Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Système de multi-Camera“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Système de multi-Camera" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Système de multi-Camera"
Guo Peiyao, 郭珮瑶, 蒲志远 Pu Zhiyuan und 马展 Ma Zhan. „多相机系统:成像增强及应用“. Laser & Optoelectronics Progress 58, Nr. 18 (2021): 1811013. http://dx.doi.org/10.3788/lop202158.1811013.
Der volle Inhalt der QuelleXiao Yifan, 肖一帆, und 胡伟 Hu Wei. „基于多相机系统的高精度标定“. Laser & Optoelectronics Progress 60, Nr. 20 (2023): 2015003. http://dx.doi.org/10.3788/lop222787.
Der volle Inhalt der QuelleZhao Yanfang, 赵艳芳, 孙鹏 Sun Peng, 董明利 Dong Mingli, 刘其林 Liu Qilin, 燕必希 Yan Bixi und 王君 Wang Jun. „多相机视觉测量系统在轨自主定向方法“. Laser & Optoelectronics Progress 61, Nr. 10 (2024): 1011003. http://dx.doi.org/10.3788/lop231907.
Der volle Inhalt der QuelleRen Guoyin, 任国印, 吕晓琪 Xiaoqi Lü und 李宇豪 Li Yuhao. „多摄像机视场下基于一种DTN的多人脸实时跟踪系统“. Laser & Optoelectronics Progress 59, Nr. 2 (2022): 0210004. http://dx.doi.org/10.3788/lop202259.0210004.
Der volle Inhalt der QuelleKulathunga, Geesara, Aleksandr Buyval und Aleksandr Klimchik. „Multi-Camera Fusion in Apollo Software Distribution“. IFAC-PapersOnLine 52, Nr. 8 (2019): 49–54. http://dx.doi.org/10.1016/j.ifacol.2019.08.047.
Der volle Inhalt der QuelleMehta, S. S., und T. F. Burks. „Multi-camera Fruit Localization in Robotic Harvesting“. IFAC-PapersOnLine 49, Nr. 16 (2016): 90–95. http://dx.doi.org/10.1016/j.ifacol.2016.10.017.
Der volle Inhalt der QuelleR.Kennady, Et al. „A Nonoverlapping Vision Field Multi-Camera Network for Tracking Human Build Targets“. International Journal on Recent and Innovation Trends in Computing and Communication 11, Nr. 3 (31.03.2023): 366–69. http://dx.doi.org/10.17762/ijritcc.v11i3.9871.
Der volle Inhalt der QuelleGuler, Puren, Deniz Emeksiz, Alptekin Temizel, Mustafa Teke und Tugba Taskaya Temizel. „Real-time multi-camera video analytics system on GPU“. Journal of Real-Time Image Processing 11, Nr. 3 (27.03.2013): 457–72. http://dx.doi.org/10.1007/s11554-013-0337-2.
Der volle Inhalt der QuelleHuang, Sunan, Rodney Swee Huat Teo und William Wai Lun Leong. „Multi-Camera Networks for Coverage Control of Drones“. Drones 6, Nr. 3 (03.03.2022): 67. http://dx.doi.org/10.3390/drones6030067.
Der volle Inhalt der QuelleWANG, Liang. „Multi-Camera Calibration Based on 1D Calibration Object“. ACTA AUTOMATICA SINICA 33, Nr. 3 (2007): 0225. http://dx.doi.org/10.1360/aas-007-0225.
Der volle Inhalt der QuelleDissertationen zum Thema "Système de multi-Camera"
Mennillo, Laurent. „Reconstruction 3D de l'environnement dynamique d'un véhicule à l'aide d'un système multi-caméras hétérogène en stéréo wide-baseline“. Thesis, Université Clermont Auvergne (2017-2020), 2019. http://www.theses.fr/2019CLFAC022/document.
Der volle Inhalt der QuelleThis Ph.D. thesis, which has been carried out in the automotive industry in association with Renault Group, mainly focuses on the development of advanced driver-assistance systems and autonomous vehicles. The progress made by the scientific community during the last decades in the fields of computer science and robotics has been so important that it now enables the implementation of complex embedded systems in vehicles. These systems, primarily designed to provide assistance in simple driving scenarios and emergencies, now aim to offer fully autonomous transport. Multibody SLAM methods currently used in autonomous vehicles often rely on high-performance and expensive onboard sensors such as LIDAR systems. On the other hand, digital video cameras are much cheaper, which has led to their increased use in newer vehicles to provide driving assistance functions, such as parking assistance or emergency braking. Furthermore, this relatively common implementation now allows to consider their use in order to reconstruct the dynamic environment surrounding a vehicle in three dimensions. From a scientific point of view, existing multibody visual SLAM techniques can be divided into two categories of methods. The first and oldest category concerns stereo methods, which use several cameras with overlapping fields of view in order to reconstruct the observed dynamic scene. Most of these methods use identical stereo pairs in short baseline, which allows for the dense matching of feature points to estimate disparity maps that are then used to compute the motions of the scene. The other category concerns monocular methods, which only use one camera during the reconstruction process, meaning that they have to compensate for the ego-motion of the acquisition system in order to estimate the motion of other objects. These methods are more difficult in that they have to address several additional problems, such as motion segmentation, which consists in clustering the initial data into separate subspaces representing the individual movement of each object, but also the problem of the relative scale estimation of these objects before their aggregation within the static scene. The industrial motive for this work lies in the use of existing multi-camera systems already present in actual vehicles to perform dynamic scene reconstruction. These systems, being mostly composed of a front camera accompanied by several surround fisheye cameras in wide-baseline stereo, has led to the development of a multibody reconstruction method dedicated to such heterogeneous systems. The proposed method is incremental and allows for the reconstruction of sparse mobile points as well as their trajectory using several geometric constraints. Finally, a quantitative and qualitative evaluation conducted on two separate datasets, one of which was developed during this thesis in order to present characteristics similar to existing multi-camera systems, is provided
Petit, Benjamin. „Téléprésence, immersion et interactions pour le reconstruction 3D temps-réel“. Phd thesis, Université de Grenoble, 2011. http://tel.archives-ouvertes.fr/tel-00584001.
Der volle Inhalt der QuelleKim, Jae-Hak, und Jae-Hak Kim@anu edu au. „Camera Motion Estimation for Multi-Camera Systems“. The Australian National University. Research School of Information Sciences and Engineering, 2008. http://thesis.anu.edu.au./public/adt-ANU20081211.011120.
Der volle Inhalt der QuelleKim, Jae-Hak. „Camera motion estimation for multi-camera systems /“. View thesis entry in Australian Digital Theses Program, 2008. http://thesis.anu.edu.au/public/adt-ANU20081211.011120/index.html.
Der volle Inhalt der QuelleJiang, Xiaoyan [Verfasser]. „Multi-Object Tracking-by-Detection Using Multi-Camera Systems / Xiaoyan Jiang“. München : Verlag Dr. Hut, 2016. http://d-nb.info/1084385325/34.
Der volle Inhalt der QuelleKrucki, Kevin C. „Person Re-identification in Multi-Camera Surveillance Systems“. University of Dayton / OhioLINK, 2015. http://rave.ohiolink.edu/etdc/view?acc_num=dayton1448997579.
Der volle Inhalt der QuelleHammarlund, Emil. „Target-less and targeted multi-camera color calibration“. Thesis, Mittuniversitetet, Avdelningen för informationssystem och -teknologi, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:miun:diva-33876.
Der volle Inhalt der QuelleÅkesson, Ulrik. „Design of a multi-camera system for object identification, localisation, and visual servoing“. Thesis, Mälardalens högskola, Akademin för innovation, design och teknik, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:mdh:diva-44082.
Der volle Inhalt der QuelleTuresson, Eric. „Multi-camera Computer Vision for Object Tracking: A comparative study“. Thesis, Blekinge Tekniska Högskola, Institutionen för datavetenskap, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:bth-21810.
Der volle Inhalt der QuelleNadella, Suman. „Multi camera stereo and tracking patient motion for SPECT scanning systems“. Link to electronic thesis, 2005. http://www.wpi.edu/Pubs/ETD/Available/etd-082905-161037/.
Der volle Inhalt der QuelleKeywords: Feature matching in multiple cameras; Multi camera stereo computation; Patient Motion Tracking; SPECT Imaging Includes bibliographical references. (p.84-88)
Bücher zum Thema "Système de multi-Camera"
Beach, David Michael. Multi-camera benchmark localization for mobile robot networks. 2004.
Den vollen Inhalt der Quelle findenBeach, David Michael. Multi-camera benchmark localization for mobile robot networks. 2005.
Den vollen Inhalt der Quelle findenKnorr, Moritz. Self-Calibration of Multi-Camera Systems for Vehicle Surround Sensing. Saint Philip Street Press, 2020.
Den vollen Inhalt der Quelle findenCerqueira, Manuel D. Gated SPECT MPI. Oxford University Press, 2015. http://dx.doi.org/10.1093/med/9780199392094.003.0006.
Der volle Inhalt der QuelleBuchteile zum Thema "Système de multi-Camera"
Porikli, Fatih. „Multi-Camera Surveillance“. In Multisensor Surveillance Systems, 183–98. Boston, MA: Springer US, 2003. http://dx.doi.org/10.1007/978-1-4615-0371-2_10.
Der volle Inhalt der QuelleJirafe, Apurva, Mayuri Jibhe und V. R. Satpute. „Camera Handoff for Multi-camera Surveillance“. In Algorithms for Intelligent Systems, 267–74. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-33-4862-2_29.
Der volle Inhalt der QuellePopovic, Vladan, Kerem Seyid, Ömer Cogal, Abdulkadir Akin und Yusuf Leblebici. „Omnidirectional Multi-Camera Systems Design“. In Design and Implementation of Real-Time Multi-Sensor Vision Systems, 69–88. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-59057-8_4.
Der volle Inhalt der QuellePopovic, Vladan, Kerem Seyid, Ömer Cogal, Abdulkadir Akin und Yusuf Leblebici. „Miniaturization of Multi-Camera Systems“. In Design and Implementation of Real-Time Multi-Sensor Vision Systems, 89–115. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-59057-8_5.
Der volle Inhalt der QuelleJaved, Omar, und Mubarak Shah. „Knight Surveillance System Deployment“. In Automated Multi-Camera Surveillance: Algorithms and Practice, 1–5. Boston, MA: Springer US, 2008. http://dx.doi.org/10.1007/978-0-387-78881-4_6.
Der volle Inhalt der QuelleFrahm, Jan-Michael, Kevin Köser und Reinhard Koch. „Pose Estimation for Multi-camera Systems“. In Lecture Notes in Computer Science, 286–93. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-540-28649-3_35.
Der volle Inhalt der QuelleBrückner, Marcel, und Joachim Denzler. „Active Self-calibration of Multi-camera Systems“. In Lecture Notes in Computer Science, 31–40. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-15986-2_4.
Der volle Inhalt der QuelleBae, Soonmin. „Dense 3D Reconstruction in Multi-camera Systems“. In Progress in Optomechatronic Technologies, 51–59. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-05711-8_6.
Der volle Inhalt der QuelleMatsuyama, Takashi, Shohei Nobuhara, Takeshi Takai und Tony Tung. „Multi-camera Systems for 3D Video Production“. In 3D Video and Its Applications, 17–44. London: Springer London, 2012. http://dx.doi.org/10.1007/978-1-4471-4120-4_2.
Der volle Inhalt der QuellePopovic, Vladan, Kerem Seyid, Ömer Cogal, Abdulkadir Akin und Yusuf Leblebici. „State-of-the-Art Multi-Camera Systems“. In Design and Implementation of Real-Time Multi-Sensor Vision Systems, 13–31. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-59057-8_2.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Système de multi-Camera"
Dondo, Diego Gonzalez, Fernando Trasobares, Leandro Yoaquino, Julian Padilla und Javier Redolfi. „Calibration of multi-camera systems“. In 2015 XVI Workshop on Information Processing and Control (RPIC). IEEE, 2015. http://dx.doi.org/10.1109/rpic.2015.7497094.
Der volle Inhalt der QuelleSalman, Bakhita, Mohammed I. Thanoon, Saleh Zein-Sabatto und Fenghui Yao. „Multi-camera Smart Surveillance System“. In 2017 International Conference on Computational Science and Computational Intelligence (CSCI). IEEE, 2017. http://dx.doi.org/10.1109/csci.2017.78.
Der volle Inhalt der QuelleNapoletano, Paolo, und Francesco Tisato. „An attentive multi-camera system“. In IS&T/SPIE Electronic Imaging, herausgegeben von Kurt S. Niel und Philip R. Bingham. SPIE, 2014. http://dx.doi.org/10.1117/12.2042652.
Der volle Inhalt der QuelleBehera, Reena Kumari, Pallavi Kharade, Suresh Yerva, Pranali Dhane, Ankita Jain und Krishnan Kutty. „Multi-camera based surveillance system“. In 2012 World Congress on Information and Communication Technologies (WICT). IEEE, 2012. http://dx.doi.org/10.1109/wict.2012.6409058.
Der volle Inhalt der QuelleYang, Feng, Zhao Liming, Zhang Yi und Kuang Hengyang. „Multi-camera System Depth Estimation“. In 2022 IEEE 6th Information Technology and Mechatronics Engineering Conference (ITOEC). IEEE, 2022. http://dx.doi.org/10.1109/itoec53115.2022.9734714.
Der volle Inhalt der QuelleCostache, Alexandru, Dan Popescu, Cosmin Popa und Stefan Mocanu. „Multi-Camera Video Surveillance“. In 2019 22nd International Conference on Control Systems and Computer Science (CSCS). IEEE, 2019. http://dx.doi.org/10.1109/cscs.2019.00096.
Der volle Inhalt der QuelleKumar, Avinash, Manjula Gururaj, Kalpana Seshadrinathan und Ramkumar Narayanswamy. „Multi-capture Dynamic Calibration of Multi-camera Systems“. In 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). IEEE, 2018. http://dx.doi.org/10.1109/cvprw.2018.00238.
Der volle Inhalt der QuelleWu, Haoyu, Shaomin Xiong und Toshiki Hirano. „A Real-Time Human Recognition and Tracking System With a Dual-Camera Setup“. In ASME 2019 28th Conference on Information Storage and Processing Systems. American Society of Mechanical Engineers, 2019. http://dx.doi.org/10.1115/isps2019-7469.
Der volle Inhalt der QuelleZhong, Jianghua, W. Bastiaan Kleijn und Xiaoming Hu. „Video quality improvement for multi-camera systems using camera control“. In 2014 33rd Chinese Control Conference (CCC). IEEE, 2014. http://dx.doi.org/10.1109/chicc.2014.6896924.
Der volle Inhalt der QuelleZhao, Chunhui, Bin Fan, Jinwen Hu, Limin Tian, Zhiyuan Zhang, Sijia Li und Quan Pan. „Pose estimation for multi-camera systems“. In 2017 IEEE International Conference on Unmanned Systems (ICUS). IEEE, 2017. http://dx.doi.org/10.1109/icus.2017.8278403.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Système de multi-Camera"
Davis, Tim, Frank Lang, Joe Sinneger, Paul Stabile und John Tower. Multi-Band Infrared Camera Systems. Fort Belvoir, VA: Defense Technical Information Center, Dezember 1994. http://dx.doi.org/10.21236/ada294028.
Der volle Inhalt der QuelleFrankel, Martin, und Jon A. Webb. Design, Implementation, and Performance of a Scalable Multi-Camera Interactive Video Capture System,. Fort Belvoir, VA: Defense Technical Information Center, Juni 1995. http://dx.doi.org/10.21236/ada303255.
Der volle Inhalt der QuelleTao, Yang, Amos Mizrach, Victor Alchanatis, Nachshon Shamir und Tom Porter. Automated imaging broiler chicksexing for gender-specific and efficient production. United States Department of Agriculture, Dezember 2014. http://dx.doi.org/10.32747/2014.7594391.bard.
Der volle Inhalt der QuelleAnderson, Gerald L., und Kalman Peleg. Precision Cropping by Remotely Sensed Prorotype Plots and Calibration in the Complex Domain. United States Department of Agriculture, Dezember 2002. http://dx.doi.org/10.32747/2002.7585193.bard.
Der volle Inhalt der Quelle