Dissertationen zum Thema „Systems on chip (SoCs)“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit Top-50 Dissertationen für die Forschung zum Thema "Systems on chip (SoCs)" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Sehen Sie die Dissertationen für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.
Yoon, Jang-Sup. „Embedded test circuit and methods for radio frequency (RF) systems-on-a-chip (SoCs)“. [Gainesville, Fla.] : University of Florida, 2006. http://purl.fcla.edu/fcla/etd/UFE0015657.
Der volle Inhalt der QuelleWeiss, Alexander. „Effiziente externe Beobachtung von CPU-Aktivitäten auf SoCs“. Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2015. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-184227.
Der volle Inhalt der QuelleBolzani, Leticia Maria Veiras. „Explorando uma solução híbrida: hardware+software para a detecção de falhas tempo real em systems-on-chip (SoCs)“. Pontifícia Universidade Católica do Rio Grande do Sul, 2005. http://hdl.handle.net/10923/3146.
Der volle Inhalt der QuelleThe always increasing number of computer-based safety-critical applications has intensified the research over fault tolerance techniques. While those systems are working, the probability of both permanent and transient faults happens due to the presence of all sort of interference. The common faults are those which affect data and/or modify the expected program execution flow. Thus, the use of techniques allowing detecting these type of faults presents them from propagating to system output. Basically, these techniques are categorized in two groups: software-based approaches and hardware-based approaches. Considering the above introduced, the goal of this work is to specify and to implement a hybrid approach, which combines software-based techniques and hardware-based ones, capable to detect run time data and algorithm control flow faults. It is settled around the techniques proposed in (REBAUDENGO, 2004) and (GOLOUBEVA, 2003). Nevertheless, the proposed approach implements part of its code-transformation rules via software and hardware. These redundant information is added to the software portion and consistency checks are implemented via hardware. Summary, we propose the development of an I-IP (infrastructure intellectual property) core, such as watchdog, to correctly execute the consistency checks concurrently to the application execution. In this work, three different versions of the I-IP were implemented in VHDL and analyzed by means of fault injection experiments. The first implemented version allows data fault detection and, as any prototype, has its limitations. The second version also detects data faults, but eliminates the problems of the former version. The third I-IP version adds the capability of detecting control flow faults to the previous versions of the I-IP. Finally, after implementing these three versions, a fourth version was specified. It adds dependability and robustness to the IIP by using Built-in Self-Test (BIST) techniques. The results obtained from evaluating the different I-IP core versions guarantee that the hybrid approach is efficient, because it features high fault coverage and surpasses the main problems present in software-based techniques proposed in the literature, such as, performance degradation and code/data memory overhead. Finally, this work is a partial result of a joint research project carried by the SiSC Group – PUCRS and CAD – Politecnico di Torino, under the scope of the Alfa Project (##AML/B7-311- 97/0666/II-0086-FI, from 2002 to 2005).
Nos últimos anos, o crescente aumento do número de aplicações críticas baseadas em sistemas eletrônicos, intensificou a pesquisa sobre técnicas de tolerância à falhas. Durante o período de funcionamento destes sistemas, a probabilidade de ocorrerem falhas transientes e permanentes devido à presença de interferências dos mais variados tipos é bastante grande. Dentre as falhas mais freqüentes, salientam-se as falhas que corrompem os dados e as falhas que alteram o fluxo de controle do processador que executa a aplicação. Assim, a utilização de técnicas capazes de detectarem estes tipos de falhas evita que as mesmas se propaguem pelo sistema e acabem gerando saídas incorretas. Basicamente, estas técnicas são classificadas em dois grandes grupos: soluções baseadas em software e soluções baseadas em hardware. Neste contexto, o objetivo principal deste trabalho é especificar e implementar uma solução híbrida, parte em software e parte em hardware, capaz de detectar em tempo de execução eventuais falhas em dados e no fluxo de controle do algoritmo. Esta solução baseia-se nas técnicas propostas em (REBAUDENGO, 2004) e (GOLOUBEVA, 2003) e implementa parte de suas regras de transformação de código via software e parte via hardware. Assim, informações redundantes são agregadas ao código da aplicação e testes de consistência são implementados via hardware. Em resumo, este trabalho propõe o desenvolvimento de um núcleo I-IP (infrastructure intellectual property), tal como um watchdog, para executar os testes de consistência concorrentemente à execução da aplicação. Para isto, três versões diferentes do I-IP foram implementadas em linguagem de descrição de hardware (VHDL) e avaliadas através de experimentos de injeção de falhas.A primeira versão implementada provê a detecção de falhas em dados e, como todo protótipo, este também apresenta algumas restrições e limitações. A segunda versão também detecta falhas em dados, entretanto, supera todos os problemas da versão anterior. A terceira versão do I-IP agrega à versão anterior a capacidade de detectar falhas de fluxo de controle. Finalmente, após a implementação das versões anteriores, foi especificada uma quarta versão que agrega confiabilidade e robustez ao I-IP desenvolvido através da utilização de algumas técnicas de tolerância a falhas e da especificação de um auto-teste funcional. Os resultados obtidos a partir da avaliação das versões do I-IP garantem que a metodologia proposta neste trabalho é bastante eficiente, pois apresenta uma alta cobertura de falhas e supera os principais problemas presentes nas soluções baseadas em software propostas na literatura, ou seja, degradação de desempenho e maior consumo de memória. Finalmente, cabe mencionar que esta dissertação é o resultado parcial de atividades que fazem parte do escopo do Projeto Alfa (#AML/B7-311-97/0666/II-0086-FI) mantido entre os Grupos SiSC – PUCRS (Brasil) e CAD – Politecnico di Torino (Itália) no período de 2002-2005.
Reehal, Gursharan Kaur. „Designing Low Power and High Performance Network-on-Chip Communication Architectures for Nanometer SoCs“. The Ohio State University, 2012. http://rave.ohiolink.edu/etdc/view?acc_num=osu1340022240.
Der volle Inhalt der QuelleBolzani, Leticia Maria Veiras. „Explorando uma solu??o h?brida : hardware+software para a detec??o de falhas tempo real em systems-on-chip (SoCs)“. Pontif?cia Universidade Cat?lica do Rio Grande do Sul, 2005. http://tede2.pucrs.br/tede2/handle/tede/3001.
Der volle Inhalt der QuelleNos ?ltimos anos, o crescente aumento do n?mero de aplica??es cr?ticas baseadas em sistemas eletr?nicos, intensificou a pesquisa sobre t?cnicas de toler?ncia ? falhas. Durante o per?odo de funcionamento destes sistemas, a probabilidade de ocorrerem falhas transientes e permanentes devido ? presen?a de interfer?ncias dos mais variados tipos ? bastante grande. Dentre as falhas mais freq?entes, salientam-se as falhas que corrompem os dados e as falhas que alteram o fluxo de controle do processador que executa a aplica??o. Assim, a utiliza??o de t?cnicas capazes de detectarem estes tipos de falhas evita que as mesmas se propaguem pelo sistema e acabem gerando sa?das incorretas. Basicamente, estas t?cnicas s?o classificadas em dois grandes grupos: solu??es baseadas em software e solu??es baseadas em hardware. Neste contexto, o objetivo principal deste trabalho ? especificar e implementar uma solu??o h?brida, parte em software e parte em hardware, capaz de detectar em tempo de execu??o eventuais falhas em dados e no fluxo de controle do algoritmo. Esta solu??o baseia-se nas t?cnicas propostas em (REBAUDENGO, 2004) e (GOLOUBEVA, 2003) e implementa parte de suas regras de transforma??o de c?digo via software e parte via hardware. Assim, informa??es redundantes s?o agregadas ao c?digo da aplica??o e testes de consist?ncia s?o implementados via hardware. Em resumo, este trabalho prop?e o desenvolvimento de um n?cleo I-IP (infrastructure intellectual property), tal como um watchdog, para executar os testes de consist?ncia concorrentemente ? execu??o da aplica??o. Para isto, tr?s vers?es diferentes do I-IP foram implementadas em linguagem de descri??o de hardware (VHDL) e avaliadas atrav?s de experimentos de inje??o de falhas. A primeira vers?o implementada prov? a detec??o de falhas em dados e, como todo prot?tipo, este tamb?m apresenta algumas restri??es e limita??es. A segunda vers?o tamb?m detecta falhas em dados, entretanto, supera todos os problemas da vers?o anterior. A terceira vers?o do I-IP agrega ? vers?o anterior a capacidade de detectar falhas de fluxo de controle. Finalmente, ap?s a implementa??o das vers?es anteriores, foi especificada uma quarta vers?o que agrega confiabilidade e robustez ao I-IP desenvolvido atrav?s da utiliza??o de algumas t?cnicas de toler?ncia a falhas e da especifica??o de um auto-teste funcional. Os resultados obtidos a partir da avalia??o das vers?es do I-IP garantem que a metodologia proposta neste trabalho ? bastante eficiente, pois apresenta uma alta cobertura de falhas e supera os principais problemas presentes nas solu??es baseadas em software propostas na literatura, ou seja, degrada??o de desempenho e maior consumo de mem?ria. Finalmente, cabe mencionar que esta disserta??o ? o resultado parcial de atividades que fazem parte do escopo do Projeto Alfa (#AML/B7-311-97/0666/II-0086-FI) mantido entre os Grupos SiSC PUCRS (Brasil) e CAD Politecnico di Torino (It?lia) no per?odo de 2002-2005.
Terosiet, Medhi. „Conception d'un oscillateur robuste contrôlé numériquement pour l'horlogerie des SoCs“. Phd thesis, Université Pierre et Marie Curie - Paris VI, 2012. http://tel.archives-ouvertes.fr/tel-00836916.
Der volle Inhalt der QuelleAghaee, Ghaleshahi Nima. „Thermal Issues in Testing of Advanced Systems on Chip“. Doctoral thesis, Linköpings universitet, Institutionen för datavetenskap, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-120798.
Der volle Inhalt der QuelleMEDARDONI, Simone. „Driving the Network-on-Chip Revolution to Remove the Interconnect Bottleneck in Nanoscale Multi-Processor Systems-on-Chip“. Doctoral thesis, Università degli studi di Ferrara, 2009. http://hdl.handle.net/11392/2389197.
Der volle Inhalt der QuelleTambara, Lucas Antunes. „Caracterização de circuitos programáveis e sistemas em chip sob radiação“. reponame:Biblioteca Digital de Teses e Dissertações da UFRGS, 2013. http://hdl.handle.net/10183/86477.
Der volle Inhalt der QuelleThis work consists in a study about the radiation effects in programmable circuits and System-on-Chips (SoCs) based on FPGAs (Field-Programmable Gate Arrays). Single Event Effects (SEEs) and Total Ionizing Dose (TID) are the two main effects caused by the radiation incidence, and both can imply in the occurrence of failures in integrated circuits. SEEs are due to the incidence of neutrons derived from the interaction of the cosmic rays with the terrestrial atmosphere, as well as heavy ions coming from the space and protons provided from the solar wind and the Van Allen belts. Total Ionizing Dose regards the prolonged exposure of an integrated circuit to the ionizing radiation, which deviates the standard electrical characteristics of the device due to radiation-induced electrical charges accumulated in the semiconductors’ interfaces. In this context, this work aims to describe in details the characterization of Microsemi’s mixed-signal SoC-FPGA SmartFusion A2F200-FG484 when exposed to radiation (SEEs and TID), using a Diverse Redundancy approach for error detection. As well, an architecture using a Diversified Triple Modular Redundancy scheme was tested (SEEs) through its implementation in a Xilinx’s Spartan-6 LX45 FPGA, aiming error detection and correction. The results obtained show that several functional blocks from SmartFusion have different radiation tolerance levels and that the use of the Triple Modular Redundancy together with Diversified Redundancy proved to be extremely efficient in terms of SEEs tolerance.
Cota, Erika Fernandes. „Reuse-based test planning for core-based systems-on-chip“. reponame:Biblioteca Digital de Teses e Dissertações da UFRGS, 2003. http://hdl.handle.net/10183/4180.
Der volle Inhalt der QuelleElectronic applications are currently developed under the reuse-based paradigm. This design methodology presents several advantages for the reduction of the design complexity, but brings new challenges for the test of the final circuit. The access to embedded cores, the integration of several test methods, and the optimization of the several cost factors are just a few of the several problems that need to be tackled during test planning. Within this context, this thesis proposes two test planning approaches that aim at reducing the test costs of a core-based system by means of hardware reuse and integration of the test planning into the design flow. The first approach considers systems whose cores are connected directly or through a functional bus. The test planning method consists of a comprehensive model that includes the definition of a multi-mode access mechanism inside the chip and a search algorithm for the exploration of the design space. The access mechanism model considers the reuse of functional connections as well as partial test buses, cores transparency, and other bypass modes. The test schedule is defined in conjunction with the access mechanism so that good trade-offs among the costs of pins, area, and test time can be sought. Furthermore, system power constraints are also considered. This expansion of concerns makes it possible an efficient, yet fine-grained search, in the huge design space of a reuse-based environment. Experimental results clearly show the variety of trade-offs that can be explored using the proposed model, and its effectiveness on optimizing the system test plan. Networks-on-chip are likely to become the main communication platform of systemson- chip. Thus, the second approach presented in this work proposes the reuse of the on-chip network for the test of the cores embedded into the systems that use this communication platform. A power-aware test scheduling algorithm aiming at exploiting the network characteristics to minimize the system test time is presented. The reuse strategy is evaluated considering a number of system configurations, such as different positions of the cores in the network, power consumption constraints and number of interfaces with the tester. Experimental results show that the parallelization capability of the network can be exploited to reduce the system test time, whereas area and pin overhead are strongly minimized. In this manuscript, the main problems of the test of core-based systems are firstly identified and the current solutions are discussed. The problems being tackled by this thesis are then listed and the test planning approaches are detailed. Both test planning techniques are validated for the recently released ITC’02 SoC Test Benchmarks, and further compared to other test planning methods of the literature. This comparison confirms the efficiency of the proposed methods.
Shalan, Mohamed A. „Dynamic memory management for embedded real-time multiprocessor system-on-a-chip“. Diss., Available online, Georgia Institute of Technology, 2003:, 2003. http://etd.gatech.edu/theses/available/etd-11252003-131621/unrestricted/shalanmohameda200312.pdf.
Der volle Inhalt der QuelleVincent Mooney, Committee Chair; John Barry, Committee Member; James Hamblen, Committee Member; Karsten Schwan, Committee Member; Linda Wills, Committee Member. Includes bibliography.
Akgul, Bilge Ebru Saglam. „The System-on-a-Chip Lock Cache“. Diss., Georgia Institute of Technology, 2004. http://hdl.handle.net/1853/5253.
Der volle Inhalt der QuelleLjungberg, Jan. „SYSTEM ON CHIP : Fördelar i konstruktion med system on chip i förhållande till fristående FPGA och processor“. Thesis, Tekniska Högskolan, Högskolan i Jönköping, JTH, Data- och elektroteknik, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:hj:diva-28263.
Der volle Inhalt der QuelleI detta examensarbete har undersökningar gjorts för att fastställa vilka vinster som går att göra genom att byta en internbuss mellan två chip, en FPGA och en processor, mot en intern buss implementerat på ett enda chip, System on Chip. Arbetet bygger på mätningar gjorda i realtid i Xilinx utvecklingsverktyg på olika bussar, AXI4 och AXI4‑Lite som är kopplade internt mot AXI3. Den port som används är FPGAs egen GP‑port. Förutom att mäta överföringshastigheterna, har även fysiska aspekter som utrymme, kostnader och utvecklingstid undersökts. Utifrån dessa kriterier har en jämförelse gjorts med den befintliga konstruktionen för att fastställa vilka vinster som går att uppnå. Arbetet har resulterat i ett antal resultat som är ställda mot de förutsättningar som fanns i den ursprungliga lösningen. I de flesta fall visar resultatet att ett System on Chip är en bättre lösning. De fall som var tveksamma var vid viss typ av överföring med AXI4‑Lite bussen. I arbetet har inte undersökning av kosmisk strålning, temperatur eller luftfuktighet betraktas. I arbetet med att försöka att bevisa att ett System on Chip är snabbare än den ursprungliga uppsättningen har utvecklingsmetoden hypotetisk deduktiv använts. Denna metod bygger på att man från början sätter upp ett påstående, som man förutsätter är sant, följt av en konjunktion, som inte får inträffa, för att slutligen dra en slutsats, som konstaterar fakta. Eftersom fakta som lästes in i början av arbetet pekade på att ett System on Chip var en snabbare och billigare lösning kändes metoden användbar. Under arbetets gång har det visat sig vara en bra metod som också ger ett resultat där sannolikheten för att det är en snabbare lösning ökar. Däremot säger inte metoden att det är helt säkert att den i alla situationer är bättre, vilket kan ändras om man använder andra förutsättningar eller tar med andra aspekter.
Montcalm, Michael R. „Scheduling Algorithms for Instruction Set Extended Symmetrical Homogeneous Multiprocessor Systems-on-Chip“. Thèse, Université d'Ottawa / University of Ottawa, 2011. http://hdl.handle.net/10393/20056.
Der volle Inhalt der QuelleKunz, Leonardo. „Memória transacional em hardware para sistemas embarcados multiprocessados conectados por redes-em-chip“. reponame:Biblioteca Digital de Teses e Dissertações da UFRGS, 2010. http://hdl.handle.net/10183/28739.
Der volle Inhalt der QuelleTransactional Memory (TM) has emerged in the last years as a new solution for synchronization on shared memory multiprocessor systems, allowing a better exploration of the parallelism of the applications by avoiding inherent limitations of the lock mechanism. In this model, the programmer defines regions of code, called transactions, to execute atomically. The system tries to execute transactions concurrently, but in case of conflict on memory accesses, it takes the appropriate measures to preserve the atomicity and isolation, usually aborting and re-executing one of the transactions. One of the most accepted hardware transactional memory model is LogTM, implemented in this work in an embedded MPSoC that uses an NoC as interconnection mechanism. The experiments compare this implementation with locks, considering performance and energy. Furthermore, this work shows that the time a transaction waits to restart after abort (called backoff delay on abort) has significant impact on performance and energy. An analysis of this impact is done using three backoff policies. A novel mechanism based on handshake of transactions, called Abort handshake, is proposed as a solution to this issue. The results of the experiments depends on application and system configuration and show TM benefits in most cases in comparison to the locks mechanism, reaching reduction on the execution time up to 30% and reduction on the energy consumption up to 32% on low contention workloads. After that, an analysis of the backoff delay on abort on the performance and energy is presented, comparing to the Abort handshake mechanism. The proposed mechanism shows reduction of up to 20% on the execution time and up to 53% on the energy, when compared to the best backoff policy. For applications with a high degree of synchronization, TM shows reduction on the execution time up to 63% and energy savings up to 71% compared to locks.
Klingler, Randall S. „Compilation and Generation of Multi-Processor on a Chip Real-Time Embedded Systems“. Diss., CLICK HERE for online access, 2007. http://contentdm.lib.byu.edu/ETD/image/etd1941.pdf.
Der volle Inhalt der QuelleNguyen, Thi Yen Mai. „Ferrite-based micro-inductors for power systems on chip : from material elaboration to inductor optimisation“. Toulouse 3, 2014. http://thesesups.ups-tlse.fr/2564/.
Der volle Inhalt der QuelleOn-chip inductors are key passive elements for future power supplies on chip (PwrSoC), which are expected to be compact and show enhanced performance: high efficiency and high power density. The objective of this thesis work is to study the material and technology to realize small size (<4 mm²) and low profile (< 250 µm) ferrite-based on-chip inductor. This component is dedicated to low power conversion (˜ 1 W) and should provide high inductance density and high quality factor at medium frequency range (5-10 MHz). Fully sintered NiZn ferrites are selected as soft magnetic materials for the inductor core because of their high resistivity and moderate permeability stable in the frequencies range of interest. Two techniques are developed for the ferrite cores: screen printing of in-house made ferrite powder and cutting of commercial ferrite films, followed in each case by sintering and pick-and place assembling to form the rectangular toroid inductor. Test inductors were realized first so that the characterization could be carried out to study the magnetic properties of the ferrite core and the volumetric core losses. The core losses were fit from the measured curve with Steinmetz equation to obtain analytical expressions of losses versus frequency and induction. The second phase of the thesis is the design optimization for the on-chip ferrite based inductor, taking into account the expected losses. Genetic algorithm is employed to optimize the inductor design with the objective function as minimum losses and satisfying the specification on the inductance values under weak current-bias condition. Finite element method for magnetics FEMM is used as a tool to calculate inductance and losses. The second run of prototypes was done to validate the optimization method. In perspective, processes of thick-photoresist photolithography and electroplating are being developed to realize the completed thick copper windings surrounding ferrite cores
Yang, Xiaokun. „A High Performance Advanced Encryption Standard (AES) Encrypted On-Chip Bus Architecture for Internet-of-Things (IoT) System-on-Chips (SoC)“. FIU Digital Commons, 2016. http://digitalcommons.fiu.edu/etd/2477.
Der volle Inhalt der QuelleNiu, Xinwei. „System-on-a-Chip (SoC) based Hardware Acceleration in Register Transfer Level (RTL) Design“. FIU Digital Commons, 2012. http://digitalcommons.fiu.edu/etd/888.
Der volle Inhalt der QuelleFabris, Eric Ericson. „A Modular and digitally programmable interface based on band-pass sigma-delta modulator for mixed-signal systems-on-chip“. reponame:Biblioteca Digital de Teses e Dissertações da UFRGS, 2005. http://hdl.handle.net/10183/6226.
Der volle Inhalt der QuelleThe focus of this thesis is to discuss the development and modeling of an interface architecture to be employed for interfacing analog signals in mixed-signal SOC. We claim that the approach that is going to be presented is able to achieve wide frequency range, and covers a large range of applications with constant performance, allied to digital configuration compatibility. Our primary assumptions are to use a fixed analog block and to promote application configurability in the digital domain, which leads to a mixed-signal interface. The use of a fixed analog block avoids the performance loss common to configurable analog blocks. The usage of configurability on the digital domain makes possible the use of all existing tools for high level design, simulation and synthesis to implement the target application, with very good performance prediction. The proposed approach utilizes the concept of frequency translation (mixing) of the input signal followed by its conversion to the ΣΔ domain, which makes possible the use of a fairly constant analog block, and also, a uniform treatment of input signal from DC to high frequencies. The programmability is performed in the ΣΔ digital domain where performance can be closely achieved according to application specification. The interface performance theoretical and simulation model are developed for design space exploration and for physical design support. Two prototypes are built and characterized to validate the proposed model and to implement some application examples. The usage of this interface as a multi-band parametric ADC and as a two channels analog multiplier and adder are shown. The multi-channel analog interface architecture is also presented. The characterization measurements support the main advantages of the approach proposed.
Arpnikanondt, Chonlameth. „A Platform-Centric UML-/XML-Enhanced HW/SW Codesign Method for the Development of SoC Systems“. Diss., Available online, Georgia Institute of Technology, 2004, 2004. http://etd.gatech.edu/theses/available/etd-04112004-153455/unrestricted/arpnikanondt%5Fchonlameth%5F200405%5Fphd.pdf.
Der volle Inhalt der QuelleMadisetti, Vijay, Committee Chair ; Mersereau, Russell, Committee Member ; Yalamanchili, Sudhakar, Committee Member. Includes bibliographical references.
Schneider, William. „Avalia??o sistem?tica de redes intrachip“. Pontif?cia Universidade Cat?lica do Rio Grande do Sul, 2014. http://tede2.pucrs.br/tede2/handle/tede/8202.
Der volle Inhalt der QuelleApproved for entry into archive by Sheila Dias (sheila.dias@pucrs.br) on 2018-07-10T14:27:37Z (GMT) No. of bitstreams: 1 WILLIAM SCHNEIDER_DIS.pdf: 3430246 bytes, checksum: 5fc61ba11d1155b509058a5d6a0c34b9 (MD5)
Made available in DSpace on 2018-07-10T14:37:58Z (GMT). No. of bitstreams: 1 WILLIAM SCHNEIDER_DIS.pdf: 3430246 bytes, checksum: 5fc61ba11d1155b509058a5d6a0c34b9 (MD5) Previous issue date: 2014-03-13
The increase in the number of cores available in Systems on a Chip has enabled the design of circuits with increasingly aggressive specifications. Efficient interconnection architectures such as intrachip networks are critical to the viability of these projects. However, measuring and comparing performanceof these networks for a given system is still a challenging task, which results from: (i) the complexity imposed by the abundance of available options in the design space of these networks; (ii) the current non-adoption of a unique evaluation platform to compare different networks proposals; (iii) the fact that the network traffic has a greater influence on the performance of such networks than any other design characteristic. This work has as main strategic goal the evaluation and comparison of different intrachip network architectures through the use of a unified evaluation platform. It adopts Nocbench, a recent platform, already validated in some contexts and proposed as a standard for the evaluation of intrachip networks. The employed evaluation method is based on the simulation of networks and uses as input traffic and computation models described in the form of traces, both extracted from real application. The main contributions of this work reside in: (i) the proposal of several enhancements to the chosen platform; (ii) the development of modules added to integrate the networks Hermes HS,Hermes OO, Hermes TB, Hermes VC, and YeaH from the author?s research group to the platform; (iii) the enhancement of the platform performance evaluation process, through the inclusion of metrics usually employed to compare intrachip networks, including: latency, throughput and jitter. A set of experiments validates the contributions and demonstrate the use the Nocbench platform as a useful tool in the comparison of intrachip networks of diverse origins.
O aumento no n?mero de n?cleos presentes em Sistemas Integrados em Chip tem proporcionado o projeto de circuitos com especifica??es cada vez mais agressivas. Arquiteturas de interconex?o eficientes tais como as redes intrachip s?o fundamentais para a viabilidade destes projetos. Entretanto, medir e comparar o desempenho destas redesainda ? uma tarefa desafiadora, resultado: (i) da complexidade imposta pela abund?ncia de op??es dispon?veis no espa?o de projeto destas redes; (ii) da atual n?o ado??o de uma mesma plataforma de avalia??o para a compara??o de diferentes propostas de redes; (iii) e do fato de o tr?fego de rede exercer uma influ?ncia muito maior do que qualquer caracter?stica de projeto no desempenho destas. Este trabalho tem como principal objetivo estrat?gico a avalia??o e compara??o de diferentes arquiteturas de redes intrachip atrav?s de uma plataforma de avalia??o unificada. Adota-se Nocbench, uma plataforma recente, j? validada em alguns contextos e proposta como um padr?o para a avalia??o de redes intrachip. O m?todo de avalia??o empregado baseia-se na simula??o de redes e utiliza como entrada modelos de tr?fego e de computa??o descritos sob a forma de traces, ambos extra?dos de aplica??es reais. As principais contribui??es do trabalho residem: (i) na proposta de diversas melhorias para a plataforma escolhida; (ii) no desenvolvimento de m?dulos para a integra??o das redes Hermes HS, Hermes OO, Hermes TB, Hermes VC e YeaHdo grupo de pesquisa do Autor ? plataforma em quest?o; (iii) no aprimoramento do processo de avalia??o de desempenho da plataforma, atrav?s da inclus?o de m?tricas comumente utilizadas para comparar redes intrachip, incluindo: lat?ncia, vaz?oe jitter. Um conjunto de experimentos valida as contribui??es e demonstra o uso da plataforma Nocbench como uma ferramenta ?til na compara??o de redes intrachip de origens diversas.
Samii, Soheil. „Power Modeling and Scheduling of Tests for Core-based System Chips“. Thesis, Linköping University, Department of Computer and Information Science, 2005. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-2863.
Der volle Inhalt der QuelleThe technology today makes it possible to integrate a complete system on a single chip, called "System-on-Chip'' (SOC). Nowadays SOC designers use previously designed hardware modules, called cores, together with their user defined logic (UDL), to form a complete system on a single chip. The manufacturing process may result in defect chips, for instance due to the base material, and therefore testing chips after production is important in order to ensure fault-free chips.
The testing time for a chip will affect its final cost. Thus it is important to minimize the testing time for each chip. For core-based SOCs this can be done by testing several cores at the same time, instead of testing the cores sequentially. However, this will result in a higher activity in the chip, hence higher power consumption. Due to several factors in the manufacturing process there are limitations of the power consumption for a chip. Therefore, the power limitations should be carefully considered when planning the testing of a chip. Otherwise it can be damaged during test, due to overheating. This leads to the problem of minimizing testing time under such power constraints.
In this thesis we discuss test power modeling and its application to SOC testing. We present previous work in this area and conclude that current power modeling techniques in SOC testing are rather pessimistic. We therefore propose a more accurate power model that is based on the analysis of the test data. Furthermore, we present techniques for test pattern reordering, with the objective of partitioning the test power consumption into low parts and high parts.
The power model is included in a tool for SOC test architecture design and test scheduling, where the scheduling heuristic is designed for SOCs with fixed- width test bus architectures. Several experiments have been conducted in order to evaluate the proposed approaches. The results show that, by using the presented power modeling techniques in test scheduling algorithms, we will get lower testing times and thus lower test cost.
Gupta, Vishal. „An accurate, trimless, high PSRR, low-voltage, CMOS bandgap reference IC“. Diss., Available online, Georgia Institute of Technology, 2007, 2007. http://etd.gatech.edu/theses/available/etd-07052007-073154/.
Der volle Inhalt der QuelleAyazi, Farrokh, Committee Member ; Rincon-Mora, Gabriel, Committee Chair ; Bhatti, Pamela, Committee Member ; Leach, W. Marshall, Committee Member ; Morley, Thomas, Committee Member.
Andrade, Junior Antonio de Quadros. „Planejamento de teste de sistemas baseados em núcleos de hardware de sinal misto usando bist“. reponame:Biblioteca Digital de Teses e Dissertações da UFRGS, 2005. http://hdl.handle.net/10183/8296.
Der volle Inhalt der QuelleCurrently, integrated electronic systems follow the core-based design paradigm. Such systems include not only digital circuits as internal blocks, but also analog circuits, which dominate test resources, such as testing time, extra pins and overhead area, thus increasing the total manufacture cost of these devices. The present work proposes the application of analog Built-in Self Test (BIST) techniques based on the reuse of available digital cores within the same integrated system, aiming to reduce the test costs of the analog cores. Moreover, a satisfactory strategy requires an adequate test planning, so that the design space is better explored. By adapting a software tool, which was originally designed for test planning of exclusively digital SOC, to consider analog cores, as well as the possibility of BIST, one can evaluate the impact of the proposed strategy in terms of test application time, area overhead due to test structures added and extra pins. Power dissipation restrictions may also be taken into account. In order to validate the hypotheses considered, mixed-signal systems are described from digital industrial and academic benchmarks, just adding analog cores. Through simulation with the adapted tool, the obtained results point to a decrease in the system test time, as well as a reduction in the cost of Automatic Test Equipment (ATE), in case of a production test. Thus, a reduction in the overall cost of the test procedure for such devices can be achieved.
Romenska, Yuliia. „Composants abstraits pour la vérification fonctionnelle des systèmes sur puce“. Thesis, Université Grenoble Alpes (ComUE), 2017. http://www.theses.fr/2017GREAM019/document.
Der volle Inhalt der QuelleThe work presented in this thesis deals with modeling, specification and testing of models of Systems-on-a-Chip (SoCs) at the transaction abstraction level and higher. SoCs are heterogeneous: they comprise bothhardware components and processors to execute embedded software, which closely interacts with hardware.SystemC-based Transaction Level Modeling (TLM) has been very successful in providing high-level executablecomponent-based models for SoCs, also called virtual prototypes (VPs). These models can be used early in thedesign flow for the development of the software and the validation of the actual hardware. For SystemC/TLMvirtual prototypes, Assertion-Based Verification (ABV) allows property checking early in the design cycle,helping to find bugs early in the model and to save time and effort that are needed for their fixing. TL modelscan be over-constrained, which means that they do not represent all the behaviors of the hardware, and thus,do not allow detection of some malfunctions of the prototype. Our contributions consist of two orthogonal andcomplementary parts: On the one hand, we identify sources of over-constraints in TL models appearing due tothe order of interactions between components, and propose a notion of loose-ordering which allows to removethese over-constraints. On the other hand, we propose a generalized stubbing mechanism which allows the veryearly simulation with SystemC/TLM virtual prototypes.We propose a set of patterns to capture loose-ordering properties, and define a direct translation of thesepatterns into SystemC monitors. Our generalized stubbing mechanism enables the early simulation with Sys-temC/TLM virtual prototypes, in which some components are not entirely determined on the values of theexchanged data, the order of the interactions and/or the timing. Those components have very abstract speci-fications only, in the form of constraints between inputs and outputs. We show that essential synchronizationproblems between components can be captured using our simulation with stubs. The mechanism is generic;we focus only on key concepts, principles and rules which make the stubbing mechanism implementable andapplicable for real, industrial case studies. Any specification language satisfying our requirements (e.g., loose-orderings) can be used to specify the components, i.e., it can be plugged in the stubbing framework. We providea proof of concept to demonstrate the interest of using the simulation with stubs for very early detection andlocalization of synchronization bugs of the design
Flórez, Martha Johanna Sepúlveda. „Estimativa de desempenho de uma NoC a partir de seu modelo em SYSTEMC-TLM“. Universidade de São Paulo, 2006. http://www.teses.usp.br/teses/disponiveis/3/3140/tde-14122006-152854/.
Der volle Inhalt der QuelleThe wide variety of interconnection structures presently nowadays for SoC (Systemon- Chip), bus and networks-on-Chip NoCs, each of them with a wide set of setup parameters, provides a huge amount of design alternatives. Although the interconnection structure is a key SoC component, there are few design tools in order to set the appropriate configuration parameters for a given application. An efficient SoC project may comply an exploration stage among the possible solutions for the communication structure, during the first steps of the design process. The absence of appropriate tools for that exploration makes critical the designer?s judgment. The present study aims to enhance the communication SoC structure design area, when a NoC is used. This work proposes a methodology that allows the establishment of the NoC communication parameters using a high level model (SystemC TLM timed). Our approach analyzes and evaluates the NoC performance under a wide variety of traffic conditions. The experimental stage was conducted employing a model of a net represented by a SystemC TLM timed (Hermes_Temp). Parametric and pseudo-random generators control the network traffic. The analysis was carried on with a tool designed for these purpose, which generates a group of performance metrics. The results allow to elucidate the global and inner network behavior. The performance values are useful for the heterogeneous and homogeneous NoC design projects, improving the performance evaluation studies scope.
Al-Araje, Abdul-Nasser. „Micronetwork based system-on-FPGA (SOFPGA) architecture“. Connect to resource, 2005. http://rave.ohiolink.edu/etdc/view?acc%5Fnum=osu1122609799.
Der volle Inhalt der QuelleFrantz, Arthur Pereira. „Designing fault tolerant NoCs to improve reliability on SoCs“. reponame:Biblioteca Digital de Teses e Dissertações da UFRGS, 2007. http://hdl.handle.net/10183/11302.
Der volle Inhalt der QuelleAs the technology scales down into deep sub-micron domain, more IP cores are integrated in the same die and new communication architectures are used to meet performance and power constraints. Networks-on-Chip have been proposed as an alternative communication platform capable of providing interconnections and communication among onchip cores, handling performance, energy consumption and reusability issues for large integrated systems. However, the same advances to nanometric technologies have significantly reduced reliability in mass-produced integrated circuits, increasing the sensitivity of devices and interconnects to new types of failures. Variations at the fabrication process or even the susceptibility of a design under a hostile environment might generate errors. In NoC communications the two major sources of errors are crosstalk faults and soft errors. In the past, it was assumed that connections cannot be affected by soft errors because there was no sequential circuit involved. However, when NoCs are used, buffers and sequential circuits are present in the routers, consequently, soft errors can occur between the communication source and destination provoking errors. Fault tolerant techniques that once have been applied in integrated circuits in general can be used to protect routers against bit-flips. In this scenario, this work starts evaluating the effects of soft errors and crosstalk faults in a NoC architecture by performing fault injection simulations, where it has been accurate analyzed the impact of such faults over the switch service. The results show that the effect of those faults in the SoC communication can be disastrous, leading to loss of packets and system crash or unavailability. Then it proposes and evaluates a set of fault tolerant techniques applied at routers able to mitigate soft errors and crosstalk faults at the hardware level. Such proposed techniques were based on error correcting codes and hardware redundancy. Experimental results show that using the proposed techniques one can obtain zero errors with up to 50% of savings in the area overhead when compared to simple duplication. However some of these techniques are very power consuming because all the tolerance is based on adding redundant hardware. Considering that softwarebased mitigation techniques also impose a considerable communication overhead due to retransmission, we then propose the use of mixed hardware-software techniques, that can develop a suitable protection scheme driven by the analysis of the environment that the system will operate in (soft error rate), the design and fabrication factors (delay variations in interconnects, crosstalk enabling points), the probability of a fault generating an error in the router, the communication load and the allowed power or energy budget.
Gonciari, Paul Theo. „Low cost test for core-based system-on-a-chip“. Thesis, University of Southampton, 2003. https://eprints.soton.ac.uk/257354/.
Der volle Inhalt der QuelleLecat-Mathieu, de Boissac Capucine. „Developing radiation-hardening solutions for high-performance and low-power systems“. Electronic Thesis or Diss., Aix-Marseille, 2021. http://www.theses.fr/2021AIXM0413.
Der volle Inhalt der QuelleNew actors have accelerated the pace of putting new satellites into orbit, and other domains like the automotive industry are at the origin of this development. These new actors rely on advanced technologies, such as UTBB FD-SOI in order to be able to achieve the necessary performance to accomplish the tasks. Albeit disruptive in terms of intrinsic soft-error resistance, the growing density and complexity of spaceborne and automotive systems require an accurate characterization of technologies, as well as an adaptation of traditional hardening techniques. This PhD focuses on the study of radiation effects in advanced FD-SOI and bulk silicon processes, and on the research of innovative protection mechanisms. A custom, self-calibrating transient measurements structure with automated design flow is first presented, allowing for the characterization of four different technologies during accelerated tests. The soft-error response of 28~nm FD-SOI and 40~nm bulk logic and storage cells is then assessed through beam testing and with the help of TCAD simulations, allowing to study the influence of voltage, frequency scaling and the application of forward body biasing on sensitivity. Total ionizing dose is also investigated through the use of an on-chip monitoring block. The test results are then utilized to propose a novel hardening solution for system on chip, which gathers the monitoring structures into a real-time radiation environment assessment and a power management unit for power mode adjustments. Finally, as an extension of the SET sensors capability, an implementation of radiation monitors in a context of secure systems is proposed to detect and counteract laser attacks
Kremel, Bruno. „Framework for Reconfigurable Systems on the Altera Chips“. Master's thesis, Vysoké učení technické v Brně. Fakulta informačních technologií, 2015. http://www.nusl.cz/ntk/nusl-264971.
Der volle Inhalt der QuelleLu, Jian. „Embedded Magnetics for Power System on Chip (PSoC)“. Doctoral diss., University of Central Florida, 2009. http://digital.library.ucf.edu/cdm/ref/collection/ETD/id/2993.
Der volle Inhalt der QuellePh.D.
School of Electrical Engineering and Computer Science
Engineering and Computer Science
Electrical Engineering PhD
Yabarrena, Jean Mimar Santa Cruz. „Tecnologias system on chip e CAN em sistemas de controle distribuído“. Universidade de São Paulo, 2006. http://www.teses.usp.br/teses/disponiveis/18/18149/tde-31072006-203757/.
Der volle Inhalt der QuelleControl systems require strict time constraints to work properly, being therefore considered real-time systems. When such systems are distributed, controllers, sensors, and actuators are generally interconnected by fieldbuses. In this context the fieldbuses play an important role in the system global behavior. This research presents the description of the development process of a system-on-chip SoC. Differentiated from the classical approaches, this work focus the implementation of a reprogrammable logic based system. This work explain the necessary IP cores implementation, allowing a DC motor control, using a control area network (CAN) bus to reach a distributed platform. The on-chip architecture used is based on the IBM CoreConnect specification. Moreover it shows isolated components and integral system simulations, in such a way to obtain a qualitative comparison of development processes
Janarthanan, Arun. „Networks-on-Chip based High Performance Communication Architectures for FPGAs“. University of Cincinnati / OhioLINK, 2008. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1239839825.
Der volle Inhalt der QuelleWood, Christopher David. „On-chip THz systems“. Thesis, University of Leeds, 2006. http://etheses.whiterose.ac.uk/2054/.
Der volle Inhalt der QuelleSöderman, Michael. „Loss-less on-chip test response compression for diagnosis and debug in volume production of system-on-chip“. Thesis, Linköping University, Department of Computer and Information Science, 2008. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-11948.
Der volle Inhalt der QuelleThe technical evolution during the past decade have escalated the use of electronic devices, which are more common today than ever before. The market is still growing rapidly and will continue to do so. The reason for this is the increased demand for devices with integrated circuits. In addition to the increased volume of production, the chips are also becoming more complex which is also reflected in the requirements of the chip design process.
An advanced chip that combines several different hardware modules (cores) to form a complete system is called a System-on-Chip (SoC). It is of great importance that these chips work according to expectation, although it can be difficult to guarantee. The purpose of SoC testing is to verify correct behaviour as well as for diagnosis and debug.
Complex systems lead to more and bigger tests which lead to increased test data volume and test time. This results in a higher test cost and many methods are proposed to remedy this situation.
This report proposes a method that minimises fail result data with a real-time compression component embedded on the chip. The compressed fail results can be saved on-chip and retrieved when needed instead of during the test.
Furthermore this method will facilitate debug and diagnosis of SoCs. A mask buffer is used to give the opportunity of choosing exactly which cycles, pins or bits that are relevant. All other result bits are masked and ignored.
The results are satisfying, the data is compressed to a much smaller size which is easier to store on-chip. The method is simple, fast and loss-less.
Li, Dazhang. „On-chip pulsed terahertz systems“. Thesis, University of Leeds, 2010. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.531524.
Der volle Inhalt der QuelleZhao, Wei. „Digital Surveillance Based on Video CODEC System-on-a-Chip (SoC) Platforms“. FIU Digital Commons, 2010. http://digitalcommons.fiu.edu/etd/334.
Der volle Inhalt der QuelleAulagnier, Guillaume. „Optimisation de convertisseurs DC-DC SoC (System on Chip) pour l'automobile“. Phd thesis, Toulouse, INPT, 2015. http://oatao.univ-toulouse.fr/19512/1/AULAGNIER_Guillaume.pdf.
Der volle Inhalt der QuelleYao, Yuan. „Fuzzy Flow Regulation for Network-on-Chip based Chip Multiprocessors Systems“. Thesis, KTH, Skolan för informations- och kommunikationsteknik (ICT), 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-177441.
Der volle Inhalt der QuelleLim, Leycheoh. „Chip interleaving for CDMA cellular systems“. Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1997. http://www.collectionscanada.ca/obj/s4/f2/dsk2/ftp01/MQ29414.pdf.
Der volle Inhalt der QuelleBeacham, Brent Alan. „A high-speed chip to chip interconnection circuit for FPGA emulation systems“. Thesis, National Library of Canada = Bibliothèque nationale du Canada, 2001. http://www.collectionscanada.ca/obj/s4/f2/dsk3/ftp04/MQ58788.pdf.
Der volle Inhalt der QuelleYADAV, MANOJ KUMAR. „DVFS using clock scheduling for Multicore Systems-on-Chip and Networks-on-Chip“. Doctoral thesis, Politecnico di Torino, 2014. http://hdl.handle.net/11583/2538900.
Der volle Inhalt der QuelleLiu, Chih-Chun. „Dynamic thermal management in chip multiprocessor systems“. [College Station, Tex. : Texas A&M University, 2008. http://hdl.handle.net/1969.1/ETD-TAMU-2913.
Der volle Inhalt der QuelleKrundel, Ludovic. „On microelectronic self-learning cognitive chip systems“. Thesis, Loughborough University, 2016. https://dspace.lboro.ac.uk/2134/21804.
Der volle Inhalt der QuelleBeasley, Alexander. „Exploring the benefits and implications of dynamic partial reconfiguration using Field Programmable Gate Array-System on Chip architectures“. Thesis, University of Bath, 2019. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.767597.
Der volle Inhalt der QuelleChang, Jyun-Lyang. „Performance evaluation of wireless Networks on Chip“. Pullman, Wash. : Washington State University, 2009. http://www.dissertations.wsu.edu/Thesis/Spring2009/j_chang_123009.pdf.
Der volle Inhalt der QuelleTitle from PDF title page (viewed on July 21, 2009). "School of Electrical Engineering and Computer Science." Includes bibliographical references (p. 42-43).
Johansson, Henrik. „Evaluating Vivado High-Level Synthesis on OpenCV Functions for the Zynq-7000 FPGA“. Thesis, Mälardalens högskola, Akademin för innovation, design och teknik, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:mdh:diva-29591.
Der volle Inhalt der QuelleOberle, Michael. „Low power systems-on-chip for biomedical applications /“. [S.l.] : [s.n.], 2002. http://e-collection.ethbib.ethz.ch/show?type=diss&nr=14509.
Der volle Inhalt der Quelle