálculo dos conjuntos tipo-reduzidos correspondentes. Para viabilizar este objetivo, este novo modelo combina os paradigmas de modelagem dos sistemas de inferência fuzzy do tipo 2 e redes neurais com técnicas de particionamento recursivo BSP. Este modelo possui principalmente a capacidade de modelar e manipular a maioria dos tipos de incertezas existentes em situações reais, minimizando os efeitos destas para produzir um melhor desempenho. Além disso, tem a capacidade autônoma de criar e expandir automaticamente a sua própria estrutura, de reduzir a limitação quanto ao número de entradas e de extrair regras de conhecimento a partir de um conjunto de dados. Este novo modelo fornece um intervalo de confiança, que se constitui em uma informação importante para aplicações reais. Neste contexto, este modelo supera as limitações dos sistemas de inferência fuzzy do tipo 2 - complexidade computacional, reduzido número de entradas permissíveis e forma limitada, ou inexistente, de criarem a sua própria estrutura e regras - e dos sistemas de inferência fuzzy do tipo 1 - adaptação incompleta a incertezas e não fornecimento de um intervalo de confiança para a saída. Os sistemas de inferência fuzzy do tipo1 também apresentam limitações quanto ao reduzido número de entradas permissíveis, mas o uso de particionamentos recursivos, já explorado com excelentes resultados [SOUZ99], reduz significativamente estas limitações. O trabalho constitui-se fundamentalmente em quatro partes: um estudo sobre os diferentes sistemas de inferência fuzzy do tipo 2 existentes, análise dos sistemas neuro-fuzzy hierárquicos que usam conjuntos fuzzy do tipo 1, modelagem e implementação do novo modelo neuro-fuzzy hierárquico BSP do tipo 2 e estudo de casos. O novo modelo, denominado modelo neuro-fuzzy hierárquico BSP do tipo 2 (NFHB-T2), foi definido a partir do estudo das características desejáveis e das limitações dos sistemas de inferência fuzzy do tipo 2 e do tipo 1 e dos sistemas neuro-fuzzy hierárquicos que usam conjuntos fuzzy do tipo 1 existentes. Desta forma, o NFHB-T2 é modelado e implementado com os atributos de interpretabilidade e autonomia, a partir da concepção de sistemas de inferência fuzzy do tipo 2, de redes neurais e do particionamento recursivo BSP. O modelo desenvolvido é avaliado em diversas bases de dados benchmark e aplicações reais de previsão e aproximação de funções. São feitas comparações com outros modelos. Os resultados encontrados mostram que o modelo NFHB-T2 fornece, em previsão e aproximação de funções, resultados próximos e em vários casos superiores aos melhores resultados proporcionados pelos modelos utilizados para comparação. Em termos de tempo computacional, o seu desempenho também é muito bom. Em previsão e aproximação de funções, os intervalos de confiança obtidos para as saídas defuzzificadas mostram-se sempre coerentes e oferecem maior credibilidade na maioria dos casos quando comparados a intervalos de confiança obtidos por métodos tradicionais usando as saídas previstas pelos outros modelos e pelo próprio NFHB-T2 .
The objective of this thesis is to create a new type-2 fuzzy inference system for the treatment of uncertainties with automatic learning and that provides an interval of confidence for its defuzzified output through the calculation of corresponding type-reduced sets. In order to attain this objective, this new model combines the paradigms of the modelling of the type-2 fuzzy inference systems and neural networks with techniques of recursive BSP partitioning. This model mainly has the capacity to model and to manipulate most of the types of existing uncertainties in real situations, diminishing the effects of these to produce a better performance. In addition, it has the independent capacity to create and to expand its own structure automatically, to reduce the limitation referred to the number of inputs and to extract rules of knowledge from a data set. This new model provides a confidence interval, that constitutes an important information for real applications. In this context, this model surpasses the limitations of the type-2 fuzzy inference systems - complexity computational, small number of inputs allowed and limited form, or nonexistent, to create its own structure and rules - and of the type-1 fuzzy inference systems - incomplete adaptation to uncertainties and not to give an interval of confidence for the output. The type-1 fuzzy inference systems also present limitations with regard to the small number of inputs allowed, but the use of recursive partitioning, already explored with excellent results [SOUZ99], reduce significantly these limitations. This work constitutes fundamentally of four parts: a study on the different existing type-2 fuzzy inference systems, analysis of the hierarchical neuro- fuzzy systems that use type-1 fuzzy sets, modelling and implementation of the new type-2 hierarchical neuro-fuzzy BSP model and study of cases. The new model, denominated type-2 hierarchical neuro-fuzzy BSP model (T2-HNFB) was defined from the study of the desirable characteristics and the limitations of the type-2 and type-1 fuzzy inference systems and the existing hierarchical neuro-fuzzy systems that use type- 1 fuzzy sets. Of this form, the T2-HNFB model is modelling and implemented with the attributes of interpretability and autonomy, from the conception of type-2 fuzzy inference systems, neural networks and recursive BSP partitioning. The developed model is evaluated in different benchmark databases and real applications of forecast and approximation of functions. Comparisons with other models are done. The results obtained show that T2-HNFB model provides, in forecast and approximation of functions, next results and in several cases superior to the best results provided by the models used for comparison. In terms of computational time, its performance also is very good. In forecast and approximation of functions, the intervals of confidence obtained for the defuzzified outputs are always coherent and offer greater credibility in most of cases when compared with intervals of confidence obtained through traditional methods using the forecast outputs by the other models and the own T2-HNFB model.
Arora, Neeraj. „A hierarchical model to study primary demand“. The Ohio State University, 1995. http://rave.ohiolink.edu/etdc/view?acc_num=osu1277406634.
Der volle Inhalt der QuelleQin, Xizhen. „Hierarchical context model for teaching Chinese vocabulary“. The Ohio State University, 2006. http://rave.ohiolink.edu/etdc/view?acc_num=osu1400075149.
Der volle Inhalt der QuelleAnnakula, Chandravyas. „Hierarchical and partitioning based hybridized blocking model“. Kansas State University, 2017. http://hdl.handle.net/2097/35468.
Der volle Inhalt der QuelleDepartment of Computing and Information Sciences
William H. Hsu
(Higgins, Savje, & Sekhon, 2016) Provides us with a sampling blocking algorithm that enables large and complex experiments to run in polynomial time without sacrificing the precision of estimates on a covariate dataset. The goal of this project is to run the different clustering algorithms on top of clusters formed from above mentioned blocking algorithm and analyze the performance and compatibility of the clustering algorithms. We first start with applying the blocking algorithm on a covariate dataset and once the clusters are formed, we then apply our clustering algorithm HAC (Hierarchical Agglomerative Clustering) or PAM (Partitioning Around Medoids) on the seeds of the clusters. This will help us to generate more similar clusters. We compare our performance and precision of our hybridized clustering techniques with the pure clustering techniques to identify a suitable hybridized blocking model.
Ayala, Christian A. „Acceptance-Rejection Sampling with Hierarchical Models“. Scholarship @ Claremont, 2015. http://scholarship.claremont.edu/cmc_theses/1162.
Der volle Inhalt der QuelleSeibel, Andreas. „Traceability and model management with executable and dynamic hierarchical megamodels“. Phd thesis, Universität Potsdam, 2012. http://opus.kobv.de/ubp/volltexte/2013/6422/.
Der volle Inhalt der QuelleDie modellgetriebene Softwareentwicklung (MDE) verspricht heutzutage, durch das Verringern der inhärenten Komplexität der klassischen Softwareentwicklung, das Entwickeln von Software zu vereinfachen. Um dies zu erreichen, erhöht MDE das Abstraktions- und Automationsniveau durch die Einbindung domänenspezifischer Modelle (DSMs) und Modelloperationen (z.B. Modelltransformationen oder Codegenerierungen). DSMs sind konform zu domänenspezifischen Modellierungssprachen (DSMLs), die dazu dienen das Abstraktionsniveau der Softwareentwicklung zu erhöhen. Modelloperationen sind essentiell für die Softwareentwicklung da diese den Grad der Automatisierung erhöhen. Dennoch muss MDE mit Komplexitätsdimensionen umgehen die sich grundsätzlich aus der erhöhten sprachlichen und technologischen Heterogenität ergeben. Die erste Komplexitätsdimension ist das Konfigurieren einer Umgebung für MDE. Diese Aktivität setzt sich aus der Implementierung und Selektion von DSMLs sowie Modelloperationen zusammen. Eine solche Aktivität ist gerade durch die Implementierung und Anpassung von Modelloperationen zeitintensiv sowie fehleranfällig. Die zweite Komplexitätsdimension hängt mit der Anwendung von MDE für die eigentliche Softwareentwicklung zusammen. Das Anwenden von MDE ist eine Herausforderung weil eine Menge von heterogenen DSMs, die unterschiedlichen DSMLs unterliegen, erforderlich sind um ein komplexes Softwaresystem zu spezifizieren. Individuelle DSMLs werden verwendet um spezifische Aspekte eines Softwaresystems auf bestimmten Abstraktionsniveaus und aus bestimmten Perspektiven zu beschreiben. Hinzu kommt, dass DSMs sowie DSMLs grundsätzlich nicht unabhängig sind, sondern inhärente Abhängigkeiten besitzen. Diese Abhängigkeiten reflektieren äquivalente Aspekte eines Softwaresystems. Eine Teilmenge dieser Abhängigkeiten reflektieren Anwendungen diverser Modelloperationen, die notwendig sind um den Grad der Automatisierung hoch zu halten. Dies wird erschwert wenn man die erste Komplexitätsdimension hinzuzieht. Aufgrund kontinuierlicher Änderungen der DSMs, müssen alle Arten von Abhängigkeiten, inklusive die Anwendung von Modelloperationen, kontinuierlich verwaltet werden. Dies beinhaltet die Wartung dieser Abhängigkeiten und das sachgerechte (wiederholte) Anwenden von Modelloperationen. Der Beitrag dieser Arbeit ist ein Ansatz, der die Bereiche Traceability und Model Management vereint. Das Erfassen und die automatische Verwaltung von Abhängigkeiten zwischen DSMs unterstützt Traceability, während das (automatische) wiederholte Anwenden von heterogenen Modelloperationen Model Management ermöglicht. Dadurch werden die zuvor erwähnten Herausforderungen der Konfiguration und Anwendung von MDE überwunden. Die negativen Auswirkungen der ersten Komplexitätsdimension können gelindert werden indem Modelloperationen in atomare Einheiten zerlegt werden. Um der implizierten Fragmentierung entgegenzuwirken, erfordert dies allerdings eine nachfolgende Komposition der Modelloperationen. Der Ansatz wird als erweitertes Model Management betrachtet, da ein signifikanter Anteil dieser Arbeit die Kompositionen von heterogenen Modelloperationen behandelt. Unterstützt werden zwei unterschiedliche Arten von Kompositionen. Datenfluss-Kompositionen werden verwendet, um Netzwerke von heterogenen Modelloperationen zu beschreiben, die nur durch das Teilen von Ein- und Ausgabe DSMs komponiert werden. Kontext-Kompositionen bedienen sich eines Konzepts, das von deklarativen Modelltransformationen bekannt ist. Dies ermöglicht die Komposition von unabhängigen Transformationsregeln auf unterschiedlichsten Detailebenen. Die in dieser Arbeit eingeführten Kontext-Kompositionen bieten die Möglichkeit eine Menge von unterschiedlichsten Abhängigkeiten als Kontext für eine Komposition zu verwenden -- unabhängig davon ob diese Abhängigkeit eine Modelloperation repräsentiert. Zusätzlich müssen die Modelloperationen, die komponiert werden, selber keine Kompositionsaspekte implementieren, was deren Wiederverwendbarkeit erhöht. Realisiert wird dieser Ansatz durch einen Formalismus der Executable and Dynamic Hierarchical Megamodel genannt wird und auf der originalen Idee der Megamodelle basiert. Auf Basis dieses Formalismus' sind die Konzepte Traceability (hier Localization) und Model Management (hier Execution) umgesetzt.
Chao, Yi. „Bayesian Hierarchical Latent Model for Gene Set Analysis“. Thesis, Virginia Tech, 2009. http://hdl.handle.net/10919/32060.
Der volle Inhalt der QuelleMaster of Science
Fry, James Thomas. „Hierarchical Gaussian Processes for Spatially Dependent Model Selection“. Diss., Virginia Tech, 2018. http://hdl.handle.net/10919/84161.
Der volle Inhalt der QuellePh. D.
Ward, Caroline. „Robust theory applied to Jewell's hierarchical credibility model“. Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1998. http://www.collectionscanada.ca/obj/s4/f2/dsk2/tape15/PQDD_0025/MQ39960.pdf.
Der volle Inhalt der QuelleHeinl, Hans. „A hierarchical, integrated process-, resource- and object-model“. Thesis, University of South Wales, 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.393066.
Der volle Inhalt der QuelleMarshall, Lucy Amanda Civil & Environmental Engineering Faculty of Engineering UNSW. „Bayesian analysis of rainfall-runoff models: insights to parameter estimation, model comparison and hierarchical model development“. Awarded by:University of New South Wales. Civil and Environmental Engineering, 2006. http://handle.unsw.edu.au/1959.4/32268.
Der volle Inhalt der QuelleOlsen, Andrew Nolan. „Hierarchical Bayesian Methods for Evaluation of Traffic Project Efficacy“. BYU ScholarsArchive, 2011. https://scholarsarchive.byu.edu/etd/2922.
Der volle Inhalt der QuelleOUAISS, IYAD. „HIERARCHICAL MEMORY SYNTHESIS IN RECONFIGURABLE COMPUTERS“. University of Cincinnati / OhioLINK, 2002. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1033498452.
Der volle Inhalt der QuelleZemanová, Lucia. „Structure-function relationship in hierarchical model of brain networks“. Phd thesis, Universität Potsdam, 2007. http://opus.kobv.de/ubp/volltexte/2008/1840/.
Der volle Inhalt der QuelleDas Gehirn von Säugetieren stellt mit seinen zahlreichen, hochgradig vernetzten Neuronen ein natürliches Netzwerk von immenser Komplexität dar. In der jüngsten Vergangenheit sind die großflächige kortikale Konnektivitäten, sowohl unter strukturellen wie auch funktionalen Gesichtspunkten, in den Fokus der Forschung getreten. Die Verwendung von komplexe Netzwerke spielt hierbei eine entscheidende Rolle. In der vorliegenden Dissertation versuchen wir, das Verhältnis von struktureller und funktionaler Konnektivität durch Untersuchung der Synchronisationsdynamik anhand eines realistischen Modells der Konnektivität im Kortex einer Katze näher zu beleuchten. Wir modellieren die Kortexareale durch ein Subnetzwerk interagierender, erregbarer Neuronen (multilevel model) und durch ein Modell von Neuronenensembles (population model). Bei schwacher Kopplung zeigt das multilevel model eine biologisch plausible Dynamik und die Synchronisationsmuster lassen eine hierarchische Organisation der Netzwerkstruktur erkennen. Indem wir die dynamischen Cluster mit den topologischen Einheiten des Netzwerks vergleichen, sind wir in der Lage die Hirnareale, die an der Bewältigung komplexer Aufgaben beteiligt sind, zu identifizieren. Bei starker Kopplung im multilevel model und unter Verwendung des Ensemblemodells weist die Dynamik klare Oszillationen auf. Die Synchronisationsmuster werden hauptsächlich durch die Eingangsstärke an den einzelnen Knoten bestimmt, während die genaue Netzwerktopologie zweitrangig ist. Eine Erweiterung des Modells auf andere biologisch relevante Faktoren bestätigt die vorherigen Ergebnisse. Die Untersuchung der Synchronisation in einem multilevel model des Kortex ermöglicht daher tiefere Einblicke in die Zusammenhänge zwischen Netzwerktopologie und funktionaler Organisation in komplexen Hirn-Netzwerken.
Bao, Haikun. „Bayesian hierarchical regression model to detect quantitative trait loci /“. Electronic version (PDF), 2006. http://dl.uncw.edu/etd/2006/baoh/haikunbao.pdf.
Der volle Inhalt der QuelleFang, Fang. „A simulation study for Bayesian hierarchical model selection methods“. View electronic thesis (PDF), 2009. http://dl.uncw.edu/etd/2009-2/fangf/fangfang.pdf.
Der volle Inhalt der QuelleQiao, Hao. „Sparse hierarchical model order reduction for high speed interconnects“. Thesis, McGill University, 2009. http://digitool.Library.McGill.CA:8881/R/?func=dbin-jump-full&object_id=32359.
Der volle Inhalt der QuelleStenger, Björn Dietmar Rafael. „Model-based hand tracking using a hierarchical Bayesian filter“. Thesis, University of Cambridge, 2004. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.615915.
Der volle Inhalt der QuelleAbbas, Mustafa Sulaiman. „Consistency Analysis for Judgment Quantification in Hierarchical Decision Model“. PDXScholar, 2016. https://pdxscholar.library.pdx.edu/open_access_etds/2699.
Der volle Inhalt der QuelleAdi, Riyono Winarputro. „CJS-RE : a hierarchical constitutive model for rammed earth“. Thesis, Lyon, 2017. http://www.theses.fr/2017LYSEC036/document.
Der volle Inhalt der QuelleRammed earth is a vernacular building technique consisting in compacting successively layers of moist earth within formworks. This technique is present worldwide and in particular in the region Auvergne-Rhône-Alpes in France. As no regulation exists for rammed earth structures in France, the owners of such structures are helpless at the time when repairing damages appearing in any aging heritage structures. Moreover, this lack of regulation tends to slow down the development of such a constructive solution in new projects though this technique answers many of the issues raised by the sustainable development. The work presented herein is part of the national research project PRIMATERRE devoted to the study of construction building involving earth. Herein, an elasto-plastic constitutive law is developed for modeling the behavior of rammed earth. It is based on a hierarchical approach of the modeling in relation to the information available to identify the set of model parameters and the refinement of phenomena to be modelled. This model was adapted from a pre-existing CJS model used in advanced foundation engineering for the modelling of granular soils. The necessary adaptation of some mechanisms of the model in the context of rammed earth material which holds the characteristics of a quasi-brittle material is highlighted. Two levels for the model denoted CJS-RE which can be used in the context of monotonous loadings are presented herein. The first level is a simple elastic perfectly plastic model (CJS-RE1) and the second model is an elasto-plastic model with an isotropic hardening (CJS-RE2). Two mechanisms of plastic deformation are involved, one related to purely deviatoric phenomena and one related to tensile phenomena. The validation of the model was performed based on different sets of actual tests including diagonal compression tests and pushover tests on wallets. The simple elasto-plastic model CJS-RE1 was able to capture some basic features for these two tests and may be used for a first estimate of the system resistance. The more sophisticated model CJS-RE2 was found better to retrieve the nonlinear behavior of rammed earth over a larger range of deformations throughout both a diagonal compression test and a pushover test. Finally, the modelling of interfaces between layers of earth seems oversized when the resistance of the system is investigated. However, since they may influence the simulated ductility of the system, they may be used to model the behavior of rammed earth system more precisely
Carbone, Marc A. „HIERARCHICAL DECENTRALIZED CONTROL TECHNIQUES OF A MODEL DC MICROGRID“. Case Western Reserve University School of Graduate Studies / OhioLINK, 2016. http://rave.ohiolink.edu/etdc/view?acc_num=case1464259866.
Der volle Inhalt der QuelleLiu, Yingying. „Bayesian hierarchical normal intrinsic conditional autoregressive model for stream networks“. Diss., University of Iowa, 2018. https://ir.uiowa.edu/etd/6606.
Der volle Inhalt der QuelleMehl, Christopher. „Bayesian Hierarchical Modeling and Markov Chain Simulation for Chronic Wasting Disease“. Diss., University of Colorado at Denver, 2004. http://hdl.handle.net/10919/71563.
Der volle Inhalt der QuelleChen, Younan. „Bayesian hierarchical modelling of dual response surfaces“. Diss., Virginia Tech, 2005. http://hdl.handle.net/10919/29924.
Der volle Inhalt der QuellePh. D.
Fang, Qijun. „Hierarchical Bayesian Benchmark Dose Analysis“. Diss., The University of Arizona, 2014. http://hdl.handle.net/10150/316773.
Der volle Inhalt der QuelleBahar, Arash. „Hierarchical semiactive control of base-isolated structures“. Doctoral thesis, Universitat Politècnica de Catalunya, 2009. http://hdl.handle.net/10803/31840.
Der volle Inhalt der QuelleIn structural engineering, one of the constant challenges is to find new better means of protecting structures from destructive environmental forces. One approach is seismic isolation, which has shown to not only reduce the response of the primary structure, but also reduce damage to equipment and other non-structural secondary elements. A drawback of most isolation systems appears when one considers the response of isolated structures subjected to earthquakes characterized by near-field motions. Such motions are likely to produce large isolation deformations, which may lead to buckling or rupture of isolators. To control these large deformations one way is to utilize supplemental dampers together with the isolation system (a hybrid system). However the benefits of isolation system may be significantly reduced for both moderate and strong earthquakes due to the transfer of energy into higher modes which can result in increased interstory drift and floor accelerations. One approach to improve the performance of an isolation system is to incorporate devices within the isolation system whose properties can be adjusted in real-time during earthquakes. Such devices are referred to as semi-active. The control forces in semi-active systems are developed as a result of the motion of the structure itself. They can only be modified through appropriate adjustment of mechanical properties of semi-active devices. Furthermore, the control forces act to oppose the motion of the structural system and therefore promote the global stability of the structure. Specifically the MR dampers appear to have significant potential to advance the acceptance of structural control as a viable means for dynamic hazard mitigation. However, because of the inherent nonlinearity of MR dampers, the first step in the design of a semiactive control is the development of an accurate model of the MR device. The system-identification issue plays a key role in control problems. The nature of this research is multidisciplinary because it deals with two concepts, identification of a mechanical device (MR damper) as well as a structural control problem in a civil engineering perspective. As a first step, a new Bouc-Wen based normalized model has been developed to study the behavior of a wider range of MR dampers, specially the devices which can be more effective in the vibration control of real civil engineering structures (large-scale MR dampers). Based on this new model, an extension of a parameter identification method for MR dampers has been proposed. This extension allows to identify a larger class of MR dampers more accurately. The validation of the parameter identification method has been carried out using a black-box model of an MR damper that is a part of a smart base-isolated benchmark building model available in the community of researchers in structural control. The versatility of the parameter identification method has been tested using the MR damper as a semi-active device under time-varying voltage and earthquake excitation. Then, based on the proposed extended Bouc-Wen based normalized model, a new inverse model for MR dampers has been proposed. If two additional practical physical constraints are satisfied, then the voltage of the MR dampers can be manipulated by the inverse model. Finally, a hierarchical semi-active control strategy for the control of the vibration response of the isolated buildings equipped with a set of parallel MR dampers has been presented. This strategy consists of four steps applied in real time at each control instant: 1. Compute the overall desired control force to be applied at the base of the structure. 2. Determine the total force applied at the current control instant by the set of MR dampers. If this force is smaller than the desired force and they have the same sign, this means that the MR dampers need to apply more damping force and go to step 3. Otherwise the voltage of the MR dampers is set to 0. 3. Determine the number of dampers that are applying force in the same direction as the desired control force. 4. Compute the corresponding command voltage for each MR damper using the inverse model. The whole method is simulated by considering the three-dimensional smart base isolated benchmark building which is also used by the structural control community as a state-of-the-art model for numerical experiments of seismic control attenuation. The resulted performance indices demonstrate that the proposed semi-active method can effectively improve the performance of the building under earthquake loading
Provost, Marc 1981. „Himesis : a hierarchical subgraph matching kernel for model driven development“. Thesis, McGill University, 2005. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=98772.
Der volle Inhalt der QuelleHimesis implements HVF, a new matching algorithm based on the VF2 approach. HVF extends VF2 with hierarchy and with several optimization strategies. It was designed to support advanced features that are required for graph rewriting, such as matching from a context as well as negative application conditions. We show that HVF is a faster algorithm than VF2 for matching of flat graphs. HVF is particularly efficient when matching irregular graphs.
Wang, Yufei. „Nested backfitting and bandwidth selection of hierarchical bivariate additive model“. Thesis, University of Manchester, 2009. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.515199.
Der volle Inhalt der QuelleWang, Chia-Fu. „A hierarchical Gamma/Weibull regression model for target detection times“. Thesis, Monterey, California: Naval Postgraduate School, 1990. http://hdl.handle.net/10945/34954.
Der volle Inhalt der QuelleCombat models often involve target detection times which may vary with different observers due to characteristics of personnel, or detection systems. They may also be affected by different environmental factors such as visual levels, sea states, terrains, etc. There is often interest in quantifying the effects of different observer characteristics and environmental factors on detection times. A hierarchical gammaWeibull regression model is considered which can incorporate observer characteristics and environmental effects which may influence the time to detect targets. Numerical procedures for the estimation of parameters of the hierarchical gammaWeibull model based on maximum likelihood are described. Results of simulation experiments to study small sample behavior of the estimates are reported.
Hwang, Hau 1977. „A hierarchical model for integration of narrowband cues in speech“. Thesis, Massachusetts Institute of Technology, 2001. http://hdl.handle.net/1721.1/86717.
Der volle Inhalt der QuelleRogers, Andrew. „Exploring a Bayesian hierarchical structure within the behavioural perspective model“. Thesis, Cardiff University, 2018. http://orca.cf.ac.uk/111391/.
Der volle Inhalt der QuellePisu, Pierluigi. „Hierarchical model-based fault diagnosis with application to vehicle systems /“. The Ohio State University, 2002. http://rave.ohiolink.edu/etdc/view?acc_num=osu1486402544589875.
Der volle Inhalt der QuelleFawcett, Lee, Neil Thorpe, Joseph Matthews und Karsten Kremer. „A novel Bayesian hierarchical model for road safety hotspot prediction“. Elsevier, 2016. https://publish.fid-move.qucosa.de/id/qucosa%3A72268.
Der volle Inhalt der QuelleWilliams, Lawrence. „Model abstraction and reusability in a hierarchical architecture simulation environment“. Thesis, University of Edinburgh, 1999. http://hdl.handle.net/1842/14671.
Der volle Inhalt der QuelleRamanathan, Ramya. „LINKING PLUME SPREADING TO HIERARCHICAL STRATAL ARCHITECTURE“. Wright State University / OhioLINK, 2009. http://rave.ohiolink.edu/etdc/view?acc_num=wright1238547912.
Der volle Inhalt der QuelleJones, Thomas Carroll Jr. „JigCell Model Connector: Building Large Molecular Network Models from Components“. Thesis, Virginia Tech, 2017. http://hdl.handle.net/10919/78277.
Der volle Inhalt der QuelleMaster of Science
Cruz, Daniel Alejandro. „Hierarchical Self-Assembly and Substitution Rules“. Scholar Commons, 2019. https://scholarcommons.usf.edu/etd/7770.
Der volle Inhalt der QuelleLi, Yingbo. „Bayesian Hierarchical Models for Model Choice“. Diss., 2013. http://hdl.handle.net/10161/8063.
Der volle Inhalt der QuelleWith the development of modern data collection approaches, researchers may collect hundreds to millions of variables, yet may not need to utilize all explanatory variables available in predictive models. Hence, choosing models that consist of a subset of variables often becomes a crucial step. In linear regression, variable selection not only reduces model complexity, but also prevents over-fitting. From a Bayesian perspective, prior specification of model parameters plays an important role in model selection as well as parameter estimation, and often prevents over-fitting through shrinkage and model averaging.
We develop two novel hierarchical priors for selection and model averaging, for Generalized Linear Models (GLMs) and normal linear regression, respectively. They can be considered as "spike-and-slab" prior distributions or more appropriately "spike- and-bell" distributions. Under these priors we achieve dimension reduction, since their point masses at zero allow predictors to be excluded with positive posterior probability. In addition, these hierarchical priors have heavy tails to provide robust- ness when MLE's are far from zero.
Zellner's g-prior is widely used in linear models. It preserves correlation structure among predictors in its prior covariance, and yields closed-form marginal likelihoods which leads to huge computational savings by avoiding sampling in the parameter space. Mixtures of g-priors avoid fixing g in advance, and can resolve consistency problems that arise with fixed g. For GLMs, we show that the mixture of g-priors using a Compound Confluent Hypergeometric distribution unifies existing choices in the literature and maintains their good properties such as tractable (approximate) marginal likelihoods and asymptotic consistency for model selection and parameter estimation under specific values of the hyper parameters.
While the g-prior is invariant under rotation within a model, a potential problem with the g-prior is that it inherits the instability of ordinary least squares (OLS) estimates when predictors are highly correlated. We build a hierarchical prior based on scale mixtures of independent normals, which incorporates invariance under rotations within models like ridge regression and the g-prior, but has heavy tails like the Zeller-Siow Cauchy prior. We find this method out-performs the gold standard mixture of g-priors and other methods in the case of highly correlated predictors in Gaussian linear models. We incorporate a non-parametric structure, the Dirichlet Process (DP) as a hyper prior, to allow more flexibility and adaptivity to the data.
Dissertation
Luis, Eduardo Rodriguez Soto. „The Hierarchical Map Forming Model“. 2006. http://www.cetd.com.tw/ec/thesisdetail.aspx?etdun=U0001-2706200621000500.
Der volle Inhalt der QuelleSoto, Luis Eduardo Rodriguez, und 陸羿. „The Hierarchical Map Forming Model“. Thesis, 2006. http://ndltd.ncl.edu.tw/handle/26967487936811809780.
Der volle Inhalt der Quelle國立臺灣大學
資訊工程學研究所
94
In this thesis we propose a motor control model inspired by organizational priciples of the cerebral cortex. Specifically the model is based on cortical maps and functional hierarchy in sensory and motor areas of the brain. We introduce observed properties of the F5 area in the macaque monkey brain, an area which combines sensory and motor information, producing actions without high processing information. The properties here observed can be quickly summarized to mdularity and hierarchical processing. These form the basis for the model we propose. We make use of well known computational tools, to put together a biology imitating model, for action learning and motor control. The Self-Organizing Maps (SOM) have proven to be useful in modeling cortical topological maps. A hierarchical SOM provides a natural way to extract hierarchical information from the environment, which we propose may in turn be used to select actions hierarchically. We use a neighborhood update version of the Q-learning algorithm, so the final model maps a continuous input space to a continuous action space in a hierarchical, topology preserving manner. The model is called the Hierarchical Map Forming model (HMF) due to the way in which it forms maps in both the input and output spaces in a hierarchical manner.
Mindt, Pascal. „Hierarchical Gas Model Coupling on Networks“. Phd thesis, 2019. https://tuprints.ulb.tu-darmstadt.de/8710/1/Dissertation_PascalMindt.pdf.
Der volle Inhalt der Quelle