Auswahl der wissenschaftlichen Literatur zum Thema „Systems Theory and Control“

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Systems Theory and Control" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Zeitschriftenartikel zum Thema "Systems Theory and Control"

1

Chen, Can, Amit Surana, Anthony M. Bloch und Indika Rajapakse. „Multilinear Control Systems Theory“. SIAM Journal on Control and Optimization 59, Nr. 1 (Januar 2021): 749–76. http://dx.doi.org/10.1137/19m1262589.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

James, M. R. „Optimal Quantum Control Theory“. Annual Review of Control, Robotics, and Autonomous Systems 4, Nr. 1 (03.05.2021): 343–67. http://dx.doi.org/10.1146/annurev-control-061520-010444.

Der volle Inhalt der Quelle
Annotation:
This article explains some fundamental ideas concerning the optimal control of quantum systems through the study of a relatively simple two-level system coupled to optical fields. The model for this system includes both continuous and impulsive dynamics. Topics covered include open- and closed-loop control, impulsive control, open-loop optimal control, quantum filtering, and measurement feedback optimal control.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Junge, Oliver, und Jan Lunze. „Control Theory of Networked Systems“. at - Automatisierungstechnik 61, Nr. 7 (Juli 2013): 455–56. http://dx.doi.org/10.1524/auto.2013.9007.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Li, Fuhuo. „Control Systems and Number Theory“. International Journal of Mathematics and Mathematical Sciences 2012 (2012): 1–28. http://dx.doi.org/10.1155/2012/508721.

Der volle Inhalt der Quelle
Annotation:
We try to pave a smooth road to a proper understanding of control problems in terms of mathematical disciplines, and partially show how to number-theorize some practical problems. Our primary concern is linear systems from the point of view of our principle of visualization of the state, an interface between the past and the present. We view all the systems as embedded in the state equation, thus visualizing the state. Then we go on to treat the chain-scattering representation of the plant of Kimura 1997, which includes the feedback connection in a natural way, and we consider theH∞-control problem in this framework. We may view in particular the unit feedback system as accommodated in the chain-scattering representation, giving a better insight into the structure of the system. Its homographic transformation works as the action of the symplectic group on the Siegel upper half-space in the case of constant matrices. Both ofH∞- and PID-controllers are applied successfully in the EV control by J.-Y. Cao and B.-G. Cao 2006 and Cao et al. 2007, which we may unify in our framework. Finally, we mention some similarities between control theory and zeta-functions.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Trentelman, HL, AA Stoorvogel, M. Hautus und L. Dewell. „Control Theory for Linear Systems“. Applied Mechanics Reviews 55, Nr. 5 (01.09.2002): B87. http://dx.doi.org/10.1115/1.1497472.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Ros, Javier, Alberto Casas, Jasiel Najera und Isidro Zabalza. „64048 QUANTITATIVE FEEDBACK THEORY CONTROL OF A HEXAGLIDE TYPE PARALLEL MANIPULATOR(Control of Multibody Systems)“. Proceedings of the Asian Conference on Multibody Dynamics 2010.5 (2010): _64048–1_—_64048–10_. http://dx.doi.org/10.1299/jsmeacmd.2010.5._64048-1_.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Marden, Jason R., und Jeff S. Shamma. „Game Theory and Control“. Annual Review of Control, Robotics, and Autonomous Systems 1, Nr. 1 (28.05.2018): 105–34. http://dx.doi.org/10.1146/annurev-control-060117-105102.

Der volle Inhalt der Quelle
Annotation:
Game theory is the study of decision problems in which there are multiple decision makers and the quality of a decision maker's choice depends on both that choice and the choices of others. While game theory has been studied predominantly as a modeling paradigm in the mathematical social sciences, there is a strong connection to control systems in that a controller can be viewed as a decision-making entity. Accordingly, game theory is relevant in settings with multiple interacting controllers. This article presents an introduction to game theory, followed by a sampling of results in three specific control theory topics where game theory has played a significant role: ( a) zero-sum games, in which the two competing players are a controller and an adversarial environment; ( b) team games, in which several controllers pursue a common goal but have access to different information; and ( c) distributed control, in which both a game and online adaptive rules are designed to enable distributed interacting subsystems to achieve a collective objective.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Shadwick, William F. „Differential Systems and Nonlinear Control Theory“. IFAC Proceedings Volumes 28, Nr. 14 (Juni 1995): 721–29. http://dx.doi.org/10.1016/s1474-6670(17)46914-x.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

LIN, JING-YUE, und ZI-HOU YANG. „Mathematical Control Theory of Singular Systems“. IMA Journal of Mathematical Control and Information 6, Nr. 2 (1989): 189–98. http://dx.doi.org/10.1093/imamci/6.2.189.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Buxey, Geoff. „Inventory control systems: theory and practice“. International Journal of Information and Operations Management Education 1, Nr. 2 (2006): 158. http://dx.doi.org/10.1504/ijiome.2006.009173.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Dissertationen zum Thema "Systems Theory and Control"

1

Zimbidis, Alexandros A. „Control theory and insurance systems“. Thesis, City University London, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.287673.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Schirmer, Sonja G. „Theory of control of quantum systems /“. view abstract or download file of text, 2000. http://wwwlib.umi.com/cr/uoregon/fullcit?p9963453.

Der volle Inhalt der Quelle
Annotation:
Thesis (Ph. D.)--University of Oregon, 2000.
Typescript. Includes vita and abstract. Includes bibliographical references (leaves 98-99). Also available for download via the World Wide Web; free to University of Oregon users. Address: http://wwwlib.umi.com/cr/uoregon/fullcit?p9963453.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Kalogeropoulos, G. E. „Matrix pencils and linear systems theory“. Thesis, City University London, 1985. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.355580.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Jackson, Billy Davis John M. „A general linear systems theory on time scales transforms, stability, and control /“. Waco, Tex. : Baylor University, 2007. http://hdl.handle.net/2104/5066.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Ginsberg, David W. „Variable structure control systems“. Master's thesis, University of Cape Town, 1989. http://hdl.handle.net/11427/18787.

Der volle Inhalt der Quelle
Annotation:
The primary aims of this thesis, is to provide a body of knowledge on variable structure system theory and to apply the developed design concepts to control practical systems. It introduces the concept of a structure. The main aim in designing variable structure controllers, is to synthesize a variable structure system from two or more single structure systems, in such a way that the ensuing system out-performs its component structures. When a sliding mode is defined, the ensuing closed loop behaviour of the system is invariant to plant parameter changes and external disturbances. A variable structure controller was designed for a servo motor and successfully applied to the system. In practice, the phase plane representative point does not slide at infinite frequency with infinitesimal amplitude along the switching surface(s). Thus, the concept of a quasi-sliding regime was introduced. For high performance system specifications, the phase plane representative point could cycle about the origin. In some instances, sliding could be lost. For high speed applications, a novel design modification ensured that the system did not lose sliding. In addition, the controller could track a rapidly changing set point. Successful results support the developed theory.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Michalska, Hannah. „Design of nonlinear control systems : theory and algorithms“. Thesis, Imperial College London, 1989. http://hdl.handle.net/10044/1/8179.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Ahmad, Farooq. „An expert system for computer-aided design of control systems“. Thesis, University of Strathclyde, 1991. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.357165.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Tse, Wilfred See Foon. „Linear equivalents of nonlinear systems“. Thesis, University of British Columbia, 1987. http://hdl.handle.net/2429/26652.

Der volle Inhalt der Quelle
Annotation:
Consider the following nonlinear system [Formula Omitted] where ϰ ∈ Rⁿ, f, ℊ₁,…,ℊm are C∞ function in Rⁿ and ℎ is a C∞ function in R⍴, all defined on a neighborhood of 0. The problem of finding a necessary and sufficient condition such that system (1) can be transformed to a linear controllable system by a state coordinate change and feedback has been studied quite well. In this thesis, we first discuss a few different approaches to this problem and eventually we will show that the slightly different versions of the necessary and sufficient condition discovered are equivalent. Next we consider system (1) with all սi,= 0 together with system (2), and study the dual problem of transforming it to a linear observable system by a state and output coordinate change. Finally, we consider briefly system (l) and (2) with nonzero սi and study the problem of transforming it to a linear system that is both completely controllable and observable. Examples are given and applications to local stabilization and estimation are discussed.
Science, Faculty of
Mathematics, Department of
Graduate
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Shaikh, Mohammad Shahid. „Optimal control of hybrid systems : theory and algorithms“. Thesis, McGill University, 2004. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=85095.

Der volle Inhalt der Quelle
Annotation:
Many complex systems are hybrid in the sense that: (i) the state set possesses continuous and discrete components, and (ii) system evolution may occur in both continuous and discrete time. One important class of hybrid systems is that characterized by a feedback configuration of a set of continuous controlled low level systems and a high level discrete controller; such systems appear frequently in engineering and are particularly evident when a system is required to operate in a number of distinct modes. Other classes of hybrid systems are found in such diverse areas as (i) air traffic management systems, (ii) chemical process control, (iii) automotive engine-transmission systems, and (iv) intelligent vehicle-highway systems.
In this thesis we first formulate a class of hybrid optimal control problems (HOCPs) for systems with controlled and autonomous location transitions and then present necessary conditions for hybrid system trajectory optimality. These necessary conditions constitute generalizations of the standard Minimum Principle (MP) and are presented for the cases of open bounded control value sets and compact control value sets. These conditions give information about the behaviour of the Hamiltonian and the adjoint process at both autonomous and controlled switching times.
Such proofs of the necessary conditions for hybrid systems optimality which can be found in the literature are sufficiently complex that they are difficult to verify and use; in contrast, the formulation of the HOCP given in Chapter 2 of this thesis, together with the use of (i) classical variational methods and more recent needle variation techniques, and (ii) a local controllability condition, called the small time tubular fountain (STTF) condition, make the proofs in that chapter comparatively accessible. We note that the STTF condition is used to establish the adjoint and Hamiltonian jump conditions in the autonomous switchings case.
A hybrid Dynamic Programming Principle (HDPP) generalizing the standard dynamic programming principle to hybrid systems is also derived and this leads to hybrid Hamilton-Jacobi-Bellman (HJB) equation which is then used to establish a verification theorem within this framework. (Abstract shortened by UMI.)
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Kaszubowski, Lopes Yuri. „Supervisory control theory for controlling swarm robotics systems“. Thesis, University of Sheffield, 2016. http://etheses.whiterose.ac.uk/16765/.

Der volle Inhalt der Quelle
Annotation:
Swarm robotics systems have the potential to tackle many interesting problems. Their control software is mostly created by ad-hoc development. This makes it hard to deploy swarm robotics systems in real-world scenarios as it is difficult to analyse, maintain, or extend these systems. Formal methods can contribute to overcome these problems. However, they usually do not guarantee that the implementation matches the specification because the system’s control code is typically generated manually. This thesis studies the application of the supervisory control theory (SCT) framework in swarm robotics systems. SCT is widely applied and well established in the man- ufacturing context. It requires the system and the desired behaviours (specifications) to be defined as formal languages. In this thesis, regular languages are used. Regular languages, in the form of deterministic finite state automata, have already been widely applied for controlling swarm robotics systems, enabling a smooth transition from the ad-hoc development currently in practice. This thesis shows that the control code for swarm robotics systems can be automatically generated from formal specifications. Several case studies are presented that serve as guidance for those who want to learn how to specify swarm behaviours using SCT formally. The thesis provides the tools for the implementation of controllers using formal specifications. Controllers are validated on swarms of up to 600 physical robots through a series of systematic experiments. It is also shown that the same controllers can be automatically ported onto different robotics platforms, as long as they offer the required capabilities. The thesis extends and incorporates techniques to the supervisory control theory framework; specifically, the concepts of global events and the use of probabilistic generators. It can be seen as a step towards making formal methods a standard practice in swarm robotics.
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Bücher zum Thema "Systems Theory and Control"

1

Caldwell, Raymond. Control systems. Tonbridge: Hands On, 1997.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Anderson, Patrick. Control systems: Classical controls. Delhi: Global Media, 2009.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

K, Sinha N. Control systems. New York: Holt, Rinehart and Winston, 1986.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

K, Sinha N. Control systems. 2. Aufl. New York: Wiley & Sons, 1994.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

K, Sinha N. Control systems. New York: CBS Publishing, 1986.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Leigh, J. R. Control Theory. 2. Aufl. Stevenage: IET, 2004.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

G, Chen. Linear stochastic control systems. Boca Raton: CRC Press, 1995.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Engineers, Institution of Electrical, Hrsg. Control theory. 2. Aufl. London: Institution of Electrical Engineers, 2004.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

L, Melsa James, Schultz Donald G und Melsa James L, Hrsg. Linear control systems. New York: McGraw-Hill, 1993.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Control systems engineering. New York: Wiley, 1986.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Buchteile zum Thema "Systems Theory and Control"

1

Zabczyk, Jerzy. „Linear control systems“. In Mathematical Control Theory, 176–205. Boston, MA: Birkhäuser Boston, 2008. http://dx.doi.org/10.1007/978-0-8176-4733-9_13.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Kisačanin, Branislav, und Gyan C. Agarwal. „Modern control theory“. In Linear Control Systems, 23–70. Boston, MA: Springer US, 2001. http://dx.doi.org/10.1007/978-1-4615-0553-2_2.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Zabczyk, Jerzy. „Systems with constraints“. In Mathematical Control Theory, 62–72. Boston, MA: Birkhäuser Boston, 2008. http://dx.doi.org/10.1007/978-0-8176-4733-9_5.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Taha, Walid M., Abd-Elhamid M. Taha und Johan Thunberg. „Control Theory“. In Cyber-Physical Systems: A Model-Based Approach, 57–78. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-36071-9_4.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Aubin, Jean-Pierre, Alexandre M. Bayen und Patrick Saint-Pierre. „Regulation of Control Systems“. In Viability Theory, 437–84. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-16684-6_11.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Aubin, Jean-Pierre. „Regulation of Control Systems“. In Viability Theory, 199–234. Boston: Birkhäuser Boston, 2009. http://dx.doi.org/10.1007/978-0-8176-4910-4_8.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Elliott, David L. „Symmetric Systems: Lie Theory“. In Bilinear Control Systems, 33–82. Dordrecht: Springer Netherlands, 2009. http://dx.doi.org/10.1023/b101451_2.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Pommaret, J. F. „Linear Control Systems“. In Partial Differential Control Theory, 567–786. Dordrecht: Springer Netherlands, 2001. http://dx.doi.org/10.1007/978-94-010-0854-9_6.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Pommaret, J. F. „Nonlinear Control Systems“. In Partial Differential Control Theory, 787–937. Dordrecht: Springer Netherlands, 2001. http://dx.doi.org/10.1007/978-94-010-0854-9_7.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Saavedra, Emma, und Rafael Moreno-Sánchez. „Metabolic Control Theory“. In Encyclopedia of Systems Biology, 1239–43. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4419-9863-7_1161.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Konferenzberichte zum Thema "Systems Theory and Control"

1

Dellar, Oliver J., und Bryn Ll Jones. „Discretising the linearised navier-stokes equations: A systems theory approach“. In 2016 UKACC 11th International Conference on Control (CONTROL). IEEE, 2016. http://dx.doi.org/10.1109/control.2016.7737634.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

„Systems theory and control“. In 2011 IEEE International Conference on Industrial Technology (ICIT 2011). IEEE, 2011. http://dx.doi.org/10.1109/icit.2011.5754337.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

„Systems theory and control“. In 2011 IEEE 43rd Southeastern Symposium on System Theory (SSST 2011). IEEE, 2011. http://dx.doi.org/10.1109/ssst.2011.5753766.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Mekki, Ahmed, und Simon Collart-Dutilleul. „Graph theory: Application to system recovery“. In 2012 UKACC International Conference on Control (CONTROL). IEEE, 2012. http://dx.doi.org/10.1109/control.2012.6334718.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

„Session 5: System theory and control theory“. In 2010 International Conference on Intelligent Computing and Integrated Systems (ICISS). IEEE, 2010. http://dx.doi.org/10.1109/iciss.2010.5656954.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Schwarzschild, Renee, und Eduardo D. Sontag. „Algebraic theory of sign-linear systems“. In 1991 American Control Conference. IEEE, 1991. http://dx.doi.org/10.23919/acc.1991.4791483.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Arimoto, S., S. Kawamura, F. Miyazaki und S. Tamaki. „Learning control theory for dynamical systems“. In 1985 24th IEEE Conference on Decision and Control. IEEE, 1985. http://dx.doi.org/10.1109/cdc.1985.268737.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Andersson, Stig I., Åke E. Andersson und Ulf Ottoson. „Theory & Control of Dynamical Systems“. In International Conference and Workshop. WORLD SCIENTIFIC, 1992. http://dx.doi.org/10.1142/9789814537957.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Nemcova, Jana, Mihaly Petreczky und Jan H. van Schuppen. „Realization theory of Nash systems“. In 2009 Joint 48th IEEE Conference on Decision and Control (CDC) and 28th Chinese Control Conference (CCC 2009). IEEE, 2009. http://dx.doi.org/10.1109/cdc.2009.5399920.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Shastri, Subramanian V., und Kumpati S. Narendra. „Fractional Order Derivatives in Systems Theory“. In 2020 American Control Conference (ACC). IEEE, 2020. http://dx.doi.org/10.23919/acc45564.2020.9147605.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Berichte der Organisationen zum Thema "Systems Theory and Control"

1

Seidman, Thomas I. Control Theory and Distributed Parameter Systems. Fort Belvoir, VA: Defense Technical Information Center, Januar 1986. http://dx.doi.org/10.21236/ada182808.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Baillieul, J. The Nonlinear Control Theory of Complex Mechanical Systems. Fort Belvoir, VA: Defense Technical Information Center, April 1996. http://dx.doi.org/10.21236/ada310012.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Shoults, Hugh D. Organizational Systems Theory and Command and Control Concepts. Fort Belvoir, VA: Defense Technical Information Center, März 2013. http://dx.doi.org/10.21236/ada589438.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Baillieul, John. The Nonlinear Control Theory of Complex Mechanical Systems. Fort Belvoir, VA: Defense Technical Information Center, April 1998. http://dx.doi.org/10.21236/ada342742.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Sontag, Eduardo. Dynamical Systems and Control Theory Inspired by Molecular Biology. Fort Belvoir, VA: Defense Technical Information Center, Februar 2011. http://dx.doi.org/10.21236/ada549208.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Speer, Eugene R. (DURIP) Computer Simulations of Plasmas, Nonlinear Systems and Control Theory. Fort Belvoir, VA: Defense Technical Information Center, November 1989. http://dx.doi.org/10.21236/ada219070.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Teel, Andrew R., und Joao P. Hespanha. A Robust Stability and Control Theory for Hybrid Dynamical Systems. Fort Belvoir, VA: Defense Technical Information Center, September 2006. http://dx.doi.org/10.21236/ada470821.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Scheinker, Alexander. Introduction to Control Theory. Part 2. Laplace Transforms and Linear Systems. Office of Scientific and Technical Information (OSTI), September 2015. http://dx.doi.org/10.2172/1214624.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Campbell, Stephen L., und William J. Terrell. Derivative Arrays, Geometric Control Theory, and Realizations of Linear Descriptor Systems. Fort Belvoir, VA: Defense Technical Information Center, November 1987. http://dx.doi.org/10.21236/ada190882.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Emre, Erol. On a Theory of Control for Linear Systems Over Rings and Nonlinear/Time-Varying Systems. Fort Belvoir, VA: Defense Technical Information Center, September 1985. http://dx.doi.org/10.21236/ada162680.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Wir bieten Rabatte auf alle Premium-Pläne für Autoren, deren Werke in thematische Literatursammlungen aufgenommen wurden. Kontaktieren Sie uns, um einen einzigartigen Promo-Code zu erhalten!

Zur Bibliographie