Um die anderen Arten von Veröffentlichungen zu diesem Thema anzuzeigen, folgen Sie diesem Link: Systems Theory and Control.

Zeitschriftenartikel zum Thema „Systems Theory and Control“

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit Top-50 Zeitschriftenartikel für die Forschung zum Thema "Systems Theory and Control" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Sehen Sie die Zeitschriftenartikel für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.

1

Chen, Can, Amit Surana, Anthony M. Bloch und Indika Rajapakse. „Multilinear Control Systems Theory“. SIAM Journal on Control and Optimization 59, Nr. 1 (Januar 2021): 749–76. http://dx.doi.org/10.1137/19m1262589.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

James, M. R. „Optimal Quantum Control Theory“. Annual Review of Control, Robotics, and Autonomous Systems 4, Nr. 1 (03.05.2021): 343–67. http://dx.doi.org/10.1146/annurev-control-061520-010444.

Der volle Inhalt der Quelle
Annotation:
This article explains some fundamental ideas concerning the optimal control of quantum systems through the study of a relatively simple two-level system coupled to optical fields. The model for this system includes both continuous and impulsive dynamics. Topics covered include open- and closed-loop control, impulsive control, open-loop optimal control, quantum filtering, and measurement feedback optimal control.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Junge, Oliver, und Jan Lunze. „Control Theory of Networked Systems“. at - Automatisierungstechnik 61, Nr. 7 (Juli 2013): 455–56. http://dx.doi.org/10.1524/auto.2013.9007.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Li, Fuhuo. „Control Systems and Number Theory“. International Journal of Mathematics and Mathematical Sciences 2012 (2012): 1–28. http://dx.doi.org/10.1155/2012/508721.

Der volle Inhalt der Quelle
Annotation:
We try to pave a smooth road to a proper understanding of control problems in terms of mathematical disciplines, and partially show how to number-theorize some practical problems. Our primary concern is linear systems from the point of view of our principle of visualization of the state, an interface between the past and the present. We view all the systems as embedded in the state equation, thus visualizing the state. Then we go on to treat the chain-scattering representation of the plant of Kimura 1997, which includes the feedback connection in a natural way, and we consider theH∞-control problem in this framework. We may view in particular the unit feedback system as accommodated in the chain-scattering representation, giving a better insight into the structure of the system. Its homographic transformation works as the action of the symplectic group on the Siegel upper half-space in the case of constant matrices. Both ofH∞- and PID-controllers are applied successfully in the EV control by J.-Y. Cao and B.-G. Cao 2006 and Cao et al. 2007, which we may unify in our framework. Finally, we mention some similarities between control theory and zeta-functions.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Trentelman, HL, AA Stoorvogel, M. Hautus und L. Dewell. „Control Theory for Linear Systems“. Applied Mechanics Reviews 55, Nr. 5 (01.09.2002): B87. http://dx.doi.org/10.1115/1.1497472.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Ros, Javier, Alberto Casas, Jasiel Najera und Isidro Zabalza. „64048 QUANTITATIVE FEEDBACK THEORY CONTROL OF A HEXAGLIDE TYPE PARALLEL MANIPULATOR(Control of Multibody Systems)“. Proceedings of the Asian Conference on Multibody Dynamics 2010.5 (2010): _64048–1_—_64048–10_. http://dx.doi.org/10.1299/jsmeacmd.2010.5._64048-1_.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Marden, Jason R., und Jeff S. Shamma. „Game Theory and Control“. Annual Review of Control, Robotics, and Autonomous Systems 1, Nr. 1 (28.05.2018): 105–34. http://dx.doi.org/10.1146/annurev-control-060117-105102.

Der volle Inhalt der Quelle
Annotation:
Game theory is the study of decision problems in which there are multiple decision makers and the quality of a decision maker's choice depends on both that choice and the choices of others. While game theory has been studied predominantly as a modeling paradigm in the mathematical social sciences, there is a strong connection to control systems in that a controller can be viewed as a decision-making entity. Accordingly, game theory is relevant in settings with multiple interacting controllers. This article presents an introduction to game theory, followed by a sampling of results in three specific control theory topics where game theory has played a significant role: ( a) zero-sum games, in which the two competing players are a controller and an adversarial environment; ( b) team games, in which several controllers pursue a common goal but have access to different information; and ( c) distributed control, in which both a game and online adaptive rules are designed to enable distributed interacting subsystems to achieve a collective objective.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Shadwick, William F. „Differential Systems and Nonlinear Control Theory“. IFAC Proceedings Volumes 28, Nr. 14 (Juni 1995): 721–29. http://dx.doi.org/10.1016/s1474-6670(17)46914-x.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

LIN, JING-YUE, und ZI-HOU YANG. „Mathematical Control Theory of Singular Systems“. IMA Journal of Mathematical Control and Information 6, Nr. 2 (1989): 189–98. http://dx.doi.org/10.1093/imamci/6.2.189.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Buxey, Geoff. „Inventory control systems: theory and practice“. International Journal of Information and Operations Management Education 1, Nr. 2 (2006): 158. http://dx.doi.org/10.1504/ijiome.2006.009173.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
11

Shamma, Jeff S. „Game theory, learning, and control systems“. National Science Review 7, Nr. 7 (04.11.2019): 1118–19. http://dx.doi.org/10.1093/nsr/nwz163.

Der volle Inhalt der Quelle
Annotation:
Summary Game theory is the study of interacting decision makers, whereas control systems involve the design of intelligent decision-making devices. When many control systems are interconnected, the result can be viewed through the lens of game theory. This article discusses both long standing connections between these fields as well as new connections stemming from emerging applications.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
12

Lyshevski,, SE, und PJ Eagle,. „Control Systems Theory with Engineering Applications“. Applied Mechanics Reviews 55, Nr. 2 (01.03.2002): B28—B29. http://dx.doi.org/10.1115/1.1451163.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
13

van der Schaft, Arjan. „Port-Hamiltonian Modeling for Control“. Annual Review of Control, Robotics, and Autonomous Systems 3, Nr. 1 (03.05.2020): 393–416. http://dx.doi.org/10.1146/annurev-control-081219-092250.

Der volle Inhalt der Quelle
Annotation:
This article provides a concise summary of the basic ideas and concepts in port-Hamiltonian systems theory and its use in analysis and control of complex multiphysics systems. It gives special attention to new and unexplored research directions and relations with other mathematical frameworks. Emergent control paradigms and open problems are indicated, including the relation with thermodynamics and the question of uniting the energy-processing view of control, as emphasized by port-Hamiltonian systems theory, with a complementary information-processing viewpoint.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
14

Schweizer, Jörg, und Michael Peter Kennedy. „Predictive Poincaré control: A control theory for chaotic systems“. Physical Review E 52, Nr. 5 (01.11.1995): 4865–76. http://dx.doi.org/10.1103/physreve.52.4865.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
15

Szabó, Zoltán. „Geometric Control Theory and Linear Switched Systems“. European Journal of Control 15, Nr. 3-4 (Januar 2009): 249–59. http://dx.doi.org/10.3166/ejc.15.249-259.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
16

KOBAYASHI, Koichi. „Systems and Control Theory for IoT Era“. IEICE ESS Fundamentals Review 11, Nr. 3 (2018): 172–79. http://dx.doi.org/10.1587/essfr.11.3_172.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
17

Butkovskiy, A. G., A. V. Babichev, N. L. Lepe und I. Ju Chkhiqvadze. „Geometric Theory of Dynamic Systems with Control“. IFAC Proceedings Volumes 23, Nr. 8 (August 1990): 273–80. http://dx.doi.org/10.1016/s1474-6670(17)51928-x.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
18

Sobolev, V. A. „Geometrical Theory of Singularly Perturbed Control Systems“. IFAC Proceedings Volumes 23, Nr. 8 (August 1990): 415–20. http://dx.doi.org/10.1016/s1474-6670(17)51951-5.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
19

Rosa, Marta, Gabriel Gil, Stefano Corni und Roberto Cammi. „Quantum optimal control theory for solvated systems“. Journal of Chemical Physics 151, Nr. 19 (21.11.2019): 194109. http://dx.doi.org/10.1063/1.5125184.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
20

Curtain, Ruth F. „Optimal control theory for infinite dimensional systems“. Automatica 33, Nr. 4 (April 1997): 750–51. http://dx.doi.org/10.1016/s0005-1098(97)85780-9.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
21

Kliem, W. R. „Symmetrizable Systems in Mechanics and Control Theory“. Journal of Applied Mechanics 59, Nr. 2 (01.06.1992): 454–56. http://dx.doi.org/10.1115/1.2899543.

Der volle Inhalt der Quelle
Annotation:
Stability investigations of nonconservative systems MX¨ + BX˙ + CX = 0 in mechanics and control theory become substantially easier if the coefficient matrices B and C are either both real symmetric or both complex symmetric. It is therefore of interest to give conditions under which, by means of a similarity transformation, a system may be converted into one of these forms. We discuss the following questions: Are such systems robust with respect to perturbations in the entries of the coefficient matrices? Do relevant applications exist?
APA, Harvard, Vancouver, ISO und andere Zitierweisen
22

Petersen, I. R. „Control theory for linear systems [Book Review]“. IEEE Transactions on Automatic Control 48, Nr. 3 (März 2003): 526. http://dx.doi.org/10.1109/tac.2003.809170.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
23

Žampa, Pavel. „A New Approach to Control Systems Theory“. IFAC Proceedings Volumes 30, Nr. 12 (Juli 1997): 177–82. http://dx.doi.org/10.1016/s1474-6670(17)42786-8.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
24

Gershon, E., und U. Shaked. „H∞ feedback-control theory in biochemical systems“. International Journal of Robust and Nonlinear Control 18, Nr. 1 (2007): 14–50. http://dx.doi.org/10.1002/rnc.1195.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
25

Myshlyaev, L. P., V. F. Evtushenko, K. A. Ivushkin und G. V. Makarov. „Development of similarity theory for control systems“. IOP Conference Series: Materials Science and Engineering 354 (Mai 2018): 012005. http://dx.doi.org/10.1088/1757-899x/354/1/012005.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
26

Zhang, Weihai, Honglei Xu, Huanqing Wang und Zhongwei Lin. „Stochastic Systems and Control: Theory and Applications“. Mathematical Problems in Engineering 2017 (2017): 1–4. http://dx.doi.org/10.1155/2017/4063015.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
27

Zadeh, L. A. „Stochastic finite-state systems in control theory“. Information Sciences 251 (Dezember 2013): 1–9. http://dx.doi.org/10.1016/j.ins.2013.06.039.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
28

Veliov, Vladimir M. „Optimal control of heterogeneous systems: Basic theory“. Journal of Mathematical Analysis and Applications 346, Nr. 1 (Oktober 2008): 227–42. http://dx.doi.org/10.1016/j.jmaa.2008.05.012.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
29

Al-Towaim, T., A. D. Barton, P. L. Lewin, E. Rogers * und D. H. Owens. „Iterative learning control — 2D control systems from theory to application“. International Journal of Control 77, Nr. 9 (10.06.2004): 877–93. http://dx.doi.org/10.1080/00207170410001726778.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
30

NONAMI, Kenzo, Jan Wei WANG und Shouji YAMAZAKI. „Spillover control of magnetic levitation systems using H.INF. control theory.“ Transactions of the Japan Society of Mechanical Engineers Series C 57, Nr. 534 (1991): 568–75. http://dx.doi.org/10.1299/kikaic.57.568.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
31

HOTZ, ANTHONY, und ROBERT E. SKELTON. „Covariance control theory“. International Journal of Control 46, Nr. 1 (Juli 1987): 13–32. http://dx.doi.org/10.1080/00207178708933880.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
32

Madhav, Manu S., und Noah J. Cowan. „The Synergy Between Neuroscience and Control Theory: The Nervous System as Inspiration for Hard Control Challenges“. Annual Review of Control, Robotics, and Autonomous Systems 3, Nr. 1 (03.05.2020): 243–67. http://dx.doi.org/10.1146/annurev-control-060117-104856.

Der volle Inhalt der Quelle
Annotation:
Here, we review the role of control theory in modeling neural control systems through a top-down analysis approach. Specifically, we examine the role of the brain and central nervous system as the controller in the organism, connected to but isolated from the rest of the animal through insulated interfaces. Though biological and engineering control systems operate on similar principles, they differ in several critical features, which makes drawing inspiration from biology for engineering controllers challenging but worthwhile. We also outline a procedure that the control theorist can use to draw inspiration from the biological controller: starting from the intact, behaving animal; designing experiments to deconstruct and model hierarchies of feedback; modifying feedback topologies; perturbing inputs and plant dynamics; using the resultant outputs to perform system identification; and tuning and validating the resultant control-theoretic model using specially engineered robophysical models.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
33

Lefkowitz, I. „Applied control theory“. Automatica 21, Nr. 1 (Januar 1985): 110–11. http://dx.doi.org/10.1016/0005-1098(85)90104-9.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
34

Hollis, Karen L. „Strategies for integrating biological theory, control systems theory, and Pavlovian conditioning“. Behavioral and Brain Sciences 23, Nr. 2 (April 2000): 258–59. http://dx.doi.org/10.1017/s0140525x00322439.

Der volle Inhalt der Quelle
Annotation:
To make possible the integration proposed by Domjan et al., psychologists first need to close the research gap between behavioral ecology and the study of Pavlovian conditioning. I suggest two strategies, namely, to adopt more behavioral ecological approaches to social behavior or to co-opt problems already addressed by behavioral ecologists that are especially well suited to the study of Pavlovian conditioning.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
35

Mansour, Mohammed. „Systems theory and human science“. Annual Reviews in Control 26, Nr. 1 (Januar 2002): 1–13. http://dx.doi.org/10.1016/s1367-5788(02)80004-9.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
36

Němcová, Jana, Mihály Petreczky und Jan H. van Schuppen. „Realization Theory of Nash Systems“. SIAM Journal on Control and Optimization 51, Nr. 5 (Januar 2013): 3386–414. http://dx.doi.org/10.1137/110847482.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
37

Gonçalves, J. Basto. „Realization Theory for Hamiltonian Systems“. SIAM Journal on Control and Optimization 25, Nr. 1 (Januar 1987): 63–73. http://dx.doi.org/10.1137/0325005.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
38

Allgöwer, Frank, Vincent Blondel und Uwe Helmke. „Control Theory: Mathematical Perspectives on Complex Networked Systems“. Oberwolfach Reports 9, Nr. 1 (2012): 661–732. http://dx.doi.org/10.4171/owr/2012/12.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
39

Hosoe, Shigeyuki. „Synthesis of servo systems by modern control theory.“ IEEJ Transactions on Industry Applications 107, Nr. 8 (1987): 960–64. http://dx.doi.org/10.1541/ieejias.107.960.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
40

Lions, J.-L. „Boundary Control of Hyperbolic Systems and Homogenization Theory“. IFAC Proceedings Volumes 18, Nr. 2 (Juni 1985): 95–101. http://dx.doi.org/10.1016/s1474-6670(17)60920-0.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
41

YANG, Wen. „Supervisory Control Theory of Fuzzy Discrete Event Systems“. Acta Automatica Sinica 34, Nr. 4 (02.03.2009): 460–65. http://dx.doi.org/10.3724/sp.j.1004.2008.00460.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
42

Meerkov, S. M., und T. Runolfsson. „Theory of Aiming Control for Linear Stochastic Systems“. IFAC Proceedings Volumes 23, Nr. 8 (August 1990): 43–47. http://dx.doi.org/10.1016/s1474-6670(17)51981-3.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
43

Butkovskiy, A. G. „Geometric Theory of Dynamic Systems with Control (CDS)“. IFAC Proceedings Volumes 22, Nr. 4 (Juni 1989): 289–93. http://dx.doi.org/10.1016/s1474-6670(17)53559-4.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
44

Bose, Bimal K. „Fuzzy control of industrial systems — theory and applications“. Automatica 37, Nr. 6 (Juni 2001): 958–59. http://dx.doi.org/10.1016/s0005-1098(01)00041-3.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
45

Maschke, R. Lozano, B. Brogliato, O. Egeland an. „Dissipative Systems Analysis and Control. Theory and Applications“. Measurement Science and Technology 12, Nr. 12 (15.11.2001): 2211. http://dx.doi.org/10.1088/0957-0233/12/12/703.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
46

Engell, S., E. J. Davison, S. Engell, K. Malinowski und G. Schmidt. „The Future of Control Theory for Complex Systems“. IFAC Proceedings Volumes 20, Nr. 9 (August 1987): 81–83. http://dx.doi.org/10.1016/s1474-6670(17)55684-0.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
47

Sengupta, Raja, und Stéphane Lafortune. „An Optimal Control Theory for Discrete Event Systems“. SIAM Journal on Control and Optimization 36, Nr. 2 (März 1998): 488–541. http://dx.doi.org/10.1137/s0363012994260957.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
48

Burke, Peter J. „Extending Identity Control Theory: Insights from Classifier Systems“. Sociological Theory 22, Nr. 4 (Dezember 2004): 574–94. http://dx.doi.org/10.1111/j.0735-2751.2004.00234.x.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
49

Elkin, V. I. „Geometric Theory of Reduction of Nonlinear Control Systems“. Computational Mathematics and Mathematical Physics 58, Nr. 2 (Februar 2018): 155–58. http://dx.doi.org/10.1134/s0965542518020045.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
50

Montúfar, Guido, Keyan Ghazi-Zahedi und Nihat Ay. „A Theory of Cheap Control in Embodied Systems“. PLOS Computational Biology 11, Nr. 9 (01.09.2015): e1004427. http://dx.doi.org/10.1371/journal.pcbi.1004427.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Wir bieten Rabatte auf alle Premium-Pläne für Autoren, deren Werke in thematische Literatursammlungen aufgenommen wurden. Kontaktieren Sie uns, um einen einzigartigen Promo-Code zu erhalten!

Zur Bibliographie