Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Targeted transcription regulation“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Targeted transcription regulation" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Targeted transcription regulation"
Braun, Christian J., Peter M. Bruno, Max A. Horlbeck, Luke A. Gilbert, Jonathan S. Weissman und Michael T. Hemann. „Versatile in vivo regulation of tumor phenotypes by dCas9-mediated transcriptional perturbation“. Proceedings of the National Academy of Sciences 113, Nr. 27 (20.06.2016): E3892—E3900. http://dx.doi.org/10.1073/pnas.1600582113.
Der volle Inhalt der QuelleLi, Conghui, Honghong Wang, Zhinang Yin, Pingping Fang, Ruijing Xiao, Ying Xiang, Wen Wang et al. „Ligand-induced native G-quadruplex stabilization impairs transcription initiation“. Genome Research 31, Nr. 9 (16.08.2021): 1546–60. http://dx.doi.org/10.1101/gr.275431.121.
Der volle Inhalt der QuelleAhmed, Mahmoud, Trang Huyen Lai, Trang Minh Pham, Sahib Zada, Omar Elashkar, Jin Seok Hwang und Deok Ryong Kim. „Hierarchical regulation of autophagy during adipocyte differentiation“. PLOS ONE 17, Nr. 1 (26.01.2022): e0250865. http://dx.doi.org/10.1371/journal.pone.0250865.
Der volle Inhalt der QuelleScott, James N. F., Adam P. Kupinski und Joan Boyes. „Targeted genome regulation and modification using transcription activator-like effectors“. FEBS Journal 281, Nr. 20 (06.09.2014): 4583–97. http://dx.doi.org/10.1111/febs.12973.
Der volle Inhalt der QuelleHuh, Hyunbin, Dong Kim, Han-Sol Jeong und Hyun Park. „Regulation of TEAD Transcription Factors in Cancer Biology“. Cells 8, Nr. 6 (17.06.2019): 600. http://dx.doi.org/10.3390/cells8060600.
Der volle Inhalt der QuelleUprety, Bhawana, Amala Kaja, Jannatul Ferdoush, Rwik Sen und Sukesh R. Bhaumik. „Regulation of Antisense Transcription by NuA4 Histone Acetyltransferase and Other Chromatin Regulatory Factors“. Molecular and Cellular Biology 36, Nr. 6 (11.01.2016): 992–1006. http://dx.doi.org/10.1128/mcb.00808-15.
Der volle Inhalt der QuellePerez-Oquendo, Mabel, und Don L. Gibbons. „Regulation of ZEB1 Function and Molecular Associations in Tumor Progression and Metastasis“. Cancers 14, Nr. 8 (07.04.2022): 1864. http://dx.doi.org/10.3390/cancers14081864.
Der volle Inhalt der QuelleImoberdorf, Rachel Maria, Irini Topalidou und Michel Strubin. „A Role for Gcn5-Mediated Global Histone Acetylation in Transcriptional Regulation“. Molecular and Cellular Biology 26, Nr. 5 (01.03.2006): 1610–16. http://dx.doi.org/10.1128/mcb.26.5.1610-1616.2006.
Der volle Inhalt der QuelleNourani, Amine, Yannick Doyon, Rhea T. Utley, Stéphane Allard, William S. Lane und Jacques Côté. „Role of an ING1 Growth Regulator in Transcriptional Activation and Targeted Histone Acetylation by the NuA4 Complex“. Molecular and Cellular Biology 21, Nr. 22 (15.11.2001): 7629–40. http://dx.doi.org/10.1128/mcb.21.22.7629-7640.2001.
Der volle Inhalt der QuelleZhang, Yixin, Yanlan Mo, Liyuan Han, Zhenyuan Sun und Wenzhong Xu. „Exploring Transcriptional Regulation of Hyperaccumulation in Sedum plumbizincicola through Integrated Transcriptome Analysis and CRISPR/Cas9 Technology“. International Journal of Molecular Sciences 24, Nr. 14 (24.07.2023): 11845. http://dx.doi.org/10.3390/ijms241411845.
Der volle Inhalt der QuelleDissertationen zum Thema "Targeted transcription regulation"
Maeder, Morgan Lee. „Engineered DNA-Binding Proteins for Targeted Genome Editing and Gene Regulation“. Thesis, Harvard University, 2013. http://dissertations.umi.com/gsas.harvard:10770.
Der volle Inhalt der QuelleYi, Jia. „The Role of Convergent Transcription in Regulating Alternative Splicing : Targeted Epigenetic Modification via Repurposed CRISPR/Cas9 System and Its Impact on Alternative Splicing Modulation“. Electronic Thesis or Diss., Sorbonne université, 2020. http://www.theses.fr/2020SORUS382.
Der volle Inhalt der QuelleAlternative splicing of precursor RNA is a co-transcriptional process that affects the vast majority of human genes and contributes to protein diversity. Dysregulation of such process is implicated in various diseases, including tumorigenesis. However, the mechanisms regulating these processes were still to be characterized. In this study, we showed that perturbations of alternative splicing correlated with dysregulations of convergent transcription and DNA methylation. Convergent transcription could be generated between pairs of neighboring genes in opposite orientation, or between intragenic enhancers and their host gene. CENPO and ADCY3 was identified as a convergent transcription gene pair. We found, in a tumor progression model of breast cancer, that the splicing change of the ADCY3 variant exon22 correlated with an increase of its transcription that went against that of CENPO. By using targeted transcription repression system CRISPRi, we demonstrated that downregulating the transcription of CENPO could not reverse the alternative splicing alteration of ADCY3 in cancer cells (DCIS). An active intragenic enhancer was identified in the intron16 of CD44, at the downstream of its alternative exons. By using targeted transcription activation system CRISPRa, we showed that upregulating the transcription of CD44 could not alter the alternative splicing of CD44 in DCIS cells. These results suggest that convergent transcription modulation through changes of promoter activity does not alter the alternative splicing of ADCY3 and CD44 in DCIS cells. However, through replacing the intragenic enhancer by an inducible promoter, we found that intragenic transcription activation increased the inclusion level of several alternative exons of CD44 in HCT116 cells. This result suggested that local convergent transcription could have a direct impact on the alternative splicing of CD44. Furthermore, by using targeted DNA methylation system CRISPR/dCas9-DNMT3b, we showed that DNA methylation at variant exons could directly modify CD44 alternative splicing. This thesis work also explored the limitation and feasibility of studying alternative splicing with repurposed CRISPR systems
Carvin, Christopher Dumas. „Transcriptional regulation and chromatin remodeling mechanisms at PHO5“. Diss., Texas A&M University, 2003. http://hdl.handle.net/1969.1/2193.
Der volle Inhalt der QuelleMARIANI, JESSICA. „Transcriptional regulation, target genes and functional roles of the SOX2 transcription factor in mouse neural stem cells maintenance and neuronal differentiation“. Doctoral thesis, Università degli Studi di Milano-Bicocca, 2009. http://hdl.handle.net/10281/8321.
Der volle Inhalt der QuelleZHAO, CHEN. „DECIPHERING TRANSCRIPTIONAL ACTIVITY OF DROSOPHILA BICOID MORPHOGEN: SELECTIVITY AND REGULATION“. University of Cincinnati / OhioLINK, 2001. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1006196849.
Der volle Inhalt der QuelleAkhmetova, Laila. „Transcriptional Regulation of Nodal Target Genes in Early Zebrafish Development“. Thesis, Harvard University, 2016. http://nrs.harvard.edu/urn-3:HUL.InstRepos:33493493.
Der volle Inhalt der QuelleBiology, Molecular and Cellular
Bolick, Sophia C. E. „Regulation of transcription and analysis of drug targets in lymphoma and myeloma cells“. [Tampa, Fla] : University of South Florida, 2006. http://purl.fcla.edu/usf/dc/et/SFE0001750.
Der volle Inhalt der QuelleMARKEY, MICHAEL PATRICK. „TRANSCRIPTIONAL REGULATION BY THE RETINOBLASTOMA TUMOR SUPPRESSOR: NOVEL TARGETS AND MECHANISMS“. University of Cincinnati / OhioLINK, 2004. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1092243630.
Der volle Inhalt der QuelleMarkey, Michael P. „Transcriptional regulation by the retinoblastoma tumor suppressor novel targets and mechanisms /“. Cincinnati, Ohio : University of Cincinnati, 2004. http://rave.ohiolink.edu/etdc/view?acc%5Fnum=ucin1092243630.
Der volle Inhalt der QuelleRatanamart, Jarupa. „Immunogenicity, efficiency and transcriptional regulation of plasmin-mediated muscle-targeted insulin gene therapy for diabetes“. Thesis, University of Newcastle Upon Tyne, 2006. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.431132.
Der volle Inhalt der QuelleBücher zum Thema "Targeted transcription regulation"
Ho, Rita Sam Man. Disruption of imprinted transcription regulation of the Mash2 gene by targeted DNA insertion. 2004.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Targeted transcription regulation"
Dixit, Vineeta, und Priti Upadhyay. „Targeted Genome-Editing Techniques in Plant Defense Regulation“. In Transcription Factors for Biotic Stress Tolerance in Plants, 1–32. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-12990-2_1.
Der volle Inhalt der QuelleWestermarck, Jukka. „Regulation of Transcription Factor Function by Targeted Protein Degradation: An Overview Focusing on p53, c-Myc, and c-Jun“. In Methods in Molecular Biology, 31–36. Totowa, NJ: Humana Press, 2010. http://dx.doi.org/10.1007/978-1-60761-738-9_2.
Der volle Inhalt der QuelleKim, Sung-Il, Yogendra Bordiya, Ji-Chul Nam, José Mayorga und Hong-Gu Kang. „High-Throughput Targeted Transcriptional Profiling of Defense Genes Using RNA-Mediated Oligonucleotide Annealing, Selection, and Ligation with Next-Generation Sequencing in Arabidopsis“. In Modeling Transcriptional Regulation, 227–52. New York, NY: Springer US, 2021. http://dx.doi.org/10.1007/978-1-0716-1534-8_15.
Der volle Inhalt der QuelleBeach, Dale L., und Jack D. Keene. „Ribotrap: Targeted Purification of RNA-Specific RNPs from Cell Lysates Through Immunoaffinity Precipitation to Identify Regulatory Proteins and RNAs“. In Post-Transcriptional Gene Regulation, 69–91. Totowa, NJ: Humana Press, 2008. http://dx.doi.org/10.1007/978-1-59745-033-1_5.
Der volle Inhalt der QuelleBrooks, Matthew D., Kelsey M. Reed, Gabriel Krouk, Gloria M. Coruzzi und Bastiaan O. R. Bargmann. „The TARGET System: Rapid Identification of Direct Targets of Transcription Factors by Gene Regulation in Plant Cells“. In Transcription Factor Regulatory Networks, 1–12. New York, NY: Springer US, 2022. http://dx.doi.org/10.1007/978-1-0716-2815-7_1.
Der volle Inhalt der QuelleWang, Chenguang, Jun-Yuan Ji, Lifeng Tian und Richard G. Pestell. „Transcriptional Regulation of Lipogenesis as a Therapeutic Target for Cancer Treatment“. In Nuclear Signaling Pathways and Targeting Transcription in Cancer, 259–75. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4614-8039-6_10.
Der volle Inhalt der QuelleMolesini, Barbara, und Tiziana Pandolfini. „Exogenous application of RNAs as a silencing tool for discovering gene function.“ In RNAi for plant improvement and protection, 14–24. Wallingford: CABI, 2021. http://dx.doi.org/10.1079/9781789248890.0003.
Der volle Inhalt der QuelleMolesini, Barbara, und Tiziana Pandolfini. „Exogenous application of RNAs as a silencing tool for discovering gene function.“ In RNAi for plant improvement and protection, 14–24. Wallingford: CABI, 2021. http://dx.doi.org/10.1079/9781789248890.0014.
Der volle Inhalt der QuelleParo, Renato, Ueli Grossniklaus, Raffaella Santoro und Anton Wutz. „Biology of Chromatin“. In Introduction to Epigenetics, 1–28. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-68670-3_1.
Der volle Inhalt der QuelleBunnik, Evelien M., und Karine G. Le Roch. „Mechanisms Regulating Transcription inPlasmodium falciparumas Targets for Novel Antimalarial Drugs“. In Comprehensive Analysis of Parasite Biology: From Metabolism to Drug Discovery, 421–40. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2016. http://dx.doi.org/10.1002/9783527694082.ch18.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Targeted transcription regulation"
Ahmad, Salma, Hanan Nazar, Nouralhuda Alatieh, Maryam Al-Mansoob, Zainab Farooq, Muna Yusuf und Allal Ouhtit. „Validation of Novel Transcriptional Targets that Underpin CD44-promoted breast cancer cell invasion“. In Qatar University Annual Research Forum & Exhibition. Qatar University Press, 2021. http://dx.doi.org/10.29117/quarfe.2021.0153.
Der volle Inhalt der QuelleCotter, Kellie, Dimple Chakravarty, Andrea Sboner und Mark A. Rubin. „Abstract 5042: Dynamic transcriptional regulation of ERα targets in prostate cancer“. In Proceedings: AACR 106th Annual Meeting 2015; April 18-22, 2015; Philadelphia, PA. American Association for Cancer Research, 2015. http://dx.doi.org/10.1158/1538-7445.am2015-5042.
Der volle Inhalt der QuelleYamamoto, Kaneyoshi, und Akira Ishihama. „Construction of 'Promoter Chip' for Microarray Analysis of Regulation Targets of Transcription Factors“. In 2007 International Symposium on Micro-NanoMechatronics and Human Science. IEEE, 2007. http://dx.doi.org/10.1109/mhs.2007.4420839.
Der volle Inhalt der QuellePark, Byeolna, Yoon Kyeong Lee und Hak Yong Kim. „Transcriptional regulation of drug target proteins from cancer related disease network“. In 2010 IEEE International Conference on Bioinformatics and Biomedicine Workshops (BIBMW). IEEE, 2010. http://dx.doi.org/10.1109/bibmw.2010.5703937.
Der volle Inhalt der QuelleSchwentner, Raphaela, Maximilian Kauer, Sven Bilke, Gunhild Jug, Paul S. Meltzer und Heinrich Kovar. „Abstract 5341: Combinatorial regulation of E2F target genes by the oncogenic ETS transcription factor EWS-FLI1“. In Proceedings: AACR 102nd Annual Meeting 2011‐‐ Apr 2‐6, 2011; Orlando, FL. American Association for Cancer Research, 2011. http://dx.doi.org/10.1158/1538-7445.am2011-5341.
Der volle Inhalt der QuelleButt, Sabrina, Timothy J. Stanek, Victoria J. Gennaro, Chris McNair, Kristen L. Pauley, Karen Knudsen und Steven B. McMahon. „Abstract LB-A29: Divergent mechanisms of transcriptional regulation by SAGA member and epigenetic modifier USP22“. In Abstracts: AACR-NCI-EORTC International Conference: Molecular Targets and Cancer Therapeutics; October 26-30, 2017; Philadelphia, PA. American Association for Cancer Research, 2018. http://dx.doi.org/10.1158/1535-7163.targ-17-lb-a29.
Der volle Inhalt der QuelleRodriguez, Esteban Jose Rodriguez, und Rodrigo Mora-Rodriguez. „miR-let-7a-2, miR103a-2 and CREB1-TF as therapeutic targets to regulate the transcription of DISC1 and PDE4D in the transcriptional regulation pathway by DISC1/ATF4 complex“. In 2022 IEEE 4th International Conference on BioInspired Processing (BIP). IEEE, 2022. http://dx.doi.org/10.1109/bip56202.2022.10032479.
Der volle Inhalt der QuelleRiffo, Elizabeth, Mario Palma, Catalina Alarcon, Ariel Castro, Vicente Torres und Roxana Pincheira. „Abstract C131: The SALL2 transcription factor promotes cell migration and focal adhesion turnover via regulation of integrin expression“. In Abstracts: AACR-NCI-EORTC International Conference on Molecular Targets and Cancer Therapeutics; October 26-30, 2019; Boston, MA. American Association for Cancer Research, 2019. http://dx.doi.org/10.1158/1535-7163.targ-19-c131.
Der volle Inhalt der QuelleBarbier, Roberto H., Edel M. McCrea, Jonathan D. Strope, Phoebe A. Huang, Tristan M. Sissung, Douglas K. Price, Cindy H. Chau und William D. Figg. „Abstract A069: Mechanisms governing the transcriptional regulation of the liver-specific transporter OATP1B3 in prostate cancer“. In Abstracts: AACR-NCI-EORTC International Conference on Molecular Targets and Cancer Therapeutics; October 26-30, 2019; Boston, MA. American Association for Cancer Research, 2019. http://dx.doi.org/10.1158/1535-7163.targ-19-a069.
Der volle Inhalt der QuelleGoel, Sakshi, Vipul Bhatia, Mahendra Shyamlal Palecha, Shannon Carskadon, Nallasivam Palanisamy und Bushra Ateeq. „Abstract B124: ERG mediated transcriptional regulation ofDLX1homeobox gene represents a novel mechanism underlying prostate cancer progression“. In Abstracts: AACR-NCI-EORTC International Conference on Molecular Targets and Cancer Therapeutics; October 26-30, 2019; Boston, MA. American Association for Cancer Research, 2019. http://dx.doi.org/10.1158/1535-7163.targ-19-b124.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Targeted transcription regulation"
Arazi, Tzahi, Vivian Irish und Asaph Aharoni. Micro RNA Targeted Transcription Factors for Fruit Quality Improvement. United States Department of Agriculture, Juli 2008. http://dx.doi.org/10.32747/2008.7592651.bard.
Der volle Inhalt der QuelleGrumet, Rebecca, Rafael Perl-Treves und Jack Staub. Ethylene Mediated Regulation of Cucumis Reproduction - from Sex Expression to Fruit Set. United States Department of Agriculture, Februar 2010. http://dx.doi.org/10.32747/2010.7696533.bard.
Der volle Inhalt der QuelleJander, Georg, und Daniel Chamovitz. Investigation of growth regulation by maize benzoxazinoid breakdown products. United States Department of Agriculture, Januar 2015. http://dx.doi.org/10.32747/2015.7600031.bard.
Der volle Inhalt der QuellePichersky, Eran, Alexander Vainstein und Natalia Dudareva. Scent biosynthesis in petunia flowers under normal and adverse environmental conditions. United States Department of Agriculture, Januar 2014. http://dx.doi.org/10.32747/2014.7699859.bard.
Der volle Inhalt der QuelleGal-On, Amit, Shou-Wei Ding, Victor P. Gaba und Harry S. Paris. role of RNA-dependent RNA polymerase 1 in plant virus defense. United States Department of Agriculture, Januar 2012. http://dx.doi.org/10.32747/2012.7597919.bard.
Der volle Inhalt der QuelleBarg, Rivka, Erich Grotewold und Yechiam Salts. Regulation of Tomato Fruit Development by Interacting MYB Proteins. United States Department of Agriculture, Januar 2012. http://dx.doi.org/10.32747/2012.7592647.bard.
Der volle Inhalt der QuelleWhitham, Steven A., Amit Gal-On und Victor Gaba. Post-transcriptional Regulation of Host Genes Involved with Symptom Expression in Potyviral Infections. United States Department of Agriculture, Juni 2012. http://dx.doi.org/10.32747/2012.7593391.bard.
Der volle Inhalt der QuelleFromm, Hillel, Paul Michael Hasegawa und Aaron Fait. Calcium-regulated Transcription Factors Mediating Carbon Metabolism in Response to Drought. United States Department of Agriculture, Juni 2013. http://dx.doi.org/10.32747/2013.7699847.bard.
Der volle Inhalt der QuelleEshed-Williams, Leor, und Daniel Zilberman. Genetic and cellular networks regulating cell fate at the shoot apical meristem. United States Department of Agriculture, Januar 2014. http://dx.doi.org/10.32747/2014.7699862.bard.
Der volle Inhalt der QuelleOhad, Nir, und Robert Fischer. Regulation of Fertilization-Independent Endosperm Development by Polycomb Proteins. United States Department of Agriculture, Januar 2004. http://dx.doi.org/10.32747/2004.7695869.bard.
Der volle Inhalt der Quelle