Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Terrestrial ecology“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Terrestrial ecology" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Terrestrial ecology"
Harper, J. L., F. S. Chapin, J. Ehleringer, S. Ulfstrand und E. O. Wilson. „Ecology Institute Prizes 1990 in the field of Terrestrial Ecology“. Archiv für Hydrobiologie 119, Nr. 1 (20.07.1990): 120. http://dx.doi.org/10.1127/archiv-hydrobiol/119/1990/120.
Der volle Inhalt der QuelleAgren, Goran I., und Folke O. Andersson. „Terrestrial Ecosystem Ecology“. Forestry Chronicle 88, Nr. 02 (April 2012): 214. http://dx.doi.org/10.5558/tfc2012-041.
Der volle Inhalt der QuelleRosentreter, Roger, M. G. Barbour, J. H. Burk und W. D. Pitts. „Terrestrial Plant Ecology“. Journal of Range Management 41, Nr. 3 (Mai 1988): 272. http://dx.doi.org/10.2307/3899191.
Der volle Inhalt der QuelleBaskin, Carol C., Michael G. Barbour, Jack H. Burk und Wanna D. Pitts. „Terrestrial Plant Ecology, Second Edition.“ Bulletin of the Torrey Botanical Club 115, Nr. 1 (Januar 1988): 62. http://dx.doi.org/10.2307/2996572.
Der volle Inhalt der QuelleMorris, J., T. C. E. Wells und J. H. Willems. „Population Ecology of Terrestrial Orchids.“ Journal of Ecology 81, Nr. 1 (März 1993): 202. http://dx.doi.org/10.2307/2261246.
Der volle Inhalt der QuelleCohen, Warren B., und Christopher O. Justice. „Validating MODIS Terrestrial Ecology Products“. Remote Sensing of Environment 70, Nr. 1 (Oktober 1999): 1–3. http://dx.doi.org/10.1016/s0034-4257(99)00053-x.
Der volle Inhalt der QuelleStace, C. A. „Population ecology of terrestrial orchids“. Biological Conservation 64, Nr. 2 (1993): 171. http://dx.doi.org/10.1016/0006-3207(93)90656-l.
Der volle Inhalt der QuelleBatzer, Darold P., und Haitao Wu. „Ecology of Terrestrial Arthropods in Freshwater Wetlands“. Annual Review of Entomology 65, Nr. 1 (07.01.2020): 101–19. http://dx.doi.org/10.1146/annurev-ento-011019-024902.
Der volle Inhalt der QuelleDighton, John. „Fungal ecology in research institutes: Institute of Terrestrial Ecology“. Mycologist 2, Nr. 4 (Oktober 1988): 183. http://dx.doi.org/10.1016/s0269-915x(88)80058-2.
Der volle Inhalt der QuelleWong, Mark K. L., Benoit Guénard und Owen T. Lewis. „Trait‐based ecology of terrestrial arthropods“. Biological Reviews 94, Nr. 3 (13.12.2018): 999–1022. http://dx.doi.org/10.1111/brv.12488.
Der volle Inhalt der QuelleDissertationen zum Thema "Terrestrial ecology"
Gelfgren, Maria. „The importance of litter for interactions between terrestrial plants and invertebrates“. Thesis, Umeå University, Department of Ecology and Environmental Sciences, 2010. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-34761.
Der volle Inhalt der QuelleAccording to the exploitation ecosystem hypothesis (EEH), terrestrial ecosystems are characterized by well defined trophic levels and strong trophic interactions with community level tropic cascades. In unproductive terrestrial habitats as tundra heaths, the energy shunt from litter and apparent competition between herbivores and detritivores are expected to be important for the structure and dynamics of the invertebrate community. The aim of this study was to test this hypothesis by investigating if plant litter accumulation was affecting the invertebrate community on a nutrient-poor tundra heath. The study was performed during one summer on the highland part of Joatka research area, in the north of Norway.
The experimental area included 16 plots (100 m2 each), of which 12 had been littermanipulated. On four plots the amount of litter was increased by 100 %, on four by 200 % and on four by 400 %. Four plots were untreated and used as control plots. Invertebrates were collected by emergence traps (which cover an area of 1 m2), one trap on each plot and one pitfall trap inside each emergence trap. During the study period, traps were emptied and moved twice, resulting in three sampling periods. The invertebrates collected were counted and their length was measured, than all invertebrates were sorted into taxa and trophic guilds. During the study period, herbivore grazing damage was investigated on all 16 experimental plots, signs of herbivores on leaves of vascular plants in an area covering 3 m2 per plot were noted, for every leaf with signs of herbivory the percentage of leaf area removed was estimated.
Plant biomass and plant species composition were estimated in all experimental plots by harvesting above-ground plant parts. In each plot, two squares were randomly chosen and all biomass in this square was collected. Plant biomass was sorted in to following groups: dwarf birch, billberry, Salix herbacea, Salix spp, graminoids, herbs, lichens, mosses and dwarf shrub. Before weighing the plant material, it was stored in paper bags at room temperature and then dried for 48 h at 40°C. In order to detect fertilisation effects, all bilberry shoots that had been produced during the actual summer were separately weighted when analyzing the plant biomass.
The result showed that the invertebrate community in this area is dominated by carnivores while detritivores, parasitoids and herbivores are quite rare, this was in accordance with previous studies made in the area. Litter manipulation did not create any significant variation in the community structure, but there was a slight tendency that carnivore biomass increased and biomass of herbivores decreased when litter was added to the system. In contrary to this,
gracing activity especially on dwarf willow (Salix herbacea) increased in plots were 100 % and 200 % more litter was added. There is a positive correlation between biomass of herbivores and detritivores but the reason for this seems unclear. No fertilisation effect was detected in litter manipulated plots. The structure and dynamics of the actual community could not be described by the food web theory EEH and energy shunt from litter and apparent competition between herbivores and detritivores. It seems to be several complicating factors to take into consideration when describing this community.
Josefsson, Jonas. „The Many Phases of Phenology : Geographic and Inter-Specific Differences in Phenological Between-Year Variation“. Thesis, Uppsala universitet, Institutionen för biologisk grundutbildning, 2011. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-154493.
Der volle Inhalt der QuelleHayward, Scott Alexander Lee. „The functional ecology of polar terrestrial invertebrates“. Thesis, University of Birmingham, 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.396115.
Der volle Inhalt der QuelleBoenke, Morgan. „Terrestrial habitat and ecology of Fowler's toads (Anaxyrus Fowleri)“. Thesis, McGill University, 2012. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=106500.
Der volle Inhalt der QuelleLa perte d'habitat est le principal facteur responsable du déclin des amphibiens à l'échelle mondiale. La préservation de leur habitat représente donc le meilleur espoir pour la conservation de ces espèces en péril. Les amphibiens ont des besoins en complexes en matière d'habitat, car leur cycle de vie comprend des exigences terrestres ainsi qu'aquatiques. Plusieurs amphibiens qui se reproduisent dans des étangs passent la majorité de leur vie dans des environnements terrestres, ces derniers sont donc essentiels à leur résilience. Leurs comportements fouisseur et cryptique rendent les amphibiens difficiles à observer dans leurs habitats terrestres. En conséquence, notre connaissance de l'écologie terrestre des amphibiens est très limitée. Je passe en revue la littérature scientifique sur la perte d'habitat, le déclin des amphibiens et l'utilisation d'habitats terrestres par les amphibiens avec une attention particulière à la recherche de refuges (CHAPITRE UN). J'ai utilisé le pistage radioélectrique pour étudier le comportement des crapauds de Fowler (Bufo fowleri) dans l'écosystème de dunes de la plage de Long Point, en Ontario. La recherche de refuge par ces animaux est associée à des composants spécifiques des dunes et est prévisible selon l'élévation, la pente et la distance du bord du lac. L'emplacement du refuge n'est pas aléatoire, mais représente plutôt un compromis entre risque et récompense (CHAPITRE DEUX). La philopatrie chez les crapauds de Fowler est due à la fidélité aux refuges. Ces endroits sont utilisés de façon répétée sur plusieurs jours consécutifs ; même lorsqu'ils sont abandonnés, les crapauds choisissent le plus souvent un nouveau site à moins de 10 mètres du refuge de la journée précédente. A l'occasion, cependant, les crapauds peuvent délocaliser leurs sites de refuge jusqu'à 700 m d'une nuit à l'autre (CHAPITRE TROIS). Cela contribue à la grande variation dans le calcul de la taille du territoire des crapauds de Fowler. Les méthodes d'évaluation et l'effort de recherche contribuent aussi à cette variation, alors qu'il y a peu d'influence apparente des facteurs biologiques intrinsèques. De plus, l'effet de l'effort de recherche sur la taille du territoire est réduit lorsque les données de localisation sont robustes et comprennent plus de trente sites par animal. Une estimation de taille minimale du territoire des crapauds de Fowler de 3517 m2 est suggérée ici, sous la réserve que l'aire totale de répartition peut ne pas avoir de limite supérieure (CHAPITRE QUATRE).
Larke-Meji, Nasmille Liceth. „Molecular ecology of isoprene degraders in the terrestrial environment“. Thesis, University of East Anglia, 2018. https://ueaeprints.uea.ac.uk/69551/.
Der volle Inhalt der QuelleJones, David Thomas. „Biological monitoring of metal pollution in terrestrial ecosystems“. Thesis, University of Reading, 1991. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.315805.
Der volle Inhalt der QuelleJumeau, Philippe J. A. M. „Arthropod predation in a simple Antarctic terrestrial community“. Thesis, University of York, 1990. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.277219.
Der volle Inhalt der QuelleTuck, Joanne Michelle. „Effects of spatial heterogeneity on the ecology of terrestrial isopods“. Thesis, University of East Anglia, 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.368185.
Der volle Inhalt der QuelleHustad, Vincent P. „Terrestrial macrofungi of old-growth prairie groves /“. View online, 2008. http://repository.eiu.edu/theses/docs/32211131464739.pdf.
Der volle Inhalt der QuelleWahlberg, Sonja. „Kan herbivorer begränsa fröetablering av fjällbjörk, tall, gran och sibirisk lärk i norra Fennoskandien?“ Thesis, Umeå University, Department of Ecology and Environmental Sciences, 2009. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-31355.
Der volle Inhalt der QuelleBücher zum Thema "Terrestrial ecology"
G, Barbour Michael, Hrsg. Terrestrial plant ecology. 3. Aufl. Menlo Park, Calif: Addison Wesley Longman, 1999.
Den vollen Inhalt der Quelle finden1942-, Burk Jack H., und Pitts Wanna D. 1932-, Hrsg. Terrestrial plant ecology. 2. Aufl. Menlo Park, Calif: Benjamin/Cummings Pub. Co., 1987.
Den vollen Inhalt der Quelle findenChapin, F. Stuart, Pamela A. Matson und Peter M. Vitousek. Principles of Terrestrial Ecosystem Ecology. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4419-9504-9.
Der volle Inhalt der QuelleChapin, F. Stuart, Pamela A. Matson und Harold A. Mooney. Principles of Terrestrial Ecosystem Ecology. New York, NY: Springer New York, 2002. http://dx.doi.org/10.1007/b97397.
Der volle Inhalt der QuelleE, Wells T. C., Willems J. H und International Orchid Symposium (1990 : South Limburg, Netherlands), Hrsg. Population ecology of terrestrial orchids. The Hague: SPB Academic Publishing, 1991.
Den vollen Inhalt der Quelle findenMatson, P. A. (Pamela A.) und Vitousek Peter Morrison, Hrsg. Principles of terrestrial ecosystem ecology. 2. Aufl. New York: Springer, 2011.
Den vollen Inhalt der Quelle findenS, Ambasht R., und Ambasht Navin K. 1967-, Hrsg. Modern trends in applied terrestrial ecology. New York: Kluwer Academic/Plenum Publishers, 2002.
Den vollen Inhalt der Quelle findenLakicevic, Milena, Nicholas Povak und Keith M. Reynolds. Introduction to R for Terrestrial Ecology. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-27603-4.
Der volle Inhalt der QuelleAmbasht, R. S., und Navin K. Ambasht, Hrsg. Modern Trends in Applied Terrestrial Ecology. Boston, MA: Springer US, 2002. http://dx.doi.org/10.1007/978-1-4615-0223-4.
Der volle Inhalt der Quelle1933-, Andersson Folke, Hrsg. Terrestrial ecosystem ecology: Principles and applications. Cambridgey: Cambridge University Press, 2011.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Terrestrial ecology"
South, A. „Ecology“. In Terrestrial Slugs, 242–97. Dordrecht: Springer Netherlands, 1992. http://dx.doi.org/10.1007/978-94-011-2380-8_10.
Der volle Inhalt der QuelleDix, Neville J., und John Webster. „Terrestrial Macrofungi“. In Fungal Ecology, 341–97. Dordrecht: Springer Netherlands, 1995. http://dx.doi.org/10.1007/978-94-011-0693-1_13.
Der volle Inhalt der QuelleKarasov, William. „Terrestrial Vertebrates“. In Metabolic Ecology, 212–24. Chichester, UK: John Wiley & Sons, Ltd, 2012. http://dx.doi.org/10.1002/9781119968535.ch17.
Der volle Inhalt der QuelleStonehouse, B. „Terrestrial Environments“. In Polar Ecology, 62–105. Boston, MA: Springer US, 1989. http://dx.doi.org/10.1007/978-1-4757-1260-5_3.
Der volle Inhalt der QuelleValladares, Fernando. „Ecology“. In Terrestrial Ecosystems and Biodiversity, 289–92. Second edition. | Boca Raton: CRC Press, [2020] | Revised edition of: Encyclopedia of natural resources. [2014].: CRC Press, 2020. http://dx.doi.org/10.1201/9780429445651-36.
Der volle Inhalt der QuelleSlingsby, David, und Ceridwen Cook. „Sampling Terrestrial Animals“. In Practical Ecology, 89–112. London: Macmillan Education UK, 1986. http://dx.doi.org/10.1007/978-1-349-08226-1_6.
Der volle Inhalt der QuelleArchibold, O. W. „Terrestrial wetlands“. In Ecology of World Vegetation, 319–53. Dordrecht: Springer Netherlands, 1995. http://dx.doi.org/10.1007/978-94-011-0009-0_10.
Der volle Inhalt der QuelleHungund, Basavaraj S., Savitha S. Desai, Kartik C. Kamath und Gururaj B. Tennalli. „Terrestrial Ecology of Actinobacteria“. In Actinobacteria, 39–54. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-3353-9_3.
Der volle Inhalt der QuelleSlingsby, David, und Ceridwen Cook. „Introduction: Studying Particular Terrestrial Habitats“. In Practical Ecology, 157–70. London: Macmillan Education UK, 1986. http://dx.doi.org/10.1007/978-1-349-08226-1_9.
Der volle Inhalt der QuelleSchulze, Ernst-Detlef, Erwin Beck, Nina Buchmann, Stephan Clemens, Klaus Müller-Hohenstein und Michael Scherer-Lorenzen. „Approaches to Study Terrestrial Ecosystems“. In Plant Ecology, 481–511. Berlin, Heidelberg: Springer Berlin Heidelberg, 2018. http://dx.doi.org/10.1007/978-3-662-56233-8_14.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Terrestrial ecology"
Hamlin, L., R. O. Green, P. Mouroulis, M. Eastwood, D. Wilson, M. Dudik und C. Paine. „Imaging spectrometer science measurements for Terrestrial Ecology: AVIRIS and new developments“. In 2011 IEEE Aerospace Conference. IEEE, 2011. http://dx.doi.org/10.1109/aero.2011.5747395.
Der volle Inhalt der QuelleBarbosa, Carla, Javier Tamayo-Leiva, Beatriz Diez, Oscar Salgado, Jaime Alcorta und Diego Morata. „Effects of hydrogeochemistry on the microbial ecology of terrestrial hot springs“. In Goldschmidt2022. France: European Association of Geochemistry, 2022. http://dx.doi.org/10.46427/gold2022.9170.
Der volle Inhalt der QuelleRemesicova, Erika. „TERRESTRIAL ISOPODS OF THE MINING LANDSCAPE (DOLNI SUCHA, CZECH REPUBLIC)“. In 14th SGEM GeoConference on ECOLOGY, ECONOMICS, EDUCATION AND LEGISLATION. Stef92 Technology, 2014. http://dx.doi.org/10.5593/sgem2014/b52/s20.088.
Der volle Inhalt der QuelleGrigorescu, Ines. „ASSESSING INVASIVE TERRESTRIAL PLANT SPECIES IN THE MURES FLOODPLAIN NATURAL PARK. ROMANIA“. In 14th SGEM GeoConference on ECOLOGY, ECONOMICS, EDUCATION AND LEGISLATION. Stef92 Technology, 2014. http://dx.doi.org/10.5593/sgem2014/b51/s20.008.
Der volle Inhalt der QuelleRedondo-Gómez, Daniel, M. Martina Quaggiotto, David M. Bailey, Sergio Eguía, Zebensui Morales-Reyes, Beatriz de las Nieves López-Pastor, Daniel Martín-Vega et al. „Marine and terrestrial scavenging on fish and gull carcasses on a Mediterranean island“. In 1st International Electronic Conference on Biological Diversity, Ecology and Evolution. Basel, Switzerland: MDPI, 2021. http://dx.doi.org/10.3390/bdee2021-09463.
Der volle Inhalt der QuelleAkitsu, Tomoko, Koji Kajiwara, Kaoru Tachiiri, Hideki Kobayashi, Kazuho Matsumoto, Toshiyuki Kobayashi, Kenlo Nishida Nasahara et al. „Validating GCOM-C Terrestrial Ecology Products: How Should In-Situ Observation Be Performed at Satellite Scale?“ In IGARSS 2019 - 2019 IEEE International Geoscience and Remote Sensing Symposium. IEEE, 2019. http://dx.doi.org/10.1109/igarss.2019.8897899.
Der volle Inhalt der QuelleDumitrascu, Monica. „ASSESSING INVASIVE TERRESTRIAL PLAN SPECIES AMORPHA FRUTICOSA IN THREE WETLAND AREAS IN ROMANIA: DANUBE DELTA BIOSPHERE RESERVE, COMANA NATURAL PARK AND MURES FLOODPLAIN NATURAL PARK“. In 13th SGEM GeoConference on ECOLOGY, ECONOMICS, EDUCATION AND LEGISLATION. Stef92 Technology, 2013. http://dx.doi.org/10.5593/sgem2013/be5.v1/s20.016.
Der volle Inhalt der QuelleBrunetti, Claudia, Henk Siepel, Pietro Paolo Fanciulli, Francesco Nardi und Antonio Carapelli. „Investigating the Diversity of the Terrestrial Invertebrate Fauna of Antarctica: A Closer Look at the Stereotydeus (Acari: Prostigmata) Genus <sup>†</sup>“. In 1st International Electronic Conference on Biological Diversity, Ecology and Evolution. Basel, Switzerland: MDPI, 2021. http://dx.doi.org/10.3390/bdee2021-09405.
Der volle Inhalt der QuellePrepelita, Afanasie, und Tudor Trifan. „Terrestrial molluscs and paleoecology of prehistoric man living floor in the middle Nistru basin“. In International symposium ”Functional ecology of animals” dedicated to the 70th anniversary from the birth of academician Ion Toderas. Institute of Zoology, Republic of Moldova, 2019. http://dx.doi.org/10.53937/9789975315975.57.
Der volle Inhalt der QuelleWoolley, Charles, Kiersten Formoso, Alison Cribb, James Beech, Shannon Brophy, Paul J. Byrne, Victoria C. Cassady et al. „CONTEMPORANEOUS CHANGES IN TERRESTRIAL AND MARINE FUNCTIONAL ECOLOGY DURING ANCIENT AND MODERN MASS EXTINCTION EVENTS: AN ECOSPACE CUBE APPROACH“. In GSA Connects 2021 in Portland, Oregon. Geological Society of America, 2021. http://dx.doi.org/10.1130/abs/2021am-365869.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Terrestrial ecology"
White, G. J. Microbial ecology of terrestrial Antarctica: Are microbial systems at risk from human activities? Office of Scientific and Technical Information (OSTI), August 1996. http://dx.doi.org/10.2172/379946.
Der volle Inhalt der QuelleBailey, Vanessa, Paul J. Hanson, Julie Jastrow, Margaret Torn und Daniel Stover. Data-Model Needs for Belowground Ecology. A Summary Report from the Terrestrial Ecosystem Science (TES) Mini-Workshop, May 8, 2014. Office of Scientific and Technical Information (OSTI), November 2014. http://dx.doi.org/10.2172/1471543.
Der volle Inhalt der QuelleSladen, W. E., R. J. H. Parker, P. D. Morse, S V Kokelj und S. L. Smith. Geomorphic feature inventory along the Dempster and Inuvik to Tuktoyaktuk highway corridor, Yukon and Northwest Territories. Natural Resources Canada/CMSS/Information Management, 2022. http://dx.doi.org/10.4095/329969.
Der volle Inhalt der Quelle