Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Technical cleanliness“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Technical cleanliness" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Technical cleanliness"
FABER, Joanna, Krzysztof BRODZIK und Marta NYCZ. „Understanding technical cleanliness: importance, assessment, maintenance“. Combustion Engines 186, Nr. 3 (13.09.2021): 41–50. http://dx.doi.org/10.19206/ce-140531.
Der volle Inhalt der QuelleKoblenzer, Gerhard. „The Highest Standards of Technical Cleanliness“. IST International Surface Technology 13, Nr. 1 (März 2020): 40–41. http://dx.doi.org/10.1007/s35724-019-0084-4.
Der volle Inhalt der QuelleOravec, Milan, Adriana Divoková, Pavol Lipovský, Michal Karásek und Róbert Janošík. „Technical Cleanliness - a Requirement of Precision Manufacturing“. Acta Mechanica Slovaca 23, Nr. 4 (22.08.2020): 46–51. http://dx.doi.org/10.21496/ams.2020.008.
Der volle Inhalt der QuelleVecchio, Irene, Katja Schladitz, Michael Godehardt und Markus J. Heneka. „3D GEOMETRIC CHARACTERIZATION OF PARTICLES APPLIED TO TECHNICAL CLEANLINESS“. Image Analysis & Stereology 31, Nr. 3 (14.11.2012): 163. http://dx.doi.org/10.5566/ias.v31.p163-174.
Der volle Inhalt der QuelleHaarhoff, J., und S. Van Staden. „Technical note: Measurement and expression of granular filter cleanliness“. Water SA 39, Nr. 5 (16.10.2013): 701. http://dx.doi.org/10.4314/wsa.v39i5.15.
Der volle Inhalt der QuelleBorde, Yannick, Adrien Danel, A. Roche, Hervé Fontaine und C. Brych. „Cleanliness Management in Advanced Microelectronic“. Solid State Phenomena 145-146 (Januar 2009): 159–62. http://dx.doi.org/10.4028/www.scientific.net/ssp.145-146.159.
Der volle Inhalt der QuelleEnglert, Tim, Florian Gruber, Jan Stiedl, Simon Green, Timo Jacob, Karsten Rebner und Wulf Grählert. „Use of Hyperspectral Imaging for the Quantification of Organic Contaminants on Copper Surfaces for Electronic Applications“. Sensors 21, Nr. 16 (19.08.2021): 5595. http://dx.doi.org/10.3390/s21165595.
Der volle Inhalt der QuelleChu, Hong Yu, Zhi Jiang Xie, Xu Xu, Li Dan Zhou und Qin Liu. „Detection Status of Surface Defect for Precise Optical Element“. Advanced Materials Research 291-294 (Juli 2011): 1733–37. http://dx.doi.org/10.4028/www.scientific.net/amr.291-294.1733.
Der volle Inhalt der QuelleCheng, Xiaofeng, Xinxiang Miao, Hongbin Wang, Lang Qin, Yayun Ye, Qun He, Zhiqiang Ma, Longbiao Zhao und Shaobo He. „Surface Contaminant Control Technologies to Improve Laser Damage Resistance of Optics“. Advances in Condensed Matter Physics 2014 (2014): 1–7. http://dx.doi.org/10.1155/2014/974245.
Der volle Inhalt der QuelleShaik, Aqueeb Sohail, und Lewlyn L. R. Rodrigues. „Plant layout optimisation with implementation of technical cleanliness in an automotive industry: a system dynamics approach“. International Journal of Technology, Policy and Management 18, Nr. 3 (2018): 201. http://dx.doi.org/10.1504/ijtpm.2018.093850.
Der volle Inhalt der QuelleDissertationen zum Thema "Technical cleanliness"
Mostafaee, Mani. „Six Sigma for quality assurance of Lithium-ion batteries in the cell assembly process : A DMAIC field study at Northvolt“. Thesis, Luleå tekniska universitet, Institutionen för ekonomi, teknik, konst och samhälle, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-85966.
Der volle Inhalt der QuelleBrist på teknisk renhet och partikelföroreningar vid tillverkning av litiumjonbatterier påverkar dess prestanda och utgör en risk för produktens säkerhet och kvalitet. Därför sker en del av tillverkningsprocessen i ett Clean & Dry rum för att upprätthålla teknisk renhet. Denna uppsats syftar till att ge ett ramverk för att kontrollera partikelföroreningar och därmed stärka produktens kvalitet och säkerhet. För att uppnå syftet genomfördes först en litteraturstudie vilket vidare kompletterades med en fältstudie vid Northvolt Labs i Västerås. Studien bidrar till befintliga teorier genom att tillhandahålla ett ramverk för att hitta och åtgärda rotorsaker till partikelkontaminering i tillverkningsprocessen baserat på befintlig litteratur och standarder. Sex Sigma problemlösningsmetoden DMAIC implementerades för att genomföra fältstudien. En riskbedömning genomfördes för att hitta riskfyllda aktiviteter i processen. Vidare implementerades mätmetoder från relevanta standarder för att mäta kontamineringsnivån. Resultaten indikerar stor risk för tekniskrenhet från saneringsmetoder, material, maskiner och miljön. Vidare rekommenderas flera åtgärder för att underhålla tekniskrenhet vilka förväntas minska avvikelser i processen.
Lima, Ana Beatriz Miranda Peixoto. „Análise e redefinição de processos de Electrostatic Discharge & Technical Cleanliness“. Master's thesis, 2021. http://hdl.handle.net/1822/76064.
Der volle Inhalt der QuelleA presente dissertação, realizada no âmbito do Mestrado Integrado em Engenharia e Gestão Industrial, foi desenvolvida em contexto industrial na empresa APTIV em Braga com o propósito de realizar a análise e redefinição de processos Electrostatic Discharge e Technical Cleanliness. Inserida no ramo da indústria automóvel, dedica-se à produção de componentes plásticos e eletrónicos para a construção componentes automóveis como rádios, sistemas de navegação e sistemas de controlo. O aumento na complexidade da produção técnica exige novos níveis de controlo de partículas que causam contaminações. A multiplicação da complexidade da produção técnica na indústria automóvel exige condições e componentes de produção limpos. A presença de resíduos em peças e na superfície de dispositivos podem produzir produtos não confiáveis ou com desempenho fraco, provocar interrupções, desperdício de materiais e energia, além da devolução do produto. Adicionalmente, se não existirem medidas anti estáticas, esta poderá interferir com o produto originando a sua falha total, degradação de desempenho, redução da expectativa de vida ou operação instável. A eletricidade estática ou Electrostatic Discharge é um fenómeno físico que nem sempre é fácil de detetar, mas origina perda de produção, de tempo e de matéria-prima. Esta pode, ainda, originar incêndios, choque elétrico em operadores, contaminações e danificações aos componentes eletrónicos sensíveis, requerendo elevados custos de manutenção e/ou reparos. Este projeto consiste na realização de um diagnóstico atual aos processos de Electrostatic Discharge e Technical Cleanliness, identificação das medidas que já estão a ser devidamente utilizadas, reconhecer erros e não conformidades com as normas e diretrizes internacionais e, por fim, propor soluções de melhoria. Assim, estudou-se a possibilidade de integrar os diferentes tipos de medições num sistema de gestão e manutenção de equipamentos, o HolisTech. O objetivo é padronizar processos, garantir qualidade dos equipamentos ao cliente, reduzir a ameaça para a produção e garantir a confiabilidade dos produtos eletrónicos.
This dissertation, carried out under the Integrated Master’s Degree in Engineering and Industrial Management, was developed in an industrial context at the company APTIV in Braga with the purpose of carrying out an analysis and redefinition of Electrostatic Discharge and Technical Cleanliness processes. Inserted in the field of the automotive industry, it is dedicated to the production of plastic and electronic components for the construction of automotive components such as radios, navigation systems and control systems. The increasing complexity of the technical production requires new levels of control of particles that cause contamination. The multiplication of the complexity of technical production in the automotive industries requires clean production and components conditions. The presence of residues on parts and on the surface of devices can produce unreliable or poorly performing products that can lead to malfunctions, the waste of materials and energy, and could result on the return of the product. Additionally, if anti-static measures are not taken, it may interfere with the product causing its total failure, performance degradation, reduced life expectancy or unstable conditions of use. Static electricity or Electrostatic Discharge is a physical phenomenon that is not always easy to detect, but it causes loss of production, time and raw materials, could even create fires, electricity shocks in operators, contamination and damage to sensitive electronic components, requiring high maintenance and/or repair costs. The present project consists of carrying out a current diagnosis of the Electrostatic Discharge and Technical Cleanliness processes, identifying the measures that are already in place, determine errors and non-conformities with the international standards and guidelines and, finally, proposing improvement solutions. Baring that in mind, it was analyzed the possibility of integrating different types of measurements into a management and maintenance system equipment, the HolisTech. The objective is to standardize processes, guarantee the quality of equipment for the customer, reduce the threat to production and guarantee the reliability of electronic products.
Bücher zum Thema "Technical cleanliness"
Obladen, Michael. Oxford Textbook of the Newborn. Oxford University Press, 2021. http://dx.doi.org/10.1093/med/9780198854807.001.0001.
Der volle Inhalt der QuelleBuchteile zum Thema "Technical cleanliness"
Panusch, Thorben, Roman Möhle, Ronny Zwinkau und Jochen Deuse. „Reduction of Human Effort in Technical Cleanliness Inspection Through Advanced Image Processing Approaches“. In Advances in Manufacturing, Production Management and Process Control, 108–15. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-80462-6_14.
Der volle Inhalt der QuelleBrag, Patrick, und Markus Rochowicz. „Safety in Electromobility – Technical Cleanliness Between the Poles of Design Requirements and Efficient Production“. In Advances in Automotive Production Technology – Theory and Application, 319–26. Berlin, Heidelberg: Springer Berlin Heidelberg, 2021. http://dx.doi.org/10.1007/978-3-662-62962-8_37.
Der volle Inhalt der QuelleZwinkau, Ronny, Simon Frentrup, Roman Möhle und Jochen Deuse. „Automatic Particle Classification Through Deep Learning Approaches for Increasing Productivity in the Technical Cleanliness Laboratory“. In Advances in Intelligent Systems and Computing, 34–44. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-20040-4_4.
Der volle Inhalt der QuelleSarkar, Asis. „Steel Cleanliness &Sequence Length Improvement through Tundish Configuration &Black Refractories Quality Optimization and by Introducing the Concept of Management“. In Proceedings of the Unified International Technical Conference on Refractories (UNITECR 2013), 631–36. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2014. http://dx.doi.org/10.1002/9781118837009.ch109.
Der volle Inhalt der QuelleWarnecke, Hans-Jürgen, und Bernhard Klumpp. „New Test Procedure for the Examination of the Particulate Cleanliness of Technical Surfaces“. In Particles On Surfaces, 289–310. CRC Press, 2020. http://dx.doi.org/10.1201/9781003067429-15.
Der volle Inhalt der QuelleMenn, Naftaly, und Boris Chudnovsky. „FTR-Based Expert System for Power Generation Units“. In Frontiers in Artificial Intelligence and Applications. IOS Press, 2021. http://dx.doi.org/10.3233/faia210287.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Technical cleanliness"
Meurer, Detlef, und Amela Mrak. „Inspection of Technical Cleanliness“. In International conference Fluid Power 2017. University of Maribor Press, 2017. http://dx.doi.org/10.18690/978-961-286-086-8.12.
Der volle Inhalt der QuelleElo, Lauri, Juuso Pekkonen und Jari Rinkinen. „Technical Cleanliness of Assembled Fluid Power Components“. In 8th FPNI Ph.D Symposium on Fluid Power. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/fpni2014-7850.
Der volle Inhalt der QuelleBuchta, Dominic, Albrecht C. Brandenburg und Stefan Adolph. „A cheap, fast, and versatile illumination system for technical cleanliness“. In Unconventional Optical Imaging III, herausgegeben von Marc P. Georges, Gabriel Popescu und Nicolas Verrier. SPIE, 2022. http://dx.doi.org/10.1117/12.2624395.
Der volle Inhalt der QuelleLonsdale, Cameron, Steven Dedmon, Jay Galbraith und James Pilch. „Recent Research to Improve Wheel and Axle Composition, Properties and Designs“. In ASME 2007 Rail Transportation Division Fall Technical Conference. ASMEDC, 2007. http://dx.doi.org/10.1115/rtdf2007-46008.
Der volle Inhalt der QuelleAnapagaddi, Ravikiran, Rishabh Shukla, Sharad Goyal, Amarendra K. Singh, Janet K. Allen, Jitesh H. Panchal und Farrokh Mistree. „Exploration of the Design Space in Continuous Casting Tundish“. In ASME 2014 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/detc2014-34254.
Der volle Inhalt der QuelleBlizard, Norman C. „Future Diesel Fuel Requirements and Fuel Quality Impacts on Tier 2-4 High Horsepower Offroad Engines With Common Rail Fuel Systems“. In ASME 2014 Internal Combustion Engine Division Fall Technical Conference. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/icef2014-5426.
Der volle Inhalt der QuelleFriso, R., N. Casari, A. Suman, M. Pinelli und Francesco Montomoli. „A Design for Fouling Oriented Optimization of an HPT Nozzle“. In ASME Turbo Expo 2019: Turbomachinery Technical Conference and Exposition. American Society of Mechanical Engineers, 2019. http://dx.doi.org/10.1115/gt2019-91627.
Der volle Inhalt der QuelleShukla, Rishabh, Ravikiran Anapagaddi, Amarendra K. Singh, Jitesh H. Panchal, Janet K. Allen und Farrokh Mistree. „Exploring the Design Set Points of Refining Operation in Ladle for Cost Effective Desulfurization and Inclusion Removal“. In ASME 2015 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/detc2015-46265.
Der volle Inhalt der QuelleKim, Il Hwan, und Sang Chul Park. „Establishment of the Advanced Startup Turnover Process for New Nuclear Power Plants“. In ASME 2010 Pressure Vessels and Piping Division/K-PVP Conference. ASMEDC, 2010. http://dx.doi.org/10.1115/pvp2010-25245.
Der volle Inhalt der QuelleJung, Sangjin, und Timothy W. Simpson. „Multidisciplinary Analysis and Product Family Optimization of Front-Loading Washing Machines“. In ASME 2016 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/detc2016-59520.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Technical cleanliness"
Liera, Carla, Mónica García, Kim Andersson und Elisabeth Kvarnström. Combining sewered and non-sewered sanitation in Montero, Bolivia: scaling up sustainably. Stockholm Environment Institute, Februar 2022. http://dx.doi.org/10.51414/sei2022.007.
Der volle Inhalt der Quelle