Dissertationen zum Thema „TGF alpha [Transforming Growth Factor]“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit Top-50 Dissertationen für die Forschung zum Thema "TGF alpha [Transforming Growth Factor]" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Sehen Sie die Dissertationen für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.
Chia, Choy May. „Epidermal growth factor (EGF) : transforming growth factor alpha (TGF-#alpha#) in human preimplantation development“. Thesis, Imperial College London, 1996. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.362631.
Der volle Inhalt der QuelleLau, Kwok-pui. „Clinicopathological roles of transforming growth factor alpha (TGF[alpha]) in papillary thyroid carcinoma /“. Click to view the E-thesis via HKUTO, 2007. http://sunzi.lib.hku.hk/HKUTO/record/B39558733.
Der volle Inhalt der QuelleLam, Sze-man Joyce. „Expression of transforming growth factors (TGF-alpha and TGF-beta 1) on postmortem skin wounds /“. View the Table of Contents & Abstract, 2007. http://sunzi.lib.hku.hk/hkuto/record/B38480566.
Der volle Inhalt der QuelleLiu, Xiaoying. „Molecular mechanisms of myofibroblast differentiation and the role of TGF beta1, TNF alpha, and thrombin signal transduction“. Columbus, Ohio : Ohio State University, 2009. http://rave.ohiolink.edu/etdc/view?acc%5Fnum=osu1236711907.
Der volle Inhalt der QuelleGlinsmann-Gibson, Betty Jean 1961. „Molecular mechanism of autocrine regulation by TGF-alpha in T(3)M(4) human pancreatic carcinoma cells“. Thesis, The University of Arizona, 1989. http://hdl.handle.net/10150/277113.
Der volle Inhalt der QuelleHallbeck, Anna-Lotta. „Studies of transforming growth factor alpha in normal and abnormal growth“. Doctoral thesis, Linköping : Univ, 2007. http://www.bibl.liu.se/liupubl/disp/disp2007/med1025s.pdf.
Der volle Inhalt der Quelle林詩敏 und Sze-man Joyce Lam. „Expression of transforming growth factors (TGF-alpha and TGF-beta 1) on postmortem skin wounds“. Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2007. http://hub.hku.hk/bib/B45011400.
Der volle Inhalt der QuelleKiesow, Claudia. „Pathogenese der equinen Endometrose: Bedeutung der Wachstumsfaktoren Transforming growth factor-alpha, -beta1, -beta2 und -beta3 sowie der Matrixmetalloproteinase-2“. Doctoral thesis, Universitätsbibliothek Leipzig, 2011. http://nbn-resolving.de/urn:nbn:de:bsz:15-qucosa-65079.
Der volle Inhalt der Quelle劉國培 und Kwok-pui Lau. „Clinicopathological roles of transforming growth factor alpha (TGFα) in papillary thyroid carcinoma“. Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2007. http://hub.hku.hk/bib/B39558733.
Der volle Inhalt der QuelleFreese, Christiane. „Rolle der Plasmakonzentrationen von transforming growth factor-[beta]1 [factor-beta1] (TGF[beta]1) [TGF beta 1], Tumor necrosis factor [alpha] [Tumor necrosis factor alpha] (TNF [alpha]) [TNF alpha] und Plasminogen-Activator-Inhibitor-(PAI-)-Antigen bei Patienten mit Diabetes Mellitus Typ 2 und koronarer Herzkrankheit“. [S.l.] : [s.n.], 2002. http://deposit.ddb.de/cgi-bin/dokserv?idn=97149200X.
Der volle Inhalt der QuelleMongerard-Coulanges, Medge. „Influence de l'expression du facteur de croissance VEGF sur l'activité antitumorale de l'alendronate“. Paris 6, 2009. http://www.theses.fr/2009PA066596.
Der volle Inhalt der QuelleLautrette, Alexandre. „Interaction entre la voie de l'épidermal growth factor et la voie de l'angiotensine : rôle dans la progression des lésions rénales“. Paris 6, 2006. http://www.theses.fr/2006PA066376.
Der volle Inhalt der QuelleMaltman, John. „A study of the interactions between macrophage inflammatory protein 1 alpha (MIP-1#alpha#) and transforming growth factor beta (TGF-#beta#) in the control of haemopoietic stem cell proliferation“. Thesis, University of Glasgow, 1995. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.301654.
Der volle Inhalt der QuelleHerbert, Brittney-Shea. „Mechanisms of RRR-[alpha]-tocopheryl succinate- and N-(4-hydroxyphenyl)retinamide-induced apoptosis of human HL-60 myelocytic leukemia and MDA-MB-435 breast cancer cells : a role for TGF-[beta] and C-JUN /“. Digital version accessible at:, 1998. http://wwwlib.umi.com/cr/utexas/main.
Der volle Inhalt der QuellePerlemuter, Gabriel. „Capside du virus de l'hépatite C et métabolisme lipidique hépatique“. Paris 7, 2002. http://www.theses.fr/2002PA077147.
Der volle Inhalt der QuelleBonniaud, Philippe. „Transforming growth factor-β1, connective tissue growth factor et fibrose pulmonaire“. Dijon, 2005. http://www.theses.fr/2005DIJOMU01.
Der volle Inhalt der QuelleNorozian, Farnaz. „Transforming Growth Factor-β1 (TGF-β1) Induces Mast Cell Apoptosis“. VCU Scholars Compass, 2006. http://scholarscompass.vcu.edu/etd/1544.
Der volle Inhalt der QuelleZuniga, Jorge E. „Binding properties and solution structure of the TGF-[beta] type I receptor extracellular domain : a dissertation /“. San Antonio : UTHSC, 2007. http://proquest.umi.com/pqdweb?did=1354133851&sid=1&Fmt=2&clientId=70986&RQT=309&VName=PQD.
Der volle Inhalt der QuellePan, Dejing. „Transforming growth factor-ß (TGF-ß) signaling in hematopoiesis and tumorigenesis /“. Basel : [s.n.], 2008. http://edoc.unibas.ch/diss/DissB_8513.
Der volle Inhalt der QuelleRose, Aidan Michael. „Transforming growth factor-beta signalling in human cutaneous squamous cell carcinoma“. Thesis, University of Dundee, 2015. https://discovery.dundee.ac.uk/en/studentTheses/51b1a1c1-ac43-4f60-aa77-9002af3f2186.
Der volle Inhalt der QuelleGonçalves, Josiane de Oliveira. „Comparação entre os resultados da expressão gênica da desmina, alfa-actina e TGF-beta1 obtidos a partir dos métodos da reação em cadeia de polimerase via transcriptase reversa (RT-PCR) semiquantitativa e em tempo real (qRT-PCR) no modelo“. Universidade de São Paulo, 2014. http://www.teses.usp.br/teses/disponiveis/5/5141/tde-15082014-163708/.
Der volle Inhalt der QuelleThe mechanisms responsible for liver fibrosis in childhood are poorly understood. Children suffering from biliary atresia, when submitted to the successful Kasai portoentostomy, become anicteric, but nonetheless develop cirrhosis in the long term. Similarly, the occurrence of intrahepatic biliary stenosis in the postoperative period of liver transplantation may lead to cirrhosis of the whole organ. Such facts suggest that endocrine or paracrine mechanisms are involved in hepatic fibrogenesis. To elucidate this process, the selective bile duct ligation model in young rats was developed in our laboratory. Using this model, we identified changes in the expression of smooth muscle alpha-actin both in the obstructed parenchyma and the hepatic parenchyma adjacent to the obstruction. However, the expression profiles of desmin, a protein present at high levels during activation of hepatic stellate cells and TGF-beta1, the main pro-fibrogenic cytokine, were unchanged when analyzed with semiquantitative RT-PCR. Thus, the molecular mechanisms involved in the modulation of hepatic fibrogenesis in this experimental model are not fully understood. The methodology of qRT-PCR (real time PCR) has previously been described as a more precise and sensitive method, allowing the detection of increased copy number of the gene while amplification occurs, whereas by semiquantitative RT-PCR analysis transcripts is only perfomed after the amplification step. This study aimed to evaluate the molecular changes in experimental model of selective bile duct ligation and compare the results between semiquantitative RT-PCR and real-time qRT-PCR methods. Selective biliary duct ligation was performed on Wistar rats with 21 days of life, the groups were separated according to the moment of death: 7 or 60 days after surgery. The expression of desmin, alpha-actin smooth muscle and TGF-beta1 was examined in tissue from hepatic parenchyma with biliary obstruction (duct ligation - DL) and in the adjacent hepatic parenchyma (duct non-ligated - DNL) using semiquantitative RT-PCR and real-time qRT-PCR. The methodology of the real-time qRT-PCR allowed to identify changes in gene expression profile that were not shown by semiquantitative method. The DL parenchyma showed a more severe fibrogenic reaction, with increased alpha-actin smooth muscle and TGF-beta1 expression after 7 days. The DNL parenchyma presented a later fibrotic response, with increased desmin expression 7 and 60 days after surgery, besides of increased alpha-actin smooth muscle 60 days after surgery. Real-time qRT-PCR was more sensitive to identify changes in gene expression profile comparated to the semiquantitative method. Our results help to clarify the dynamic of molecular changes involved in the modulation of hepatic fibrogenesis in an experimental model of selective bile duct ligation and can be directly applied to the study of intrahepatic biliary stenosis and biliary atresia
Chen, Feng. „Phosphorylation and activation of transforming growth factor beta (TGF-[beta]) receptor kinases“. Thesis, Massachusetts Institute of Technology, 1996. http://hdl.handle.net/1721.1/41406.
Der volle Inhalt der QuelleOn t.p., "[beta]" appears as the lower case Greek letter. Vita.
Includes bibliographical references (leaves 166-207).
by Feng Chen.
Ph.D.
DUVERNELLE, CATHERINE. „Regulation de l'expression du tgf-1 (transforming growth factor-beta1) dans l'asthme“. Université Louis Pasteur (Strasbourg) (1971-2008), 2000. http://www.theses.fr/2000STR13139.
Der volle Inhalt der QuelleBailie, Janice Roberta. „The synthesis and biological activity of EFG/TGF-#alpha# fragments“. Thesis, Queen's University Belfast, 1990. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.335455.
Der volle Inhalt der QuelleMaurice, Diane Barthelemie Emile. „The role of transforming growth factor-β in thymocyte development and T cell function“. Thesis, University College London (University of London), 2002. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.271324.
Der volle Inhalt der QuelleRodgers, Stephen D. „Characterizing the motogenic response of human keratinocytes to epidermal growth factor and transforming growth factor-alpha“. Thesis, Massachusetts Institute of Technology, 1996. http://hdl.handle.net/1721.1/40610.
Der volle Inhalt der QuelleKöhler, Heike Christine. „Die TGF-[beta] [TGF-beta] vermittelte Suppression der antigenspezifischen Immunantwort kann durch CD28 Kostimulation überwunden werden“. München Verl. Dr. Hut, 2008. http://d-nb.info/992163080/04.
Der volle Inhalt der QuelleVo, BaoHan Thi. „Nodal and transforming growth factor-β (TGF-β) signalings in prostate cancer cells“. DigitalCommons@Robert W. Woodruff Library, Atlanta University Center, 2013. http://digitalcommons.auctr.edu/dissertations/500.
Der volle Inhalt der QuelleCzubala, Magdalena Anna. „Transforming growth factor-beta (TGF-β) induces HIV-1 restriction in Langerhans cells“. Thesis, Cardiff University, 2015. http://orca.cf.ac.uk/77792/.
Der volle Inhalt der QuelleMoore, Lakisha Dionne. „Modulation of Transforming Growth Factor (TGF)-[beta]1 and its implications in breast cancer metastasis“. Thesis, Birmingham, Ala. : University of Alabama at Birmingham, 2008. https://www.mhsl.uab.edu/dt/2008p/ldmoore.pdf.
Der volle Inhalt der QuelleCheung, Ronald Se-Yuen. „Contrasting tumorigenic growth interactions of apoptosis-deficient MYC alleles with Transforming Growth Factor-alpha /“. Thesis, Connect to this title online; UW restricted, 2006. http://hdl.handle.net/1773/5000.
Der volle Inhalt der QuelleSerwe, Annegret. „Hemmung der Angiogenese und Tumorprogression durch Blockierung der TGF-[beta]-Signaltransduktion [TGF-Beta-Signaltransduktion] durch neue Wirkstoffe isoliert aus Pilzen“. Duisburg Köln WiKu, 2007. http://d-nb.info/987489674/04.
Der volle Inhalt der QuelleKariyawasam, Harsha Hemantha. „Airway remodelling and transforming growth factor (TGF)-β superfamily signalling in allergen-induced asthma“. Thesis, Imperial College London, 2007. http://hdl.handle.net/10044/1/8641.
Der volle Inhalt der QuelleKaruyawasan, Harsha Hemantha. „Airway remodelling and transforming growth factor (TGF)-B superfamily signalling in allergen-induced asthma“. Thesis, Imperial College London, 2007. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.497534.
Der volle Inhalt der QuelleFrankel, Sara. „The role of transforming growth factor-alpha in the human corpus luteum“. Thesis, University of Southampton, 1995. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.295876.
Der volle Inhalt der QuelleWhite, Robin Elaine. „Manipulation of Astrocytes After Spinal Cord Injury Using Transforming Growth Factor Alpha“. The Ohio State University, 2009. http://rave.ohiolink.edu/etdc/view?acc_num=osu1259160724.
Der volle Inhalt der QuelleZhang, Xuemei. „Src Kinase Signaling Regulates Connective Tissue Growth Factor (CTGF/CCN2) Induction by Transforming Growth Factor-Beta 1 (TGF-b1) in Osteoblasts“. Diss., Temple University Libraries, 2010. http://cdm16002.contentdm.oclc.org/cdm/ref/collection/p245801coll10/id/63095.
Der volle Inhalt der QuellePh.D.
Connective tissue growth factor (CTGF/CCN2) is a cysteine rich, extracellular matrix protein that acts as an anabolic growth factor to regulate osteoblast differentiation and function. In osteoblasts, CTGF is induced by transforming growth factor beta 1 (TGF-β1) where it acts as a downstream mediator of TGF-β1 induced extracellular matrix production. The molecular mechanisms that control CTGF induction by TGF-β1 in osteoblasts are not understood. We have previously demonstrated the requirement of Src, Erk and Smad signaling for TGF-β1 induced CTGF promoter activity in primary osteoblasts, however the potential interaction among these signaling pathways in osteoblasts remains unknown. In this study, we demonstrate that CTGF is induced by TGF-β1 in rat osteosarcoma osteoblast like cells (ROS17/2.8). TGF-β1 activates Src and blocking of Src family kinases by PP2 abrogates TGF-β1 induced CTGF up-regulation. Western blot analysis revealed that primary osteoblasts and ROS 17/2.8 cells express not only Src, but also other Src family members, such as Fyn, Yes and Hck. In order to determine whether CTGF up-regulation is controlled by Src or other members, we used either kinase-dead dominant negative Src constructs in primary osteoblasts or Src siRNA in ROS17/2.8 cells to block Src function. Inactivation of Src by both kinase-dead and siRNA prevented TGF-β1 induced CTGF induction, demonstrating that TGF-β1 induced CTGF up-regulation is mediated only by Src not by other members. In addition, we also demonstrated that Erk is activated by TGF-β1 and that blocking of Erk activation using pharmacological inhibitors, PD98059 and U0126, prevents TGF-β1 induced CTGF induction, demonstrating the requirement of Erk for CTGF induction. These results prompted us to further explore the cross-talk between Src, Erk and Smads in ROS17/2.8 cells. Inhibition of Src using PP2 prevented Erk activation, demonstrating that Src is upstream of Erk. To investigate how Src and Erk regulate the canonical TGF-β1 signaling pathway, including Smad2/3 phosphorylation and nuclear translocation of activated Smads, we treated cells with TGF-β1 in the presence or absence of the Src inhibitor, PP2, or the Erk inhibitors, PD98059 or U0126. PP2 pre-treatment prevented the phosphorylation of Smad2/3 at both the SSXS motif and the linker region and consequently blocked their nuclear translocation, demonstrating that Src can regulate Smad signaling. In contrast, the Erk inhibitors did not have any effects on Smad phosphorylation and/or nuclear translocation. To examine whether Erk can modulate Smad signaling indirectly through the activation/ inactivation of required nuclear coactivators/ co-repressors that mediate Smad DNA binding, we used electro-mobility shift assays. These experiments showed that inhibition of Erk activation impaired transcriptional complex formation on the Smad binding element (SBE) and TGF- β responsive element (TRE) of the CTGF promoter, demonstrating that Erk activation is required for SBE and TRE transactivation. Taking together, these data demonstrate that Src is an essential upstream signaling transducer for Erk and Smad signaling in osteoblasts, and that while the Smad and Erk signaling cascades appear to function independent of each other, they are both essential for the formation of a transcriptionally active complex on the CTGF promoter.
Temple University--Theses
Young, Vicky Jane. „The role of the peritoneum and transforming growth factor β in the aetiology of endometriosis“. Thesis, University of Edinburgh, 2015. http://hdl.handle.net/1842/21099.
Der volle Inhalt der QuelleDecologne, Nathalie. „Fibrose pleurale expérimentale : rôle de transforming growth factor (TGF)-β1 et des agents anticancéreux (bléomycine)“. Dijon, 2008. http://www.theses.fr/2008DIJOMU07.
Der volle Inhalt der QuelleLinks between pleura and fibrosis are important. Apart from pleurodesis, visceral pleura can be the site of severe fibrosis leading to fibrothorax associated with a high morbidity. Subpleural parenchyma is also the anatomical region of idiopathic pulmonary fibrosis (IPF) initiation although no link has been established between both. We developed a model of severe and progressive pleural fibrosis, induced by adenovirus-mediated gene transfer of Transforming Growth Factor (TGF)-β1 to mesothelial cells. In this model, collagen accumulation within the pleura but also within the subpleural parenchyma is the result of the transformation of mesothelial cells into myofibroblasts (mesothelio-fibroblastoid transformation -MFT-). This suggests the involvement of pleural mesothelium not only in pleural fibrosis but also possibly in IPF. We also studied the role of carbon nanoparticles (CN, carbon black), ultrafine particles found in ambient pollution or cigarette smoke, on fibrosis induced by bleomycin (BL), a cytotoxic agent known for its fibrotic side effects on human lungs. We showed that CN do not worsen BL-induced pulmonary fibrosis whereas BL+CN co-administration is needed to induce pleural fibrosis. This fibrosis is, as in the first model, progressive and characterized by collagen deposition within the pleura and the subpleural parenchyma. Our in vitro work on primary mesothelial cells confirms the key role of these cells in fibrogenesis. This innovative work on pleural fibrogenesis could lead to therapeutic applications for pleural fibrosis and even maybe IPF by using mesothelial cells as target
Ruf, Doris Anne. „Die Entwicklung der Pankreasfibrose im TGF-beta-1-transgenen Tiermodell“. [S.l. : s.n.], 2006. http://nbn-resolving.de/urn:nbn:de:bsz:289-vts-57128.
Der volle Inhalt der QuelleRichter, Audrey. „Studies on the interaction of the epidermal growth factor receptor with epidermal growth factor and transforming growth factor alpha to aid development of a growth factor antagonist“. Thesis, University of Southampton, 1992. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.387049.
Der volle Inhalt der QuelleWong, Soo Hang 1971. „Characterization of transforming growth factor-beta (TGF-_) receptor profiles on human dermal microvascular endothelial cells“. Thesis, McGill University, 2001. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=33041.
Der volle Inhalt der QuelleMead, Anna Louise. „Modulation of transforming growth factor beta (TGF beta) and conjunctival scarring after glaucoma filtration surgery“. Thesis, University College London (University of London), 2006. http://discovery.ucl.ac.uk/1444824/.
Der volle Inhalt der QuelleBall, Corbie. „The Role of Transforming Growth Factor Beta Signaling in Inflammation-Dependent Colon Cancer“. Diss., The University of Arizona, 2015. http://hdl.handle.net/10150/593463.
Der volle Inhalt der QuelleHerckelrath, Tanja. „Genexpressionsmuster nach Behandlung von Hepatomzellen mit dem Cytokin TGF-beta bzw. mit Tumorpromotoren“. [S.l. : s.n.], 2004. http://www.bsz-bw.de/cgi-bin/xvms.cgi?SWB11482176.
Der volle Inhalt der QuelleNguyen-tat, Marc-Daniel. „Analyse der Auswirkungen von TGF-beta auf den Cadherin-Catenin-Adhäsionskomplex in den epithelialen Karzinomzelllinien SW-480 und MCF-7“. [S.l. : s.n.], 2006. http://nbn-resolving.de/urn:nbn:de:bsz:289-vts-56542.
Der volle Inhalt der QuelleHenning, Kirsten. „TGF-beta induzierte Expression extrazellulärer Matrixproteine durch Herzmuskelzellen der adulten Ratte“. Giessen VVB Laufersweiler, 2009. http://geb.uni-giessen.de/geb/volltexte/2009/7319/index.html.
Der volle Inhalt der QuelleLieber, Matthew Joshua. „Immunological Crosstalk between Human Transforming Growth Factor-β1 and the Malaria Vector Anopheles stephensi“. Thesis, Virginia Tech, 2005. http://hdl.handle.net/10919/42816.
Der volle Inhalt der QuelleMaster of Science
Cheung, Ho-ki, und 張可琪. „Detection and characterization of transforming growth factor beta (TGF-?) and betaglycan in porcine and human milk“. Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2003. http://hub.hku.hk/bib/B29275805.
Der volle Inhalt der QuelleYi, Sheng. „Transforming growth factor beta 1 modulates electrophysiological parameters of vas deferens epithelial cells“. Diss., Kansas State University, 2013. http://hdl.handle.net/2097/16898.
Der volle Inhalt der QuelleDepartment of Anatomy and Physiology
Bruce Schultz
Transforming growth factor β1 (TGF-β1) is a cytokine that reportedly affects the severity of cystic fibrosis lung disease. The goal of this project was to define the effect of TGF-β1 on vas deferens, an organ that is universally affected in male cystic fibrosis patients. In the first study, experiments were conducted using freshly isolated porcine vas deferens epithelial cells. Primary porcine vas deferens epithelial cells exposed to TGF-β1 exhibited a significantly reduced basal transepithelial electrical resistance (Rte). TGF-β1-induced reduction in Rte was prevented by SB431542, a TGF-β receptor I inhibitor, indicating that the effect of TGF-β1 requires the activation of TGF-β receptor I. Western blot and immunohistochemistry results showed the expression of TGF-β receptor I in native vas deferens epithelia, indicating that the impaired barrier function and anion secretion that were observed in cultured vas deferens cells can likely be observed in the native context. Immunohistochemical outcomes showed that TGF-β1 exposure led to loss of organization of tight junction proteins occludin and claudin-7. These outcomes suggest that TGF-β1 impairs the barrier integrity of epithelial cells lining the vas deferens. In a parallel study that employed PVD9902 cells that are derived from porcine vas deferens, TGF-β1 exposure significantly reduced anion secretion stimulated by forskolin, forskolin/IBMX, and 8-pCPT-cAMP, suggesting that TGF-β1 affects downstream targets of the cAMP signaling pathway. Real-time RT-PCR and western blot analysis showed that TGF-β1 exposure reduced both the mRNA and the protein abundance of cystic fibrosis transmembrane conductance regulator (CFTR). Pharmacological studies showed that the inhibitory effect of TGF-β1 on forskolin-stimulated anion secretion was abrogated by SB431542 and attenuated by SB203580, a p38 mitogen-activated protein kinase (MAPK) inhibitor. These outcomes suggest that TGF-β1, via the activation of TGF-β receptor I and p38 MAPK signaling, reduces CFTR expression, and thus impairs CFTR-mediated anion secretion. Outcomes from these studies suggest that, in epithelial cells lining the vas deferens, TGF-β1 exposure leads to an impaired physical barrier and/or reduced anion secretion, which is expected to modify the composition and the maintenance of the luminal environment and thus, is expected to reduce male fertility.