Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Tests sandwich“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Tests sandwich" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Tests sandwich"
Prabhakaran, S., V. Krishnaraj, Hemashree Golla und M. Senthilkumar. „Biodegradation behaviour of green composite sandwich made of flax and agglomerated cork“. Polymers and Polymer Composites 30 (Januar 2022): 096739112211036. http://dx.doi.org/10.1177/09673911221103602.
Der volle Inhalt der QuelleLin, Zhengjie, Hengliang Liang und Hongfei Zhou. „Forming pressure of PMI foam sandwich structure“. Journal of Physics: Conference Series 2566, Nr. 1 (01.08.2023): 012040. http://dx.doi.org/10.1088/1742-6596/2566/1/012040.
Der volle Inhalt der QuelleLi, Zhao, Hao Zhang, Qingyong Niu, Peng Wang und Xiaoming Cao. „Design of double-layered framed plate with equivalent impedance“. MATEC Web of Conferences 380 (2023): 01018. http://dx.doi.org/10.1051/matecconf/202338001018.
Der volle Inhalt der QuelleZhang, Zhen, Jian Guang Zhang, Xiu Zhi Liu, Yong Hai Wen und Shao Bo Gong. „Numerical and Experimental Studies of Composites Sandwich Structure with a Rectangular Cut-Out“. Applied Mechanics and Materials 395-396 (September 2013): 891–96. http://dx.doi.org/10.4028/www.scientific.net/amm.395-396.891.
Der volle Inhalt der QuelleSaifullah, Abu, Pappu Radhakrishnan, Lei Wang, Burhan Saeed, Forkan Sarker und Hom N. Dhakal. „Reprocessed Materials Used in Rotationally Moulded Sandwich Structures for Enhancing Environmental Sustainability: Low-Velocity Impact and Flexure-after-Impact Responses“. Materials 15, Nr. 18 (19.09.2022): 6491. http://dx.doi.org/10.3390/ma15186491.
Der volle Inhalt der QuelleKozak, Janusz. „Joints Of Steel Sandwich Structures“. Polish Maritime Research 28, Nr. 2 (01.06.2021): 128–35. http://dx.doi.org/10.2478/pomr-2021-0029.
Der volle Inhalt der QuelleHosseini, SM, A. Habibolahzadeh und J. Němeček. „Static and dynamic responses of a novel Al nanocomposite foam/sandwich structure under bending, impact and quasi-static compression tests“. Journal of Sandwich Structures & Materials 21, Nr. 4 (03.07.2017): 1406–27. http://dx.doi.org/10.1177/1099636217717579.
Der volle Inhalt der QuelleEmi Nor Ain Mohammad, Nurul, Aidah Jumahat und Mohamad Fashan Ghazali. „Impact Properties of Aluminum Foam – Nanosilica Filled Basalt Fiber Reinforced Polymer Sandwich Composites“. International Journal of Engineering & Technology 7, Nr. 3.11 (21.07.2018): 77. http://dx.doi.org/10.14419/ijet.v7i3.11.15934.
Der volle Inhalt der QuelleElettore, Elena, Massimo Latour, Mario D’Aniello, Raffaele Landolfo und Gianvittorio Rizzano. „Prototype Tests on Screwed Steel–Aluminium Foam–Steel Sandwich Panels“. Buildings 13, Nr. 11 (13.11.2023): 2836. http://dx.doi.org/10.3390/buildings13112836.
Der volle Inhalt der QuelleChróścielewski, Jacek, Marian Klasztorny, Mikołaj Miśkiewicz, Łukasz Pyrzowski, Magdalena Rucka und Krzysztof Wilde. „GFRP sandwich composite with PET core in shell structure of footbridge“. Budownictwo i Architektura 13, Nr. 2 (11.06.2014): 183–90. http://dx.doi.org/10.35784/bud-arch.1894.
Der volle Inhalt der QuelleDissertationen zum Thema "Tests sandwich"
Martin, James David. „Sandwich Plate System Bridge Deck Tests“. Thesis, Virginia Tech, 2005. http://hdl.handle.net/10919/31648.
Der volle Inhalt der QuelleMaster of Science
Grigg, William Reid. „Post-Injection Welded Joint Fatigue Tests of Sandwich Plate System Panels“. Thesis, Virginia Tech, 2006. http://hdl.handle.net/10919/44900.
Der volle Inhalt der QuelleMaster of Science
Foster, Andrew. „Understanding, predicting and improving the performance of foam filled sandwich panels in large scale fire resistance tests“. Thesis, University of Manchester, 2015. https://www.research.manchester.ac.uk/portal/en/theses/understanding-predicting-and-improving-the-performance-of-foam-filled-sandwich-panels-in-large-scale-fire-resistance-tests(3dc4bf07-82f0-4e3e-9cab-37e9244fe2a2).html.
Der volle Inhalt der QuelleFreitas, Nuno Rodolfo Gomes. „Sandwich test para avaliação de grouts“. Master's thesis, Universidade de Aveiro, 2015. http://hdl.handle.net/10773/14959.
Der volle Inhalt der QuelleA presente dissertação visa estudar métodos de ensaio para avaliar as características de grouts não estruturais a utilizar na consolidação de revestimentos de edifícios com destacamento de uma/várias camadas. Neste sentido, foi realizado o ensaio sandwich para simulação de destacamento de camadas. É introduzida uma nova variante deste ensaio seguindo as normas europeias e realizados os ensaios de referência. Apresenta-se a metodologia adotada e faz-se a exposição, comparação, análise e justificação dos ensaios e retiram-se as conclusões bem como os desenvolvimentos futuros.
This thesis aims to study test methods for evaluating the characteristics of non-structural grouts to be used for consolidation of buildings coatings with detachment of one or several layers. Thus, we performed the sandwich trial for layers detachment simulation. A new variant of this essay following the European standards is introduced and reference trials are done. The methodology adopted, exposure, comparison, analysis, trials justification, conclusions taken and future developments are shown.
Lien, Fredrik. „Modelling and Test Setup for Sandwich Radomes“. Thesis, Norges teknisk-naturvitenskapelige universitet, Institutt for elektronikk og telekommunikasjon, 2014. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-26233.
Der volle Inhalt der QuelleKrödel, Jonsson Viktor. „Burst test analysis of metal sandwich wall panels“. Thesis, KTH, Lättkonstruktioner, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-180456.
Der volle Inhalt der QuelleMelrose, Paul Thomas. „Elastic Properties of Sandwich Composite Panels Using 3-D Digital Image Correlation with the Hydromat Test System“. Fogler Library, University of Maine, 2004. http://www.library.umaine.edu/theses/pdf/MelrosePT2004.pdf.
Der volle Inhalt der QuelleBois-Grossiant, Philippe Carleton University Dissertation Engineering Mechanical and Aerospace. „Boundary element fracture mechanics analysis of sandwich test specimens“. Ottawa, 1994.
Den vollen Inhalt der Quelle findenLi, Nan. „Identification des paramètres mécaniques de plaque sandwich cousue par essais vibratoires“. Thesis, Compiègne, 2017. http://www.theses.fr/2017COMP2361.
Der volle Inhalt der QuelleThe sandwich structures are well known for their high bending stiffness. This type of structure is also capable of including acoustic and thermal functionalities. However, they also have weaknesses such as the connection between the faceplate and the core and the weakness in the transverse direction due to the property of the core. The core is usually made of soft materials like foam for acoustic functionality. To overcome these weaknesses, it is possible to connect the different layers of the sandwich by transverse stitches. This is the concept of ‘stitched sandwich’. The stitch will deeply change the behavior of the structure and complicate the determination of its properties. The objective of this thesis is to identify the properties of the constituents of the stitched sandwich in situ. These properties are essential to simulate the behavior of this type of composite material under static or dynamic excitation. The identification of the properties of the constituents by mechanical tests is difficult for various reasons: the heterogeneity makes it complex to extract representative specimen; the behaviors of the constituents may change in non-in-situ tests; several different types of mechanical test, such as tensile-compression and torsion, are necessary to determine all the engineering constants in the case of orthotropic material which is common for composite materials. To overcome all these difficulties, we propose in this thesis a dynamic identification method conducted on the structure (the whole plate for example). Compared to mechanical test which is based on a sample, this method takes into account the heterogeneity and complexity of the structure. This method is based on the correlation between the vibration test and a finite element model of stitched sandwich. The parameters are identified by minimizing a cost function which can measure the gap between the experimental frequencies and the calculated frequencies. The correspondence of experimental mode and calculated mode is guaranteed by MAC (Modal Assurance Criterion). Before the optimization, we propose firstly a sensitivity analysis to classify the parameters according to their importance. Then the identification process is only conducted on a reduced number of parameters. We have applied this dynamic identification method to both a stitched sandwich beam and a stitched sandwich plate. 9 parameters of different constituents are identified in the case of plate. In the second part of this thesis, based on the theorem of Floquet-Bloch, we have profited from the periodic characteristic of the stitched sandwich structures in two aspects: in the numerical aspect, the periodicity has served to reduce the calculation of forced response of periodic structure; in the physical aspect, we have studied the stop band of stitched structures
Junior, Mauricio Francisco Caliri. „Modelos de material para espumas poliméricas aplicadas a estruturas aeronáuticas em material compósito sanduíche“. Universidade de São Paulo, 2010. http://www.teses.usp.br/teses/disponiveis/18/18148/tde-15082011-223452/.
Der volle Inhalt der QuelleAircraft structures are mostly made of composite material in order to achieve the specifications of a project. Among these structures one highlights the sandwich structure. The usage of this structure requires extensive studies on new materials as well as on the application of these very materials. A special attention for the cores material of these structures is needed because it is in fact a cellular structure, as the polymeric foams. This dissertation seeks to concatenate the literature and practice, studying the calibration of material models to describe the mechanical behavior of polymeric foams, as well as to analyse their potentials and limitations. These foams are cellular structures whose failure mechanisms comprise micro and macro responses. The identification and quantification of these behaviors can be done through micro-mechanical or phenomenological (macro-mechanical) material models along with experimental tests and analyses of both the cellular material and the structure in which this material is used. Each approach, micro or macro, has advantages and disadvantages that in the present work are discussed for the studied material (PVC, poly-vinyl-chloride, rigid closed-cell polymeric foam with a density of 60kg/m³). A series of experimental tests based on standard procedures are carried out and the data collected are compared with data obtained simultaneously through an image correlation technique. All the experimental information are confronted and associated to the failure mechanisms of the polymeric foam. Finally, the experimental data are used for the identification of material models parameters, currently available in the commercial finite elements software - ABAQUS. With the material models calibrated, the present work investigates the representativeness and the limitations of these very models when applied to aircraft structures submitted to monotonic or not localized loads. One has observed that there is a strong dependence of the foams macroscopic response with its cellular structure when it is submitted to localized and/or non-monotonic loads. Moreover, the usage of simplified material models, and/or with some implementation hypotheses, renders doubtful results when these models are applied to cellular materials with complex responses (micro-mechanical mechanisms, anisotropy, viscosity, etc.). Nevertheless, the present work shows that a strategic calibration taking into account the implementation hypotheses and the limitations of the material model, yields good macroscopic results that are strongly influenced by the micro-mechanical failure mechanisms.
Bücher zum Thema "Tests sandwich"
McGowan, David M. Damage characteristics and residual strength of composite sandwaich panels impacted with and without compression loading: Presented at the 39th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, session no. 15--damage tolerance : Long Beach, California, April 20-23, 1998. [Washington, DC: National Aeronautics and Space Administration, 1998.
Den vollen Inhalt der Quelle findenPerotti, Giovanni, Hrsg. Sega Mega Drive Game Secrets: Strategie e Segreti, Volume 3. Via Rosellini, Milano, Italy: Jackson Libri, 1993.
Den vollen Inhalt der Quelle findenPerotti, Giovanni, Hrsg. Sega Mega Drive Game Secrets: Strategie e Segreti, Volume 2. Via Rosellini, Milano, Italy: Jackson Libri, 1993.
Den vollen Inhalt der Quelle findenPerotti, Giovanni, Hrsg. Sega Mega Drive Game Secrets: Strategie e Segreti, Volume 1. Via Rosellini, Milano, Italy: Jackson Libri, 1993.
Den vollen Inhalt der Quelle findenArnold, J. Douglas. Awesome Sega Genesis Secrets II. Lahaina, HI: Sandwich Islands Publishing, 1993.
Den vollen Inhalt der Quelle findenRoom temperature and elevated temperature composite sandwich joint testing. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1998.
Den vollen Inhalt der Quelle findenNational Aeronautics and Space Administration (NASA) Staff. Ambient Temperature Fatigue Tests of Elements of an Actively Cooled Honeycomb Sandwich Structural Panel. Independently Published, 2018.
Den vollen Inhalt der Quelle findenJacobs, Samantha E., Catherine B. Small und Thomas J. Walsh. Fungal diseases of the respiratory tract. Herausgegeben von Christopher C. Kibbler, Richard Barton, Neil A. R. Gow, Susan Howell, Donna M. MacCallum und Rohini J. Manuel. Oxford University Press, 2017. http://dx.doi.org/10.1093/med/9780198755388.003.0030.
Der volle Inhalt der QuelleBuchteile zum Thema "Tests sandwich"
Chroscielewski, Jacek, Mikolaj Miskiewicz, Lukasz Pyrzowski, Magdalena Rucka, Bartosz Sobczyk, Krzysztof Wilde und Blazej Meronk. „Dynamic Tests and Technical Monitoring of a Novel Sandwich Footbridge“. In Conference Proceedings of the Society for Experimental Mechanics Series, 55–60. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-12115-0_8.
Der volle Inhalt der QuelleToso-Pentecote, Nathalie, und Alastair Johnson. „Impact Damage in Sandwich Composite Structures From Gas Gun Tests“. In Experimental Analysis of Nano and Engineering Materials and Structures, 771–72. Dordrecht: Springer Netherlands, 2007. http://dx.doi.org/10.1007/978-1-4020-6239-1_383.
Der volle Inhalt der QuelleXue, Weichen, Ya Li, Jialin Yang, Kai Fu und Zhijie Li. „Tests of new type of precast sandwich panel with FRP connectors“. In Insights and Innovations in Structural Engineering, Mechanics and Computation, 1471–76. Taylor & Francis Group, 6000 Broken Sound Parkway NW, Suite 300, Boca Raton, FL 33487-2742: CRC Press, 2016. http://dx.doi.org/10.1201/9781315641645-241.
Der volle Inhalt der QuelleGórski, M. „Experimental tests of sheeting made of sandwich panels acting as a diaphragm“. In Modern Trends in Research on Steel, Aluminium and Composite Structures, 215–21. London: Routledge, 2021. http://dx.doi.org/10.1201/9781003132134-25.
Der volle Inhalt der QuellePaimushin, Vitaly N., Ruslan K. Gazizullin, Natalya V. Polyakova und Maksim A. Shishov. „Sandwich Shells with Composite Facings and a Transversally Flexible Core: Refined Equations and Buckling Modes of Specimens Under Four-Point Bending Tests“. In Multiscale Solid Mechanics, 391–411. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-54928-2_29.
Der volle Inhalt der QuelleHildebrand, Martin. „Penetrating Impact Strength of Sandwich Panels — Meaningful Test Method and Simplified Prediction“. In Mechanics of Sandwich Structures, 247–54. Dordrecht: Springer Netherlands, 1998. http://dx.doi.org/10.1007/978-94-015-9091-4_29.
Der volle Inhalt der QuelleLee, Jong Woong, Cheol Won Kong, Se Won Eun, Jae Sung Park, Young Soon Jang, Yeong Moo Yi und Gwang Rae Cho. „Compression Test of Composite Sandwich Panel“. In Advances in Fracture and Damage Mechanics VI, 605–8. Stafa: Trans Tech Publications Ltd., 2007. http://dx.doi.org/10.4028/0-87849-448-0.605.
Der volle Inhalt der QuelleDavies, Peter, Benoît Bigourdan, Dominique Choqueuse, Nicolas Lacotte und Bertrand Forest. „Development of a Test to Simulate Wave Impact on Composite Sandwich Marine Structures“. In Dynamic Failure of Composite and Sandwich Structures, 177–208. Dordrecht: Springer Netherlands, 2012. http://dx.doi.org/10.1007/978-94-007-5329-7_5.
Der volle Inhalt der QuelleKun, Yang, Yan Qun und Xu Fei. „Simulation and Test Study on Composite Honeycomb Sandwich Panel“. In Lecture Notes in Electrical Engineering, 368–79. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-19-7652-0_34.
Der volle Inhalt der QuelleHamitouche, Lotfi, Mostapha Tarfaoui und Alain Vautrin. „Design and Test of a Sandwich T-Joint for Naval Ships“. In Damage and Fracture Mechanics, 131–41. Dordrecht: Springer Netherlands, 2009. http://dx.doi.org/10.1007/978-90-481-2669-9_14.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Tests sandwich"
Haffke, Marcin M., Matthias Pahn und Catherina Thiele. „Fire Tests on the Pre-cast Concrete Sandwich Walls with GFRP Connectors“. In IABSE Symposium, Guimarães 2019: Towards a Resilient Built Environment Risk and Asset Management. Zurich, Switzerland: International Association for Bridge and Structural Engineering (IABSE), 2019. http://dx.doi.org/10.2749/guimaraes.2019.0759.
Der volle Inhalt der QuelleŞener, Özgün, Oğuzhan Dede, Oğuz Atalay, Mert Atasoy und Altan Kayran. „Evaluation of Transverse Shear Moduli of Composite Sandwich Beams Through Three-Point Bending Tests“. In ASME 2018 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/imece2018-87636.
Der volle Inhalt der QuelleFerri, Rocco, und Bhavani V. Sankar. „Static Indentation and Low Velocity Impact Tests on Sandwich Plates“. In ASME 1997 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 1997. http://dx.doi.org/10.1115/imece1997-0749.
Der volle Inhalt der Quelle„Weathering Tests on Epoxy-Bonded Steel Concrete Open Sandwich Beams“. In SP-165: Repair and Strengthening of Concrete Members with Adhesive Bonded Plates. American Concrete Institute, 1996. http://dx.doi.org/10.14359/10058.
Der volle Inhalt der QuelleAvery, John L., Manickam Narayanan und Bhavani V. Sankar. „Compressive Failure of Debonded Sandwich Beams“. In ASME 1998 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 1998. http://dx.doi.org/10.1115/imece1998-0380.
Der volle Inhalt der QuelleHoffmann, William F., Gunter Helwig und Dietmar Scheulen. „Thermal Stability Tests Of CFRP Sandwich Panels For Far Infrared Astronomy“. In 29th Annual Technical Symposium, herausgegeben von Gregory M. Sanger. SPIE, 1986. http://dx.doi.org/10.1117/12.950384.
Der volle Inhalt der QuelleSun, C. T., R. S. Hasebe und Y. Hua. „Properties of Sandwich Structures With Reinforced Core“. In ASME 1997 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 1997. http://dx.doi.org/10.1115/imece1997-0733.
Der volle Inhalt der QuelleAllison, W. Don. „Shock Tube Tests of a Kevlar Sandwich Panel and Comparison with Theory“. In Aerospace Technology Conference and Exposition. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 1987. http://dx.doi.org/10.4271/871894.
Der volle Inhalt der QuelleGates, Thomas, und Helen Herring. „Facesheet push-off tests to determine composite sandwich toughness at cryogenic temperatures“. In 19th AIAA Applied Aerodynamics Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2001. http://dx.doi.org/10.2514/6.2001-1219.
Der volle Inhalt der QuelleSchwenke, Johann, Lukas Schwan, Michael Hanna und Dieter Krause. „Approach for load path optimized design of sandwich structures using virtual tests and realistic test setups“. In Proceedings of the 33rd Symposium Design for X. The Design Society, 2022. http://dx.doi.org/10.35199/dfx2022.05.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Tests sandwich"
Singleton, Jr., Robert. The Planar Sandwich and Other 1D Planar Heat Flow Test Problems in ExactPack. Office of Scientific and Technical Information (OSTI), Januar 2017. http://dx.doi.org/10.2172/1340981.
Der volle Inhalt der QuelleSTUDY ON FLEXURAL CAPACITY OF PROFILED STEEL SHEET - POLYURETHANE SANDWICH SLABS. The Hong Kong Institute of Steel Construction, März 2024. http://dx.doi.org/10.18057/ijasc.2024.20.1.6.
Der volle Inhalt der QuelleLOCAL BUCKLING (WRINKLING) OF PROFILED METAL-FACED INSULATING SANDWICH PANELS – A PARAMETRIC STUDY. The Hong Kong Institute of Steel Construction, August 2022. http://dx.doi.org/10.18057/icass2020.p.248.
Der volle Inhalt der QuelleNUMERICAL STUDY ON SHEAR BEHAVIOUR OF ENHANCED C-CHANNELS IN STEEL-UHPC-STEEL SANDWICH STRUCTURES. The Hong Kong Institute of Steel Construction, September 2021. http://dx.doi.org/10.18057/ijasc.2021.17.3.4.
Der volle Inhalt der QuelleBUCKLING BEHAVIOUR OF THE STEEL PLATE IN STEEL – CONCRETE – STEEL SANDWICH COMPOSITE TOWER FOR WIND TURBINE. The Hong Kong Institute of Steel Construction, September 2022. http://dx.doi.org/10.18057/ijasc.2022.18.3.7.
Der volle Inhalt der Quelle