Auswahl der wissenschaftlichen Literatur zum Thema „Termoelektriska generatorer“

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Termoelektriska generatorer" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Zeitschriftenartikel zum Thema "Termoelektriska generatorer"

1

Nasrillah, Fajar. „Prototype Hybrid Thermal and Wind Power Generation System with Electric Stove and Exaust Fan“. JTECS : Jurnal Sistem Telekomunikasi Elektronika Sistem Kontrol Power Sistem dan Komputer 1, Nr. 2 (14.07.2021): 103. http://dx.doi.org/10.32503/jtecs.v1i2.1652.

Der volle Inhalt der Quelle
Annotation:
Termoelektrik generator (juga disebut Seebeck generator) adalah perangkat generator listrik yang mengkonversi panas (perbedaan suhu) langsung menjadi energi listrik, menggunakan fenomena yang disebut efek Seebeck. Jika ada dua bahan yang berbeda yang kemudian kedua ujungnya disambungkan satu sama lain dan terjadi perbedaan temperatur di antara kedua sambungan ini, maka akan terjadi arus listrik. Generator tenaga angin adalah pemanfaatan angin untuk menyediakan tenaga mekanik melalui turbin angin untuk menghidupkan generator listrik menjadi tenaga listrik. Pemanfaatan termoelektrik generator dan generator angin dengan penunjang mekanik, hardware dan software diharapkan mampu menghasilkan tegangan yang continue dan stabil agar memenuhi syarat sebagai sumber energi alternatif. Hasil dari uji coba prototype ini dengan melakukan percobaan, yang mana media sumber panas menggunakan kompor listrik DC dan penggerak generator angin menggunakan ujung baling-baling kipas yang dikopel, mampu menghasilkan tegangan >2 volt DC (hasil dari termoelektrik) dan >12 volt DC (hasil dari generator angin), tegangan tersebut di step-up dan di step-down menjadi =12 volt DC kemudian charging ke baterai lithium-ion, dari baterai lithium-ion di konversikan menggunakan inverter DC menjadi AC yang bisa dimanfaatkan untuk energi konvensional pengisian handphone atau penerangan rumah, tidak diperuntukkan untuk mensupplay peralatan elektronik TV, computer, radio dan lain-lain. Dalam pengujian termoelektrik generator dan generator angin, agar dapat dikelola menghasilkan output yang continue dan stabil menggunakan penunjang mikrokontroler arduino mega untuk mengontrol suhu dan RPM dari termoelektrik generator dan generator angin. Penelitian energi alternatif ini penting untuk dapat dikembangkan dan diterapkan, mengingat bahan bakar dari fosil yang diambil dari perut bumi lama kelamaan pasti akan berkurang. Diharapkan penelitian ini dapat memberikan solusi untuk perkembangan energi alternatif di masa depan.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Manap, Muhammad Abdul, und Al Fikri. „Rancang Bangun Pembangkit Listrik Alternatif Menggunakan Termoelektrik dengan Memanfaatkan pada Tungku Pemanas“. Journal of Electrical Power Control and Automation (JEPCA) 3, Nr. 2 (25.12.2020): 53. http://dx.doi.org/10.33087/jepca.v3i2.41.

Der volle Inhalt der Quelle
Annotation:
his study aims to design an alternative power generator using a thermoelectric generator (TEG) by utilizing a heating furnace, using two thermoelectric generators (TEG) connected in series. Thermoelectrics that take advantage of temperature differences can produce voltages that correspond to the seebeck effect. The alternative power generator that has been designed consist of a thermoelectric, boost converter, and a 5 Watt DC lamp load. The test was carried out using a Boost Converter and using a 5 Watt DC lamp load for 20 minutes. The results of the research using the Boost Converter produce a voltage of 42.8 V with a temperature difference of 90°C, while using a 5 Watt DC lamp load produces a voltage of 8.81 V with a temperature difference of 82°C and the resulting current is 0.6 A, the resulting power 4.84W.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

SETIAWAN, AHMAD, NAZORI AGANI ZAKARIA, AKHMAD MUSAFA und SUJONO SUJONO. „Perancangan Pembangkit Listrik Termoelektrik pada Proses Refrigerasi Air Conditioner dengan Metode Fuzzy Logic“. ELKOMIKA: Jurnal Teknik Energi Elektrik, Teknik Telekomunikasi, & Teknik Elektronika 9, Nr. 1 (22.01.2021): 1. http://dx.doi.org/10.26760/elkomika.v9i1.1.

Der volle Inhalt der Quelle
Annotation:
ABSTRAKPada penelitian ini dibahas tentang pembangkit listrik termoelektrik pada refrigerasi air conditioner. Bagian sistem terdiri dari air conditioner yang sudah dimodifikasi dengan menambahkan 50 buah modul termoelektrik dengan kontroler. Penggunaan termoelektrik bertujuan merubah suhu panas dan dingin pada air conditioner kedalam bentuk listrik. Tegangan yang dihasilkan termoelektrik dikontrol dengan metode fuzzy logic dengan parameter masukan nilai error dan delta error serta keluaran fuzzy berupa duty cycle yang mengatur switching dari DC-DC Converter. Hasil yang didapatkan pada penelitian ini, air conditioner dapat dimanfaatkan untuk pembangkit listrik termoelektrik dengan tegangan open circuit termoelektrik dapat mencapai 14 Volt saat delta temperatur 32,38 ̊ C. Hasil pengujian dengan kontroler fuzzy diperoleh respon sistem dengan delay time 6 menit 18 detik, rise time 5 menit 51 detik, steady state error 0,8 pada set poin 7,2 Volt. Tegangan yang dihasilkan termoelektrik generator dapat digunakan untuk pengisian aki dengan arus pengisian 0,33 mA.Kata kunci: Termoelektrik Generator, Peltier, Air Conditioner, Logika Fuzzy, HVAC ABSTRACTThis research discusses the thermoelectric power generation in the air conditioner refrigeration process. The system consists of air conditioner that has been modified by adding 50 thermoelectric and controller. The voltage generated by the thermoelectric is controlled by the fuzzy logic method with input parameters of error, delta error values, and the output fuzzy is a duty cycle that will regulate voltage of DC-DC Converter. The results obtained in this research, air conditioner can be used for thermoelectric power generation with open circuit voltage without control can reach 14 Volts when the delta temperature is 32.38 ̊ C. The results with fuzzy control system obtained response system with a delay time of 6 minutes 18 seconds , rise time 5 minutes 51 seconds, steady state error 0.8 at set point of 7.2 volts. The voltage generated by the thermoelectric generator can be used to charge the battery with a charging current of 0.33 mA.Keywords: Thermoelectric Generator, Peltier, Air Conditioner, Fuzzy Logic, HVAC
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Rifky, Rifky, Agus Fikri und Mohammad Mujirudin. „Konversi Energi Termal Surya Menjadi Energi Listrik Menggunakan Generator Termoelektrik“. JURNAL KAJIAN TEKNIK MESIN 6, Nr. 1 (05.05.2021): 60–65. http://dx.doi.org/10.52447/jktm.v6i1.4532.

Der volle Inhalt der Quelle
Annotation:
AbstrakSalah satu pemanfaatan energi surya adalah mengkonversi energi termalnya menjadi energi listrik. Konvertor yang digunakan adalah generator termoelektrik. Panas matahari diterima sisi panas termoelektrik melalui penyerap panas, sedangkan sisi dinginnya dilekatkan sistem pendingin aktif dengan fluida air. Penelitian ini memiliki tujuan untuk mendapatkan daya luaran semaksimal mungkin dari sistem generator termoelektrik yang mengkonversi energi termal surya menjadi energi listrik pada model bangunan. Metode penelitian yang digunakan adalah eksperimental, yang didahului dengan perancangan dan pembuatan alat penelitian. Alat penelitian berbentuk sistem generator yang diletakkan di atap model bangunan. Sistem generator terdiri dari penyerap panas aluminium, termoelektrik yang terdiri dari 15 set, dan sistem pendingin yang menggunakan fluida air bersirkulasi. Pengujian terhadap sistem dengan cara mengoperasikannya sambil melakukan pengamatan dan pengambilan data. Variabel dalam penelitian ini adalah susunan sambungan generator termoelektrik (seri dan paralel). Sementara data masukan adalah kelembaban udara, kecepatan angin, temperatur, dan aliran alir; sedangkan data luaran adalah tegangan listrik dan arus listrik. Hasil penelitian mendapatkan bahwa dengan perbedaan temperatur 12,8oC menghasilkan daya maksimum sebesar 2,214 watt dari susunan seri sambungan termolektrik. Sementara dengan perbedaan temperatur 15,4oC mendapatkan daya maksimum sebesar 0.101 watt dari susunan paralel sambungan termoelektrik. Kata kunci: energi, surya, termoelektrik, atap, daya AbstractOne of the uses of solar energy is converting its thermal energy into electrical energy. The converter used is a thermoelectric generator. The sun's heat is received by the thermoelectric hot side through the heat sink, while the cold side is attached by an active cooling system with water fluid. This study aims to obtain the maximum possible output power from a thermoelectric generator system that converts solar thermal energy into electrical energy in the building model. The research method used is experimental, which is preceded by the design and manufacture of research tools. The research tool is in the form of a generator system that is placed on the roof of the building model. The generator system consists of an aluminum heat sink, a thermoelectric consisting of 15 sets, and a cooling system that uses circulating water fluid. Testing the system by operating it while observing and collecting data. The variable in this research is the connection arrangement of the thermoelectric generator (series and parallel). While the input data are humidity, wind speed, temperature, and flow flow; while the output data is electric voltage and electric current. The results showed that with a temperature difference of 12.8°C the maximum power was 2,214 watts from the series arrangement of the thermoelectric junction. Meanwhile, with a temperature difference of 15.4°C, the maximum power is 0.101 watts from the parallel arrangement of the thermoelectric connection. Keywords: energy, solar, thermoelectric, roof, power
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Puspita, Shanti Candra, Hasto Sunarno und Bachtera Indarto. „Generator Termoelektrik untuk Pengisisan Aki“. Jurnal Fisika dan Aplikasinya 13, Nr. 2 (01.06.2017): 84. http://dx.doi.org/10.12962/j24604682.v13i2.2748.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Haryanto, Heri, Muhammad Rifa Makhsum und Irma Saraswati. „PERANCANGAN MODUL TERMOELEKTRIK GENERATOR MENGGUNAKAN PELTIER“. Teknika: Jurnal Sains dan Teknologi 11, Nr. 1 (01.06.2015): 26. http://dx.doi.org/10.36055/tjst.v11i1.6970.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Siwi, Yordan Raka, Mochammad Facta und Bambang Winardi. „PERANCANGAN KONVERTER ARUS SEARAH BUCK PADA THERMOELECTRIC GENERATOR“. TRANSIENT 7, Nr. 4 (25.05.2019): 996. http://dx.doi.org/10.14710/transient.7.4.996-1001.

Der volle Inhalt der Quelle
Annotation:
Energi fosil adalah energi yang paling banyak digunakan, namun ketersediaan bahan bakar fosil semakin menipis. Energi terbarukan dapat digunakan sebagai salah satu alternatif pemenuhan energi. Termoelektrik adalah salah satu energi terbarukan yang bekerja dengan mengubah panas menjadi energi listrik. Pemanfaatan Termoelektrik biasanya dihubungkan langsung dengan beban tanpa konverter pada tegangan rendah sehingga tegangan keluaran tidak bisa dikontrol. Digunakan buck converter untuk menurunkan tegangan DC. Tegangan keluaran termoelktrik tergantung pada perbedaan suhu diantara permukaan modul dan beban yang disuplai termoelektrik. Pada Tugas Akhir ini dirancang buck converter tanpa mengunakan umpan balik tegangan. IC TL494 digunakan sebagai pengatur tegangan keluaran buck converter dengan mengatur lebar pita duty cycle sehingga tegangan keluaran dapat disesuaikan dengan kebutuhan . Pada Tugas Akhir ini, dilakukan pengujian konverter yaitu tanpa umpan balik tegangan dengan variasi duty cycle dan beban. Pengujian konverter tanpa umpan balik tegangan pada variasi beban 15,32Ω, 52Ω, 100Ω menghasilkan penurunan tegangan sebesar 3,39V, 6,49V,dan 7,57V pada nilai duty cycle 10% - 87%. Efisiensi tertinggi buck converter pada beban 15,32Ω, 52Ω, dan 100Ω secara berturut-turut sebesar 81,2%, 88,5%, dan 82,8%.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Mashduuqi, Ali, Mochammad Facta und Bambang Winardi. „KONVERTER ARUS SEARAH TIPE BUCK DENGAN RANGKAIAN PEMICU MIKROKONTROLLER ARDUINO UNTUK APLIKASI GENERATOR TERMOELEKTRIK“. TRANSIENT 7, Nr. 4 (25.05.2019): 853. http://dx.doi.org/10.14710/transient.7.4.853-860.

Der volle Inhalt der Quelle
Annotation:
Generator termoelektrik merupakan salah satu sumber energi terbarukan yang mudah untuk didapatkan. Modul termoelektrik dapat mengkonversi energi panas menjadi energi listrik tegangan arus searah, energi listrik tegangan arus searah ini dapat digunakan sebagai sumber energi listrik. Penggunaan konverter arus searah pada generator termoelektrik termasuk dalam aplikasi daya rendah (Low Power Application). Dalam Tugas Akhir ini, dirancang konverter arus searah tipe buck dengan menggunakan kontroller arduino sebagai rangkaian pembangkit sinyal PWM dalam kondisi tanpa umpan balik dan dengan umpan balik tegangan. Umpan balik tegangan mampu menjaga nilai tegangan pada nilai yang dikehendaki. Berdasarkan hasil pengujian, rangkaian konverter arus searah tipe buck dapat menghasilkan tegangan dalam kondisi loop terbuka dengan nilai efisiensi rata-rata sebesar 80,16% . Berdasarkan hasil pengukuran, rangkaian buck converter dengan umpan balik tegangan, nilai tegangan keluaran dapat dijaga pada nilai 4-5 Volt dengan tegangan keluaran rata-rata sebesar 4,45 Volt dengan nilai efisiensi rata-rata buck converter dengan umpan balik sebesar 81.68%.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Saputra, Zanu, Nofriyani Nofriyani, Ocsirendi Ocsirendi, Muhammad Naufal Almahmudy und Sunita Handayani. „Uji Termoelektrik Generator Dengan Memanfaatkan Media Lapisan Timah Sebagai Penyerap Panas Matahari“. ELECTRICES 2, Nr. 2 (01.12.2020): 43–48. http://dx.doi.org/10.32722/ees.v2i2.3590.

Der volle Inhalt der Quelle
Annotation:
Listrik menjadi sumber energi utama yang paling penting dan dibutuhkan manusia sehingga meningkatkan penggunaan listrik saat ini. Dari peningkatan tersebut, maka harus memanfaatkan sumber energi alternatif dengan memanfaatkan suhu panas sinar matahari. Salah satu teknologi pemanfaatan panas sinar matahari adalah termoelektrik. Tujuan penelitian ini adalah pengujian rancangan pembangkit listrik alternatif menggunakan termoelektrik untuk mengetahui berapa besar tegangan, arus keluaran serta suhu pada bagian heat side dan cold side. Penggunaaan termoelektrik generator ini menggunakan 14 modul peltier dengan tipe TEG-SP1848. Sensor DS18b20 waterproof digunakan agar dapat membaca suhu di kedua sisi perantara TEG sisi panas dan sisi dingin agar lebih aman karena bersifat anti air. Pengujian menggunakan media penyerap panas sinar matahari ditambahkan pasir timah ataupun tanpa ditambahkan pasir timah hasil yang didapatkan antara selisih beda suhu tidak jauh berbeda yaitu rata-rata 0.7ºC. Pengambilan data dilakukan setiap 30 menit sekali dengan hasil tegangan output tertinggi 1 volt dan arus sebesar 1.1mA yang terjadi pukul 13:30 WIB.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Agus Salim, Alfi Tranggono, Yuli Prasetyo, Bachtera Indarto, Sulistyono Sulistyono, Muhammad Aji Pangestu, Muhammad Ruston Habibi, Muhammad Nur Cahyanto und Hilman Naufal Rafi. „KARAKTERISTIK TERMOELEKTRIK TEC BERVARIASI TIPE SEBAGAI PEMBANGKIT LISTRIK DC“. Jurnal Energi dan Teknologi Manufaktur (JETM) 2, Nr. 01 (30.06.2019): 37–41. http://dx.doi.org/10.33795/jetm.v2i01.27.

Der volle Inhalt der Quelle
Annotation:
Thermoelctric Cooler (TEC) merupakan sebuah komponen pendingin solid-state elektrik yang bekerja sebagai “Pemompa Panas” dalam melakukan proses pendinginan Thermoelctric Cooler (TEC) memanfaatkan efek peltier yaitu apabila arus listrik searah yang melalui sambungan dua bahan termoelektrik menghasilkan perbedaan temperatur diujung sambungan. Penggunaan elemen termoelektrik sebagai pembangkit listrik dengan merubah energi panas menjadi energi listrik merupakan konsep efek seeback yang diaplikasikan pada Thermoelctric Generator (TEG). Penelitian ini bertujuan untuk menganalisa kemampuan tipe Thermoelctric Cooler (TEC) sebagai Generator pembangkit listrik menggunakan efek seebeck. Pengujian dilakukan dengan cara eksperimental dengan memanaskan dan mendinginkan pada setiap sisi elemen termoelektrik tipe Thermoelctric Cooler (TEC). Tipe TEC yang digunakan antara lain C dilakukan untuk memperoleh nilai tegangan dan arus listrik dengan variasi pembebanan resistor sehingga dapat dihitung daya listriknya. Temperatur diatur pada perbedaan 100oC. Dari pembebanan resistor paling rendah 1 KΩ dihasilkan daya tertinggi pada tipe TEC 1-12710, dengan daya yang dihasilkan sebesar 265 X 10-5 watt. Dengan nilai tegangan listrik dan arus listrik tertinggi yang dihasilkan pada tipe TEC 1-12710 sebesar 1,83 V dan 1,59 mA. Dapat disimpulkan bahwa tipe TEC 1-12710 dapat menghasilkan daya listrik paling besar jika dibandingkan dengan tipe Thermoelctric Cooler (TEC) lain yang diujikan
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Dissertationen zum Thema "Termoelektriska generatorer"

1

Kočvárek, Ondřej. „Termoelektrický solární generátor“. Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2008. http://www.nusl.cz/ntk/nusl-217630.

Der volle Inhalt der Quelle
Annotation:
The introduction of this work is devoted to the description of physical principals and condtruction of modern semiconductor thermoelectric transformers. This work describes thein basic characters and the most commonly used materials for thein production. Further, it mentions the basic principals and physical effects that describe the thermoelectric conversion of energy and the nondestructive method for establishing the basic material characteristics of thermoelectric transformers. The substantiv part of this work is the measuring of the material’s characteristics of the accessible thermoelectric elements through the medium of experimental measuring network. The optimal construction of thermoelectric solar generators used for individual thermoelectric elements are designed based on the taken measurements and the evaluation of material’s characteristics of the observed thermoelectric elements.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Brázdil, Marian. „Termoelektrické moduly pro mikrokogenerační zdroje“. Doctoral thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2019. http://www.nusl.cz/ntk/nusl-399217.

Der volle Inhalt der Quelle
Annotation:
Small domestic hot water boilers burning solid fuels represent a significant source of air pollu-tion. It is therefore an effort to increase their combustion efficiency and to reduce the produc-tion of harmful emissions. For this reason, the operation of older and currently unsatisfactory types of household boilers has been legally restricted. Preferred types of boilers are low-emission boilers, especially automatic or gasification boilers. Most of them, however, in compar-ison with previous types of boilers, also require connection to the electricity grid. If there is a long-term failure in electricity grid, the operation of newer boiler types is limited. Wood and coal gasification boilers are currently available on the market and can be operated even in the event of a power failure, but only in heating systems with natural water circulation. In heating systems with forced water circulation, these boilers, fireplaces or fireplace inserts with hot-water heat exchangers cannot be operated without external battery supply in the event of a power failure. The dissertation thesis therefore deals with the question of whether it would be possible by thermoelectric conversion of waste heat of flue gases of small-scale low-emission combustion hot water domestic boilers to obtain sufficient electricity, to power supply their circulation pumps and to ensure operation in systems with forced water circulation independently of elec-tricity supply from the grid. In order to answer this question, a simulation tool predicting the power parameters of ther-moelectric generators was created. Compared to previously published works, the calculations and simulations include the influence of the generator on the boiler flue gas functionality. To verify the simulation tool, an experimental thermoelectric generator was built using the waste heat of the flue gas of an automatic hot water boiler for wood pellets. In addition to this genera-tor, there was also created an experimental thermoelectric fireplace insert and other equipment related to these experiments.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Janák, Luděk. „MEMS termoelektrický generátor v letecké aplikaci“. Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2014. http://www.nusl.cz/ntk/nusl-231199.

Der volle Inhalt der Quelle
Annotation:
Tato diplomová práce se zabývá vývojem autonomního zdroje elektrické energie založeného na MEMS termoelektrickém generátoru. Uvažovaný generátor bude následně použit pro napájení autonomní senzorické jednotky pro letecké aplikace. Systémový pohled na autonomní senzorickou jednotku zahrnuje senzor se zpracováním a přenosem dat, energy harvester (termoelektrický generátor), power management, akumulační prvek a autodiagnostiku. Všechny výše uvedené komponenty jsou v práci podrobně popsány. V úvodu práce je provedena široká rešerše existujících termoelektrických generátorů pro letecké aplikace. Následně jsou popsány základní teoretické poznatky z oblasti DC/DC měničů pro energy harvesting. Zvláštní pozornost je věnována metodám MPPT (Maximum Power Point Tracking). Jako základ pro vývoj napájení autonomní senzorické jednotky bylo provedeno množství simulací za pomoci nástroje MATLAB/Simulink Simscape. Pro identifikaci prametrů modelu posloužilo měření na speciálním přípravku. Praktická implementace teoreticky popsaných problémů je provedena na k tomuto účelu navrženém technologickém demonstrátoru. Závěrem je zhodnocena reálná využitelnost navržené technologie pro finální aplikaci v leteckém průmyslu.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Hansson, Elisabet. „Peltierelement - spillvärme till el : Peltier element - waste heat into electricity“. Thesis, Uppsala universitet, Elektricitetslära, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-174402.

Der volle Inhalt der Quelle
Annotation:
The purpose of this thesis has been to determine experimentally how good a peltier element is to convert waste heat from wood burning. Three different peltier elements were used in a comparison study. The comparison was mainly done to know how much power could be obtained from each element. Even, a circuit with a step-up function has been created to give a higher output voltage than the peltier element itself. The result of the experiments was a low output power, the highest value reached 2.18W. Also, the Carnot efficiency has been calculated for the three different elements and the efficiency ranged between 14 and 33%. From the circuit a constant 3.3V output was delivered. The main conclusion of this project is that furthermore Studies are needed in the material field because the elements available at the market today have too low efficiency.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Hörnfeldt, Robert. „Fjärrvärme som möjlighet till reservdrift av elproduktion“. Thesis, Umeå universitet, Institutionen för tillämpad fysik och elektronik, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-97621.

Der volle Inhalt der Quelle
Annotation:
Rapporten är en utvärdering av möjligheten att generera elektrisk energi från fjärrvärme med Seebeck-effekten och görs på uppdrag av Skellefteå Kraft. Kursen är examensarbete för högskoleingenjörsexamen i Elkraftteknik, 5EL210 vid institutionen tillämpad fysik och elektronik på Umeå Universitet under vårterminen 2014.En termoelektrisk generator fungerar enligt Seebeck-effekten och genererar en elektrisk spänning som är linjär mot temperaturskillnaden mellan sina två metallytor. För att få en temperaturskillnad så krävs ett kylmedium vilket skapar ett värmeflöde från den varma energikällan till kylmediumet. Utan kylmediumet så kommer temperaturerna gå mot samma värde. Ett kylmedium kan till exempel vara snö, markgrunden eller vattenradiatorer. Eftersom en termoelektrisk generator är väldigt ineffektiv så lämpar det sig inte att använda markgrunden eller snö som kylmedium för att endast generera upp till 4% el av den tillförda värmeenergin och resten går till förluster. Av denna anledning valdes radiatorerna i villan som kylmedium för detta examensarbete.En teoretisk experimentuppställning gjordes med 16 stycken termoelektriska generatorer. Resultatet visade att värmeöverföringen genom de termoelektriska generatorerna begränsades till ca. 250W värmeenergi. Med relativt låga temperaturer så är effektiviteten endast 2% vilket genererar ca. 5W elektrisk energi.Slutsatsen är att med denna experimentuppställning så genereras inte tillräckligt med energi för att driva en cirkulationspump. Effektiviteten av de termoelektriska generatorerna är för dålig och de leder värme dåligt på grund av dess höga termiska resistans.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Brázdil, Marian. „Peltierovy články pro výrobu elektrické energie“. Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2011. http://www.nusl.cz/ntk/nusl-229417.

Der volle Inhalt der Quelle
Annotation:
In the last decade there is a rising interest in thermoelectric applications. Thermoelectric generators enabling the direct conversion of the heat into the electricity become attractive. This fact is caused by the demands of environmental operation and saving primary resources. Scientists intensively investigate and develop new materials and structures suitable for these applications. The efficiency of the thermoelectric conversion progressively increases. Unfortunately we have no available materials with sufficient thermoelectric properties which could provide cost-competitive price. Thermoelectric generators seem to be useable devices. For example, in case of the unused waste heat using of the thermoelectric generator can increase the overall effectiveness of the unit despite the low efficiency of the generator. This master thesis deals with the issue of the Peltier modules representing the main part of the thermoelectric generators. The physical principles and structures of the thermoelectric modules and the possibility of thermoelectric power production are described here. In the practical part of this thesis the design of the low power generator utilizing waste heat from biomass boiler Verner A 251.1 is proposed.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Laga, Ondřej. „Využití termoelektrického generátoru pro zvýšení využití odpadního tepla“. Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2015. http://www.nusl.cz/ntk/nusl-231965.

Der volle Inhalt der Quelle
Annotation:
This thesis deals with the problem of waste heat, namely, the exhaust gas which are not frequently used. Specifically, it is a design of thermoelectric generators set, power electronics for fan and heat exchanger proposal. The entire system uses the energy of the waste heat to increase the heating efficiency.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Kříž, Pavel. „Využití termoelektrického generátoru pro zvýšení účinnosti otopného tělesa“. Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2015. http://www.nusl.cz/ntk/nusl-231094.

Der volle Inhalt der Quelle
Annotation:
This diploma thesis deals with a design layout of the fan power supply that ensures the increase of the efficiency of the heating unit. For usage in the areas without electric power, the power supply is secured by thermoelectric generator. The system has to function on the basis of autonomous system which turns itself on only when necessary. In the introductory part of the paper there is a recherché of thermoelectric generators for general usage. Next it mentions the basic findings in from the field of DC/DC converters for low power applications. In this part attention is given to MPPT algorithm. Furthermore basic knowledge from the field of heat transmission together with its most used elements is described. Subsequently existing applications that increase the effectiveness of heating are mentioned. Their disadvantage however is that they depend on the external source of power supply. The practical part to a large extent covers the analysis of the suitability of the chosen thermoelectric module. For securing of the heat gradient of the generator there was a model created meeting the figures in the manual and there are several simulations in the MATLAB program. Furthermore several measurements of the thermoelectric module took place in order to secure realistic figures. Subsequently a DC/DC converter was chosen. Finally the testing was made on the real composition. In conclusion there is an overall evaluation including the real usage and the economical aspect of the project. The outcomes of the work enable to avoid common mistakes that are part of many specialized articles. The created system is to be used after the adjustment of the cooling to the required aim. At the same time it becomes very effective.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Arnošt, Karel. „Generátorové snímače“. Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2008. http://www.nusl.cz/ntk/nusl-217705.

Der volle Inhalt der Quelle
Annotation:
The thesis deals with power harvesting sensors as a source of energy. As the power requirements for microelectronics decreases the environmental energy sources become more perspective. In a few last years batteries reach a higher capacity but there is still problem with their replacement. Power harvesting sensors appears as a good solution for powering microelectronics.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Ančík, Zdeněk. „Mechatronic Design and Verification of Autonomic Thermoelectric Energy Source for Aircraft Application“. Doctoral thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2016. http://www.nusl.cz/ntk/nusl-234600.

Der volle Inhalt der Quelle
Annotation:
Předložená disertační práce řeší komplexní mechatronický návrh autonomního termoelektrického zdroje energie pro letecké aplikace. Na základě dostupných zdrojů a literatury práce popisuje současný stav problematiky. V práci jsou prezentovány simulační modely MEMS termoelektrických článků, které jsou ověřeny experimentálním testováním a hodnotami dostupnými od výrobce. Na základě metodiky model-besed design byly navrženy a vyrobeny tři demonstrátory. Jejich vlastnosti byly testovány v reálných podmínkách na letecké pohonné jednotce.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Wir bieten Rabatte auf alle Premium-Pläne für Autoren, deren Werke in thematische Literatursammlungen aufgenommen wurden. Kontaktieren Sie uns, um einen einzigartigen Promo-Code zu erhalten!

Zur Bibliographie