Zeitschriftenartikel zum Thema „TD2 prediction“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit Top-50 Zeitschriftenartikel für die Forschung zum Thema "TD2 prediction" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Sehen Sie die Zeitschriftenartikel für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.
Ramani, A. L. „Prediction of First Lactation Milk Yield on The Basis of Test Day Yield Using Multiple Linear Regression in Gir Cows“. Indian Journal of Pure & Applied Biosciences 12, Nr. 3 (30.06.2024): 33–36. http://dx.doi.org/10.18782/2582-2845.9086.
Der volle Inhalt der QuelleRíos, Rafael, Carmen Belén Lupiañez, Daniele Campa, Alessandro Martino, Joaquin Martínez-López, Manuel Martínez-Bueno, Judit Varkonyi et al. „Type 2 diabetes-related variants influence the risk of developing multiple myeloma: results from the IMMEnSE consortium“. Endocrine-Related Cancer 22, Nr. 4 (August 2015): 545–59. http://dx.doi.org/10.1530/erc-15-0029.
Der volle Inhalt der QuelleKlein, Matthias S., und Jane Shearer. „Metabolomics and Type 2 Diabetes: Translating Basic Research into Clinical Application“. Journal of Diabetes Research 2016 (2016): 1–10. http://dx.doi.org/10.1155/2016/3898502.
Der volle Inhalt der QuelleLuo, Yufang, Zi Guo, Honghui He, Youbo Yang, Shaoli Zhao und Zhaohui Mo. „Predictive Model of Type 2 Diabetes Remission after Metabolic Surgery in Chinese Patients“. International Journal of Endocrinology 2020 (08.10.2020): 1–13. http://dx.doi.org/10.1155/2020/2965175.
Der volle Inhalt der QuelleOrtiz Zuñiga, Angel Michael, Rafael Simó, Octavio Rodriguez-Gómez, Cristina Hernández, Adrian Rodrigo, Laura Jamilis, Laura Campo, Montserrat Alegret, Merce Boada und Andreea Ciudin. „Clinical Applicability of the Specific Risk Score of Dementia in Type 2 Diabetes in the Identification of Patients with Early Cognitive Impairment: Results of the MOPEAD Study in Spain“. Journal of Clinical Medicine 9, Nr. 9 (24.08.2020): 2726. http://dx.doi.org/10.3390/jcm9092726.
Der volle Inhalt der QuelleVettoretti, Martina, Enrico Longato, Alessandro Zandonà, Yan Li, José Antonio Pagán, David Siscovick, Mercedes R. Carnethon, Alain G. Bertoni, Andrea Facchinetti und Barbara Di Camillo. „Addressing practical issues of predictive models translation into everyday practice and public health management: a combined model to predict the risk of type 2 diabetes improves incidence prediction and reduces the prevalence of missing risk predictions“. BMJ Open Diabetes Research & Care 8, Nr. 1 (Juli 2020): e001223. http://dx.doi.org/10.1136/bmjdrc-2020-001223.
Der volle Inhalt der QuelleWen, Min, Song Yang, Augustin Vintzileos, Wayne Higgins und Renhe Zhang. „Impacts of Model Resolutions and Initial Conditions on Predictions of the Asian Summer Monsoon by the NCEP Climate Forecast System“. Weather and Forecasting 27, Nr. 3 (01.06.2012): 629–46. http://dx.doi.org/10.1175/waf-d-11-00128.1.
Der volle Inhalt der QuelleKumar, Mukkesh, Li Ting Ang, Cindy Ho, Shu E. Soh, Kok Hian Tan, Jerry Kok Yen Chan, Keith M. Godfrey et al. „Machine Learning–Derived Prenatal Predictive Risk Model to Guide Intervention and Prevent the Progression of Gestational Diabetes Mellitus to Type 2 Diabetes: Prediction Model Development Study“. JMIR Diabetes 7, Nr. 3 (05.07.2022): e32366. http://dx.doi.org/10.2196/32366.
Der volle Inhalt der QuelleDi Camillo, Barbara, Liisa Hakaste, Francesco Sambo, Rafael Gabriel, Jasmina Kravic, Bo Isomaa, Jaakko Tuomilehto et al. „HAPT2D: high accuracy of prediction of T2D with a model combining basic and advanced data depending on availability“. European Journal of Endocrinology 178, Nr. 4 (April 2018): 331–41. http://dx.doi.org/10.1530/eje-17-0921.
Der volle Inhalt der QuelleZhu, Jianlong, Dehui Guo, Liying Liu und Jing Zhong. „Serum Galectin-3 Predicts Mortality in Venoarterial Extracorporeal Membrane Oxygenation Patients“. Cardiology Research and Practice 2023 (30.09.2023): 1–8. http://dx.doi.org/10.1155/2023/3917156.
Der volle Inhalt der QuelleChikowore, Tinashe, Kenneth Ekoru, Marijana Vujkovi, Dipender Gill, Fraser Pirie, Elizabeth Young, Manjinder S. Sandhu et al. „Polygenic Prediction of Type 2 Diabetes in Africa“. Diabetes Care 45, Nr. 3 (11.01.2022): 717–23. http://dx.doi.org/10.2337/dc21-0365.
Der volle Inhalt der QuellePan, Dikang, Hui Wang, Sensen Wu, Jingyu Wang, Yachan Ning, Jianming Guo, Cong Wang und Yongquan Gu. „Unveiling the Hidden Burden: Estimating All-Cause Mortality Risk in Older Individuals with Type 2 Diabetes“. Journal of Diabetes Research 2024 (20.01.2024): 1–10. http://dx.doi.org/10.1155/2024/1741878.
Der volle Inhalt der QuelleHa, Jane, Mi Jang, Yeongkeun Kwon, Young Suk Park, Do Joong Park, Joo-Ho Lee, Hyuk-Joon Lee et al. „Metabolomic Profiles Predict Diabetes Remission after Bariatric Surgery“. Journal of Clinical Medicine 9, Nr. 12 (01.12.2020): 3897. http://dx.doi.org/10.3390/jcm9123897.
Der volle Inhalt der QuelleKurasawa, Hisashi, Kayo Waki, Tomohisa Seki, Akihiro Chiba, Akinori Fujino, Katsuyoshi Hayashi, Eri Nakahara, Tsuneyuki Haga, Takashi Noguchi und Kazuhiko Ohe. „Enhancing Type 2 Diabetes Treatment Decisions With Interpretable Machine Learning Models for Predicting Hemoglobin A1c Changes: Machine Learning Model Development“. JMIR AI 3 (18.07.2024): e56700. http://dx.doi.org/10.2196/56700.
Der volle Inhalt der QuelleGuasch-Ferré, Marta, Miguel Ruiz-Canela, Jun Li, Yan Zheng, Mònica Bulló, Dong D. Wang, Estefanía Toledo et al. „Plasma Acylcarnitines and Risk of Type 2 Diabetes in a Mediterranean Population at High Cardiovascular Risk“. Journal of Clinical Endocrinology & Metabolism 104, Nr. 5 (13.11.2018): 1508–19. http://dx.doi.org/10.1210/jc.2018-01000.
Der volle Inhalt der QuelleYANG, JIN MIN. „PROBING NEW PHYSICS FROM TOP QUARK FCNC PROCESS AT LHC: A MINI REVIEW“. International Journal of Modern Physics A 23, Nr. 21 (20.08.2008): 3343–47. http://dx.doi.org/10.1142/s0217751x08042092.
Der volle Inhalt der QuellePapandreou, Christopher, Mònica Bulló, Miguel Ruiz-Canela, Courtney Dennis, Amy Deik, Daniel Wang, Marta Guasch-Ferré et al. „Plasma metabolites predict both insulin resistance and incident type 2 diabetes: a metabolomics approach within the Prevención con Dieta Mediterránea (PREDIMED) study“. American Journal of Clinical Nutrition 109, Nr. 3 (23.02.2019): 626–34. http://dx.doi.org/10.1093/ajcn/nqy262.
Der volle Inhalt der QuelleFenton, G. A., und D. V. Griffiths. „Bearing-capacity prediction of spatially random c ϕ soils“. Canadian Geotechnical Journal 40, Nr. 1 (01.02.2003): 54–65. http://dx.doi.org/10.1139/t02-086.
Der volle Inhalt der QuelleDeberneh, Henock M., und Intaek Kim. „Prediction of Type 2 Diabetes Based on Machine Learning Algorithm“. International Journal of Environmental Research and Public Health 18, Nr. 6 (23.03.2021): 3317. http://dx.doi.org/10.3390/ijerph18063317.
Der volle Inhalt der QuelleNixon, J. F. (Derick). „Discrete ice lens theory for frost heave beneath pipelines“. Canadian Geotechnical Journal 29, Nr. 3 (01.06.1992): 487–97. http://dx.doi.org/10.1139/t92-053.
Der volle Inhalt der QuelleZhang, Meilin, Li Zheng, Ping Li, Yufeng Zhu, Hong Chang, Xuan Wang, Weiqiao Liu, Yuwen Zhang und Guowei Huang. „4-Year Trajectory of Visceral Adiposity Index in the Development of Type 2 Diabetes: A Prospective Cohort Study“. Annals of Nutrition and Metabolism 69, Nr. 2 (2016): 142–49. http://dx.doi.org/10.1159/000450657.
Der volle Inhalt der QuelleFu, Yuanyuan, Ling Hu, Hong-Wei Ren, Yi Zuo, Shaoqiu Chen, Qiu-Shi Zhang, Chen Shao et al. „Prognostic Factors for COVID-19 Hospitalized Patients with Preexisting Type 2 Diabetes“. International Journal of Endocrinology 2022 (17.01.2022): 1–13. http://dx.doi.org/10.1155/2022/9322332.
Der volle Inhalt der QuelleCao, Yang, Ingmar Näslund, Erik Näslund, Johan Ottosson, Scott Montgomery und Erik Stenberg. „Using a Convolutional Neural Network to Predict Remission of Diabetes After Gastric Bypass Surgery: Machine Learning Study From the Scandinavian Obesity Surgery Register“. JMIR Medical Informatics 9, Nr. 8 (19.08.2021): e25612. http://dx.doi.org/10.2196/25612.
Der volle Inhalt der QuelleSayyid, Hiba O., Salma A. Mahmood und Saad S. Hamadi. „A Comparative Analysis of Machine Learning Models for Predicting Thyroid Disorders in Type 1 and Type 2 Diabetic Patients“. Basrah Researches Sciences 50, Nr. 2 (31.12.2024): 193–203. https://doi.org/10.56714/bjrs.50.2.16.
Der volle Inhalt der QuelleWu, Chung-Ze, Li-Ying Huang, Fang-Yu Chen, Chun-Heng Kuo und Dong-Feng Yeih. „Using Machine Learning to Predict Abnormal Carotid Intima-Media Thickness in Type 2 Diabetes“. Diagnostics 13, Nr. 11 (23.05.2023): 1834. http://dx.doi.org/10.3390/diagnostics13111834.
Der volle Inhalt der QuelleHu, W. P., Q. A. Shen, M. Zhang, Q. C. Meng und X. Zhang. „Corrosion–Fatigue Life Prediction for 2024-T62 Aluminum Alloy Using Damage Mechanics-Based Approach“. International Journal of Damage Mechanics 21, Nr. 8 (21.12.2011): 1245–66. http://dx.doi.org/10.1177/1056789511432791.
Der volle Inhalt der QuelleG, Revathi, und Gnanambal Ilango. „Topological Approaches to Diabetes Prediction Using TDA“. Journal of Research in Applied Mathematics 10, Nr. 9 (September 2024): 09–14. http://dx.doi.org/10.35629/0743-10090914.
Der volle Inhalt der QuelleElhefnawy, Marwa Elsaeed, Siti Maisharah Sheikh Ghadzi und Sabariah Noor Harun. „Predictors Associated with Type 2 Diabetes Mellitus Complications over Time: A Literature Review“. Journal of Vascular Diseases 1, Nr. 1 (04.08.2022): 13–23. http://dx.doi.org/10.3390/jvd1010003.
Der volle Inhalt der QuelleAyensa-Vazquez, Jose Angel, Alfonso Leiva, Pedro Tauler, Angel Arturo López-González, Antoni Aguiló, Matías Tomás-Salvá und Miquel Bennasar-Veny. „Agreement between Type 2 Diabetes Risk Scales in a Caucasian Population: A Systematic Review and Report“. Journal of Clinical Medicine 9, Nr. 5 (20.05.2020): 1546. http://dx.doi.org/10.3390/jcm9051546.
Der volle Inhalt der QuelleJiang, Shimin, Jinying Fang, Tianyu Yu, Lin Liu, Guming Zou, Hongmei Gao, Li Zhuo und Wenge Li. „Novel Model Predicts Diabetic Nephropathy in Type 2 Diabetes“. American Journal of Nephrology 51, Nr. 2 (19.12.2019): 130–38. http://dx.doi.org/10.1159/000505145.
Der volle Inhalt der QuelleHong, Eun Pyo, Seong Gu Heo und Ji Wan Park. „The Liability Threshold Model for Predicting the Risk of Cardiovascular Disease in Patients with Type 2 Diabetes: A Multi-Cohort Study of Korean Adults“. Metabolites 11, Nr. 1 (24.12.2020): 6. http://dx.doi.org/10.3390/metabo11010006.
Der volle Inhalt der QuelleMormile, Ilaria, Francescopaolo Granata, Aikaterini Detoraki, Daniela Pacella, Francesca Della Casa, Felicia De Rosa, Antonio Romano, Amato de Paulis und Francesca Wanda Rossi. „Predictive Response to Immunotherapy Score: A Useful Tool for Identifying Eligible Patients for Allergen Immunotherapy“. Biomedicines 10, Nr. 5 (22.04.2022): 971. http://dx.doi.org/10.3390/biomedicines10050971.
Der volle Inhalt der QuelleKleeman, Richard. „Limits, Variability, and General Behavior of Statistical Predictability of the Midlatitude Atmosphere“. Journal of the Atmospheric Sciences 65, Nr. 1 (01.01.2008): 263–75. http://dx.doi.org/10.1175/2007jas2234.1.
Der volle Inhalt der QuelleYu, Daohua, Xin Zhou, Yu Pan, Zhendong Niu, Xu Yuan und Huafei Sun. „University Academic Performance Development Prediction Based on TDA“. Entropy 25, Nr. 1 (23.12.2022): 24. http://dx.doi.org/10.3390/e25010024.
Der volle Inhalt der QuelleKiseleva, A. V., A. G. Soplenkova, V. A. Kutsenko, E. A. Sotnikova, Yu V. Vyatkin, А. A. Zharikova, A. I. Ershova et al. „Validation of genetic risk scores for type 2 diabetes on a Russian population sample from the biobank of the National Medical Research Center for Therapy and Preventive Medicine“. Cardiovascular Therapy and Prevention 22, Nr. 11 (10.12.2023): 3746. http://dx.doi.org/10.15829/1728-8800-20233746.
Der volle Inhalt der QuelleCavati, Guido, Filippo Pirrotta, Daniela Merlotti, Elena Ceccarelli, Marco Calabrese, Luigi Gennari und Christian Mingiano. „Role of Advanced Glycation End-Products and Oxidative Stress in Type-2-Diabetes-Induced Bone Fragility and Implications on Fracture Risk Stratification“. Antioxidants 12, Nr. 4 (14.04.2023): 928. http://dx.doi.org/10.3390/antiox12040928.
Der volle Inhalt der QuelleSun, Yue, Hao-Yu Gao, Zhi-Yuan Fan, Yan He und Yu-Xiang Yan. „Metabolomics Signatures in Type 2 Diabetes: A Systematic Review and Integrative Analysis“. Journal of Clinical Endocrinology & Metabolism 105, Nr. 4 (29.11.2019): 1000–1008. http://dx.doi.org/10.1210/clinem/dgz240.
Der volle Inhalt der QuelleKocbek, Simon, Primoz Kocbek, Andraz Stozer, Tina Zupanic, Tudor Groza und Gregor Stiglic. „Building interpretable models for polypharmacy prediction in older chronic patients based on drug prescription records“. PeerJ 6 (12.10.2018): e5765. http://dx.doi.org/10.7717/peerj.5765.
Der volle Inhalt der QuelleKomine, Hideo, und Nobuhide Ogata. „New equations for swelling characteristics of bentonite-based buffer materials“. Canadian Geotechnical Journal 40, Nr. 2 (01.04.2003): 460–75. http://dx.doi.org/10.1139/t02-115.
Der volle Inhalt der QuelleSUN, De-Chun, Zu-Jun LIU und Ke-Chu YI. „Double-Scale Channel Prediction for Precoded TDD-MIMO Systems“. IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences E96.A, Nr. 3 (2013): 745–46. http://dx.doi.org/10.1587/transfun.e96.a.745.
Der volle Inhalt der QuelleChauhan, Kinsuk, Girish N. Nadkarni, Fergus Fleming, James McCullough, Cijiang J. He, John Quackenbush, Barbara Murphy, Michael J. Donovan, Steven G. Coca und Joseph V. Bonventre. „Initial Validation of a Machine Learning-Derived Prognostic Test (KidneyIntelX) Integrating Biomarkers and Electronic Health Record Data To Predict Longitudinal Kidney Outcomes“. Kidney360 1, Nr. 8 (30.06.2020): 731–39. http://dx.doi.org/10.34067/kid.0002252020.
Der volle Inhalt der QuellePalmer, Daniel, Larissa Henze, Hugo Murua Escobar, Uwe Walter, Axel Kowald und Georg Fuellen. „Multicohort study testing the generalisability of the SASKit-ML stroke and PDAC prognostic model pipeline to other chronic diseases“. BMJ Open 14, Nr. 9 (September 2024): e088181. http://dx.doi.org/10.1136/bmjopen-2024-088181.
Der volle Inhalt der QuelleKUMAR, VIJAY, A. K. CHAKRAVARTY, ANKIT MAGOTRA, C. S. PATIL und P. R. SHIVAHRE. „Comparative study of ANN and conventional methods in forecasting first lactation milk yield in Murrah buffalo“. Indian Journal of Animal Sciences 89, Nr. 11 (04.12.2019). http://dx.doi.org/10.56093/ijans.v89i11.95887.
Der volle Inhalt der Quelle„Prediction of first lactation milk yield on the basis of test day yield using artificial neural network versus multiple linear regression in Gir cows“. Indian Journal of Dairy Science 77, Nr. 1 (2024): 91–96. https://doi.org/10.33785/ijds.2024.v77i01.013.
Der volle Inhalt der QuelleJaeger, Byron C., Ramon Casanova, Brian Wells, Yitbarek Demesie, Jeanette Stafford und Michael Bancks. „Abstract P131: Individualized Risk Prediction for Type 2 Diabetes: A Secondary Analysis of the Diabetes Prevention Program“. Circulation 149, Suppl_1 (19.03.2024). http://dx.doi.org/10.1161/circ.149.suppl_1.p131.
Der volle Inhalt der QuelleLiu, Yang, Scott C. Ritchie, Shu Mei Teo, Matti O. Ruuskanen, Oleg Kambur, Qiyun Zhu, Jon Sanders et al. „Integration of polygenic and gut metagenomic risk prediction for common diseases“. Nature Aging, 25.03.2024. http://dx.doi.org/10.1038/s43587-024-00590-7.
Der volle Inhalt der QuelleFan, Yuting, Enwu Long, Lulu Cai, Qiyuan Cao, Xingwei Wu und Rongsheng Tong. „Machine Learning Approaches to Predict Risks of Diabetic Complications and Poor Glycemic Control in Nonadherent Type 2 Diabetes“. Frontiers in Pharmacology 12 (22.06.2021). http://dx.doi.org/10.3389/fphar.2021.665951.
Der volle Inhalt der QuelleMarchiori, Marian, Alice Maguolo, Alexander Perfilyev, Marlena Maziarz, Mats Martinell, Maria F. Gomez, Emma Ahlqvist, Sonia García-Calzón und Charlotte Ling. „Blood-based epigenetic biomarkers associated with incident chronic kidney disease in individuals with type 2 diabetes.“ Diabetes, 23.12.2024. https://doi.org/10.2337/db24-0483.
Der volle Inhalt der QuelleJiang, Mingyang, Fu Gan, Meishe Gan, Huachu Deng, Xuxu Chen, Xintao Yuan, Danyi Huang et al. „Predicting the Risk of Diabetic Foot Ulcers From Diabetics With Dysmetabolism: A Retrospective Clinical Trial“. Frontiers in Endocrinology 13 (12.07.2022). http://dx.doi.org/10.3389/fendo.2022.929864.
Der volle Inhalt der QuelleZhu, Yun, Ying Zhang, Jianhui Zhu, Jason G. Umans, Shelley Cole, Elisa T. Lee, Barbara V. Howard et al. „Abstract 22: Novel Plasma Lipids Predict Risk of Diabetes: A Longitudinal Lipidomics Study in American Indians“. Circulation 141, Suppl_1 (03.03.2020). http://dx.doi.org/10.1161/circ.141.suppl_1.22.
Der volle Inhalt der Quelle