Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Synthetic seismic modeling“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Synthetic seismic modeling" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Synthetic seismic modeling"
Santos, Lúcio T., Jörg Schleicher, Martin Tygel und Peter Hubral. „Seismic modeling by demigration“. GEOPHYSICS 65, Nr. 4 (Juli 2000): 1281–89. http://dx.doi.org/10.1190/1.1444819.
Der volle Inhalt der QuelleSyaifuddin, Firman, Andri Dian Nugraha, Zulfakriza und Shindy Rosalia. „Synthetic Modeling of Ambient Seismic Noise Tomography Data“. IOP Conference Series: Earth and Environmental Science 873, Nr. 1 (01.10.2021): 012096. http://dx.doi.org/10.1088/1755-1315/873/1/012096.
Der volle Inhalt der QuelleStemland, Helene Meling, Tor Arne Johansen und Bent Ole Ruud. „Potential Use of Time-Lapse Surface Seismics for Monitoring Thawing of the Terrestrial Arctic“. Applied Sciences 10, Nr. 5 (09.03.2020): 1875. http://dx.doi.org/10.3390/app10051875.
Der volle Inhalt der QuelleNeff, Dennis B. „Incremental pay thickness modeling of hydrocarbon reservoirs“. GEOPHYSICS 55, Nr. 5 (Mai 1990): 556–66. http://dx.doi.org/10.1190/1.1442867.
Der volle Inhalt der QuellePradhan, Anshuman, und Tapan Mukerji. „Consistency and prior falsification of training data in seismic deep learning: Application to offshore deltaic reservoir characterization“. GEOPHYSICS 87, Nr. 3 (11.04.2022): N45—N61. http://dx.doi.org/10.1190/geo2021-0568.1.
Der volle Inhalt der QuelleChen, Ganglin, Gianni Matteucci, Bill Fahmy und Chris Finn. „Spectral-decomposition response to reservoir fluids from a deepwater West Africa reservoir“. GEOPHYSICS 73, Nr. 6 (November 2008): C23—C30. http://dx.doi.org/10.1190/1.2978337.
Der volle Inhalt der QuelleGao, Hui, Xinming Wu, Jinyu Zhang, Xiaoming Sun und Zhengfa Bi. „ClinoformNet-1.0: stratigraphic forward modeling and deep learning for seismic clinoform delineation“. Geoscientific Model Development 16, Nr. 9 (09.05.2023): 2495–513. http://dx.doi.org/10.5194/gmd-16-2495-2023.
Der volle Inhalt der QuelleArntsen, Børge, Lars Wensaas, Helge Løseth und Christian Hermanrud. „Seismic modeling of gas chimneys“. GEOPHYSICS 72, Nr. 5 (September 2007): SM251—SM259. http://dx.doi.org/10.1190/1.2749570.
Der volle Inhalt der QuellePayne, M. A. „Shear‐wave logging to enhance seismic modeling“. GEOPHYSICS 56, Nr. 12 (Dezember 1991): 2129–38. http://dx.doi.org/10.1190/1.1443027.
Der volle Inhalt der QuellePanea, Ionelia, Stefan Prisacari, Victor Mocanu, Mihnea Micu und Marius Paraschivoiu. „The use of seismic modeling for the geologic interpretation of deep seismic reflection data with low signal-to-noise ratios“. Interpretation 5, Nr. 1 (01.02.2017): T23—T31. http://dx.doi.org/10.1190/int-2016-0046.1.
Der volle Inhalt der QuelleDissertationen zum Thema "Synthetic seismic modeling"
Ryan, John C. „Analytical and Experimental Investigation of Improving Seismic Performance of Steel Moment Frames Using Synthetic Fiber Ropes“. Diss., Virginia Tech, 2006. http://hdl.handle.net/10919/29392.
Der volle Inhalt der QuellePh. D.
Sanchez, A. Alejandro. „3D seismic interpretation and synthetic modeling of the Atoka and Morrow formations, in the Buffalo Valley Field (Delaware Basin, New Mexico, Chaves County) for reservoir characterization using neural networks“. Morgantown, W. Va. : [West Virginia University Libraries], 2004. https://etd.wvu.edu/etd/controller.jsp?moduleName=documentdata&jsp%5FetdId=3739.
Der volle Inhalt der QuelleTitle from document title page. Document formatted into pages; contains xiii, 134 p. : ill. (some col.), maps (some col.). Vita. Includes abstract. Includes bibliographical references (p. 118-122).
Abbani, Ghina. „Geophysical characterization of a carbonate platform reservoir based on outcrop analogue study (onshore, Lebanon)“. Electronic Thesis or Diss., Sorbonne université, 2023. http://www.theses.fr/2023SORUS393.
Der volle Inhalt der QuelleReservoir characterization in frontier basins remains a challenge for exploration efforts. The Levant Basin, located in the easternmost part of the Mediterranean region, represents a frontier basin that is extensively mapped in terms of seismic survey but lacks well log calibration. The sparse data coverage results in substantial uncertainties in seismic interpretation and evaluation of reservoir properties. In the absence of well data, outcrop analogues can play a key role in the characterization of subsurface carbonate platforms. The main objective of this thesis is to characterize a large-scale Cenomanian – Turonian carbonate platform located northern Lebanon based on integrating sedimentological characterization with geophysical and petrophysical measurements. The investigation of the onshore analogue outcrop allows to constrain the carbonate platform’s properties on onshore seismic data. The developed approach is first applied to the Mid – Late Bathonian limestones of Massangis quarry (Oolithe Blanche formation), representing an analogue of the geothermal reservoir targeted by many municipalities in the Ile-de-France region. Sedimentologic description is completed for the studied outcrop and petrographic analysis is accomplished for representative samples. A total of 1000 acoustic velocities are acquired at 40 kHz to generate a 2D synthetic seismogram. The sedimentologic and acoustic characterization of the section allows to understand the influence of facies variation and diagenetic features (firm grounds, bioturbation, stylolites, etc) on the acoustic measurements and the generation of seismic reflectors. The studied outcrop in Kfarhelda northern Lebanon is a Cenomanian – Turonian shallow marine carbonate platform representing Sannine and Maameltain formations. The formations represent bedded limestones with important Turonian rudist-rich rudstones. A thorough sedimentary description is completed for the 400 m-thick carbonate platform. P-wave velocity is acquired directly on the outcrop, and the petrophysical properties are measured on 44 representative samples. The data are used to generate a 1D synthetic seismogram with a 25 Hz Ricker wavelet. The resulting reflectors are mainly (1) high amplitude reflectors at the limit between two facies with contrasting physical properties enhanced by diagenesis, (2) moderate amplitude reflectors corresponding to stratigraphic limits at the transition between facies, and (3) very low amplitude reflectors in karstified units. The integration of outcrop and seismic data is based on the generation of the synthetic seismogram. Interpretation and seismic facies analysis are completed for the 2D onshore seismic profile acquired in 2013. The best fit between the synthetic seismic and seismic profile resulted in the identification of two distinctive reflectors related to the Marly Limestone Zone causing sharp contrast in acoustic impedance, and the overlying channel facies characterised by higher porosity. The approach developed in this thesis work highlights the importance of combining sedimentologic and acoustic measurements together with synthetic seismic modelling to identify the geological origin of seismic reflectors and improve the seismic interpretation in terms of facies and reservoir properties
Williams, Huw Davies. „Investigating controls on carbonate platform geometry using forward modelling, outcrop and synthetic seismic studies“. Thesis, Cardiff University, 2010. http://orca.cf.ac.uk/54148/.
Der volle Inhalt der QuelleZuccolo, Elisa. „Neo-deterministic seismic hazard scenarios: from the modelling of the past to prediction“. Doctoral thesis, Università degli studi di Trieste, 2010. http://hdl.handle.net/10077/3489.
Der volle Inhalt der QuelleÈ stato affrontato il problema della definizione della pericolosità sismica utilizzando il metodo neo-deterministico (NDSHA), che si basa sul calcolo di sismogrammi sintetici realistici. Considerando modelli strutturali medi e un set di sorgenti distribuite internamente alle zone sismogenetiche, possono essere definite delle mappe di scuotimento al bedrock complementari alla mappa di pericolosità di tipo probabilistico (PSHA) sulla quale è basata la normativa antisismica italiana. L’analisi di stabilità effettuata ha dimostrato che l’informazione disponibile sui terremoti del passato può non essere rappresentativa per i futuri terremoti, anche se si hanno a disposizione cataloghi estesi nel tempo (∼ 1000 anni). Ciò non è sorprendente se si tiene presente la scala dei tempi dei processi geologici, ma tale consapevolezza è spesso ignorata in PSHA. NDSHA permette di superare questo limite mediante l’uso di indicatori indipendenti sul potenziale sismico di un’area (e.g. nodi sismogenetici e faglie attive) che consentono di colmare le lacune nella sismicità osservata. Il confronto tra le mappe di pericolosità PSHA e NDSHA sul territorio italiano ha evidenziato che NDSHA fornisce valori maggiori di PSHA nelle aree caratterizzate da forti terremoti osservati e in corrispondenza dei nodi sismogenetici. I valori massimi di NDSHA sono confrontabili con quelli di PSHA per lunghi periodi di ritorno (T≥2475 anni). D’altro canto, PSHA tende a sovrastimare, rispetto a NDSHA, la pericolosità sismica in aree a bassa sismicità. È quindi auspicabile una revisione della normativa che tenga conto di questi fatti. Gli scenari di scuotimento sono utili sia per la ricostruzione delle caratteristiche di sorgente dei terremoti del passato (es. terremoto del 1117) che per la previsione degli effetti degli eventi futuri. Quest’ultimo aspetto, importante per le azioni di prevenzione della Protezione Civile, è stato sviluppato nell’ambito del progetto ASI-SISMA mediante la generazione di scenari dipendenti dal tempo a diversa scala di dettaglio. L’applicazione della tecnica analitica di calcolo dei sismogrammi sintetici in mezzi anelatici tridimensionali, per la cui è stata messa a punto una subroutine per la gestione automatica dell’input, è stata applicata allo studio di eventi di profondità intermedia, avvenuti in Vrancea (Romania), considerando sia serie temporali registrate (accelerogrammi) che intensità osservate.
The problem of the definition of the neo-deterministic seismic hazard assessment (NDSHA), based on the computation of realistic synthetic seismograms, has been capably addressed. Considering average structural models and a set of sources distributed within the seismogenic zones, ground shaking maps at the bedrock, complementary to the probabilistic seismic hazard (PSHA) map on which the Italian seismic code is based, can be defined. The stability analysis performed showed that the available information from past events may not be well representative of future earthquakes, even if long earthquake catalogues (< 1000 years) are available. This is not surprising if we consider the geological times, but this awareness is often ignored in PSHA. NDSHA can easily overcome this limit since it allows to take into account, in a formally well defined way, not only the observed seismicity but also independent indicators of the seismogenic potential of a given area like the seismogenic nodes and active faulting data. The comparison between PSHA and NDSHA maps over the Italian territory evidenced that NDSHA provides values larger than those given by PSHA in areas where large earthquakes are observed and in areas identified as prone to large earthquakes (i.e. seismogenic nodes). The maximum values of NDSHA are consistent with those of PSHA for long return periods (T≥2475 years). Comparatively smaller values are obtained in low-seismicity areas. Therefore a revision of the code taking into account these facts is desirable. Ground shaking scenarios are useful in order to detect the main characteristics of the past earthquakes (e.g. the 1117 earthquake) and to predict the expected ground shaking associated with future earthquakes. The last aspect, which constitutes a useful tool for the rescue actions of the Civil Protection, has been developed in the framework of the ASI-SISMA Project by means of the generation of multi-scale time-dependent seismic hazard scenarios. The application of the analytical technique for the computation of synthetic seismograms in three-dimensional anelastic models, for which a subroutine for the automatic generation of the input has been developed, has been applied to the study of intermediate-depth Vrancea (Romania) earthquakes, considering both recorded time series (accelerograms) and observed macroseismic intensities.
XXII Ciclo
1982
Rodriguez, Osmar. „BRIDGE DESIGN FOR EARTHQUAKE FAULT CROSSINGS - SYNTHESIS OF DESIGN ISSUES AND STRATEGIES“. DigitalCommons@CalPoly, 2012. https://digitalcommons.calpoly.edu/theses/701.
Der volle Inhalt der QuelleAfsar, Fatima. „ANALYSIS AND INTERPRETATION OF 2D/3D SEISMIC DATA OVER DHURNAL OIL FIELD, NORTHERN PAKISTAN“. Thesis, Uppsala universitet, Geofysik, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-202565.
Der volle Inhalt der QuelleCasey, Michael Chase. „Integrated Reservoir Characterization: Offshore Louisiana, Grand Isle Blocks 32 & 33“. Thesis, 2011. http://hdl.handle.net/1969.1/ETD-TAMU-2011-05-9363.
Der volle Inhalt der QuelleDe, Basabe Delgado Jonás de Dios 1975. „High-order finite element methods for seismic wave propagation“. 2009. http://hdl.handle.net/2152/6864.
Der volle Inhalt der Quelletext
TOMASSI, ANDREA. „Modelling facies heterogeneity in carbonate ramp systems. From petrophysical characteristics to forward modelling“. Doctoral thesis, 2022. http://hdl.handle.net/11573/1618901.
Der volle Inhalt der QuelleBuchteile zum Thema "Synthetic seismic modeling"
Krishna, V. G., K. L. Kaila und P. R. Reddy. „Synthetic seismogram modeling of crustal seismic record sections from the Koyna DSS profiles in the Western India“. In Properties and Processes of Earth' Lower Crust, 143–57. Washington, D. C.: American Geophysical Union, 1989. http://dx.doi.org/10.1029/gm051p0143.
Der volle Inhalt der QuelleSinvhal, Amita, und Harsha Sinvhal. „Patterns Recognized from Synthetic Seismic Data“. In Seismic Modelling and Pattern Recognition in Oil Exploration, 129–44. Dordrecht: Springer Netherlands, 1992. http://dx.doi.org/10.1007/978-94-011-2570-3_7.
Der volle Inhalt der QuelleSinvhal, Amita, und Harsha Sinvhal. „Simulation of Synthetic Seismograms“. In Seismic Modelling and Pattern Recognition in Oil Exploration, 63–90. Dordrecht: Springer Netherlands, 1992. http://dx.doi.org/10.1007/978-94-011-2570-3_4.
Der volle Inhalt der QuelleSoloviev, A. A., I. A. Vorobieva und G. F. Panza. „Modelling of Block Structure Dynamics for the Vrancea Region: Source Mechanisms of the Synthetic Earthquakes“. In Seismic Hazard of the Circum-Pannonian Region, 97–110. Basel: Birkhäuser Basel, 2000. http://dx.doi.org/10.1007/978-3-0348-8415-0_6.
Der volle Inhalt der QuellePollitz, Fred F. „Regional Seismic Wavefield Computation on a 3-D Heterogeneous Earth Model by Means of Coupled Traveling Wave Synthesis“. In Earthquake Processes: Physical Modelling, Numerical Simulation and Data Analysis Part I, 2085–112. Basel: Birkhäuser Basel, 2002. http://dx.doi.org/10.1007/978-3-0348-8203-3_12.
Der volle Inhalt der Quellevan Hoek, Tomas, Boudewijn Salomons, M. Burnett und J. Hooper. „Understanding the Seismic Expression of Complex Turbidite Reservoirs Through Synthetic Seismic Forward Modeling: 1D-Convolutional Versus 3D-Modeling Approaches“. In Reservoir Characterization: Integrating Technology and Business Practices: 26th Annual, 345–71. SOCIETY OF ECONOMIC PALEONTOLOGISTS AND MINERALOGISTS, 2006. http://dx.doi.org/10.5724/gcs.06.26.0345.
Der volle Inhalt der QuelleMa, Peifeng, Yifei Cui, Weixi Wang, Hui Lin, Yuanzhi Zhang und Yi Zheng. „Landslide Movement Monitoring with InSAR Technologies“. In Landslides [Working Title]. IntechOpen, 2022. http://dx.doi.org/10.5772/intechopen.105058.
Der volle Inhalt der QuelleMIKUMO, T., und T. MIYATAKE. „Numerical Modeling of Realistic Fault Rupture Processes“. In Seismic Strong Motion Synthetics, 91–151. Elsevier, 1987. http://dx.doi.org/10.1016/b978-0-12-112251-5.50007-8.
Der volle Inhalt der QuelleACHENBACH, J. D., und JOHN G. HARRIS. „Asymptotic Modeling of Strong Ground Motion Excited by Subsurface Sliding Events“. In Seismic Strong Motion Synthetics, 1–54. Elsevier, 1987. http://dx.doi.org/10.1016/b978-0-12-112251-5.50005-4.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Synthetic seismic modeling"
Widyantoro, A. „Seismic Forward Modeling of Semberah Fluviodeltaic Reservoir“. In Indonesian Petroleum Association 44th Annual Convention and Exhibition. Indonesian Petroleum Association, 2021. http://dx.doi.org/10.29118/ipa21-g-5.
Der volle Inhalt der QuelleSancevero, S. S., A. Z. Remacre und R. Portugal. „Seismic Modeling of Synthetic Bodies with Geological Characteristics Generated by Object Based Simulation“. In 66th EAGE Conference & Exhibition. European Association of Geoscientists & Engineers, 2004. http://dx.doi.org/10.3997/2214-4609-pdb.3.p045.
Der volle Inhalt der QuelleMasaya, S., und D. Verschuur. „Surface-consistent Seismic Data Amplitude Correction Via Learning from Synthetic Models Based On Waveform Modeling“. In 80th EAGE Conference and Exhibition 2018. Netherlands: EAGE Publications BV, 2018. http://dx.doi.org/10.3997/2214-4609.201801108.
Der volle Inhalt der QuelleB. Helle, H., M. Ayzenberg, A. Aizenberg, K. D. Klem-Musatov, J. Pajchel und B. Ursin. „Our Experiences of 3D Synthetic Seismic Modeling with Tip-wave Superposition Method and Effective Coefficients“. In 71st EAGE Conference and Exhibition incorporating SPE EUROPEC 2009. European Association of Geoscientists & Engineers, 2009. http://dx.doi.org/10.3997/2214-4609.201400098.
Der volle Inhalt der QuelleTiwari, Pankaj Kumar, Debasis Priyadarshan Das, Parimal Arjun Patil, Prasanna Chidambaram, Prasanna Kumar Chandran, Raj Deo Tewari und M. Khaidhir Abdul Hamid. „4D Seismic in Subsurface CO2 Plume Monitoring – Why It Matters?“ In SPE Annual Technical Conference and Exhibition. SPE, 2021. http://dx.doi.org/10.2118/206162-ms.
Der volle Inhalt der QuelleM., Anandhakrishnan, Asif Basheer und Ancy Mathew. „Evaluation of Vertical Stiffness of Scrap Tyre Pad Base Isolator with Change in Aspect Ratio“. In 6th International Conference on Modeling and Simulation in Civil Engineering. AIJR Publisher, 2023. http://dx.doi.org/10.21467/proceedings.156.23.
Der volle Inhalt der QuelleOliveira, Alexandre de Souza, und Carlos A. S. Ferreira. „Modeling of a synthetic presalt 2D seismic dataset representative of offshore East margin basins (Brazil) – preliminary results“. In 11th International Congress of the Brazilian Geophysical Society & EXPOGEF 2009, Salvador, Bahia, Brazil, 24-28 August 2009. Society of Exploration Geophysicists and Brazilian Geophysical Society, 2009. http://dx.doi.org/10.1190/sbgf2009-300.
Der volle Inhalt der QuelleDe Souza Oliveira, Alexandre, und Carlos A.S. Ferreira. „Modeling Of A Synthetic Presalt 2D Seismic Dataset Representative Of Offshore East Margin Basins (Brazil) – Preliminary Results“. In 11th International Congress of the Brazilian Geophysical Society. European Association of Geoscientists & Engineers, 2009. http://dx.doi.org/10.3997/2214-4609-pdb.195.1415_evt_6year_2009.
Der volle Inhalt der QuelleTiwari, Pankaj Kumar, Zoann Low, Parimal Arjun Patil, Debasis Priyadarshan Das, Prasanna Chidambaram und Raj Deo Tewari. „3D DAS-VSP Illumination Modeling for CO2 Plume Migration Monitoring in Offshore Sarawak, Malaysia“. In Abu Dhabi International Petroleum Exhibition & Conference. SPE, 2021. http://dx.doi.org/10.2118/207842-ms.
Der volle Inhalt der QuelleDarijani, Mehrdad, und Colin Farquharson. „Synthetic modeling and joint inversion of gravity and seismic refraction data for overburden stripping in the Athabasca Basin, Canada“. In SEG Technical Program Expanded Abstracts 2016. Society of Exploration Geophysicists, 2016. http://dx.doi.org/10.1190/segam2016-13947873.1.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Synthetic seismic modeling"
Warner, M. R. Modeling of synthetic seismic reflection data: CCSS workshop 1987 - data set V. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 1990. http://dx.doi.org/10.4095/129029.
Der volle Inhalt der Quelle